1
|
Saini V, Safwan SM, Mehta D, Das EE, Bajaj A. Recent Advances in the Development of Antifungal Agents: Beyond Azoles, Polyenes, and Echinocandins. ACS Infect Dis 2025. [PMID: 40358027 DOI: 10.1021/acsinfecdis.4c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The escalating incidence of antimicrobial resistance to antifungal agents, alongside the emergence of drug-resistant fungal strains, constitutes a significant threat to a potential global fungal pandemic. In response, researchers are intensifying efforts to identify novel antifungal compounds through diverse methodologies. Emerging strategies focus on innovative therapeutic targets that may reduce the risk of resistance development while offering broad-spectrum efficacy against fungal infections. Additionally, these approaches present potential cost-effectiveness and accelerated development timelines. This review systematically categorizes a range of novel antifungal compounds, including antifungal peptides, cationic amphiphiles, small molecules, polymers, and repurposed drugs, based on their efficacy in inhibiting fungal growth and associated virulence factors. These compounds exhibit notable antimicrobial activity across in silico, in vitro, and in vivo systems against various pathogenic fungal strains, with several showing substantial promise for clinical application. Furthermore, the review highlights the limitations of standard antifungals and elucidates the mechanisms by which fungal strains develop resistance. This work aims to engage researchers in the distinctive field of fungal biology and foster the exploration of new antifungal strategies.
Collapse
Affiliation(s)
- Varsha Saini
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Sayed M Safwan
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Devashish Mehta
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Eric Evan Das
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad 121001, Haryana, India
| |
Collapse
|
2
|
Gong P, Wang J, Long H, Yang W, Chen X, Li N, Chen F, Zhang J, Guo Y. Edible and Medicinal Fungi as Candidate Natural Antidepressants: Mechanisms and Nutritional Implications. Mol Nutr Food Res 2025:e70080. [PMID: 40289452 DOI: 10.1002/mnfr.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025]
Abstract
This systematic review examines the antidepressant potential of edible medicinal fungi (EMFs), focusing on their bioactive compounds and mechanisms of action. EMFs modulate neurotransmitter systems, including serotonin (5-HT) and dopamine (DA), alleviating depressive symptoms. Extracts from EMFs, such as Ganoderma lucidum, Hericium erinaceus, Poria cocos, and Cordyceps militaris, demonstrate significant antidepressant-like effects in preclinical studies. Their bioactive compounds influence the tryptophan-kynurenine (KYN) pathway, regulate the hypothalamus-pituitary-adrenal (HPA) axis, and reduce neuroinflammation, all of which are linked to stress response and mood regulation. The review also explores the gut-brain axis, highlighting how EMF-derived polysaccharides improve gut health by modulating microbiota, potentially mitigating depressive symptoms. Additionally, it discusses the use of EMFs in functional foods and dietary supplements, innovations like 3D food printing for depression-related issues, and synthetic biology for enhancing compound production. Artificial intelligence is used to model complex mechanisms. However, challenges remain, such as standardization and lack of clinical validation. Future research should address these gaps, emphasizing personalized interventions and advanced technologies for next-generation antidepressant foods.
Collapse
Affiliation(s)
- Pin Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Jiating Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Hui Long
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Wenjuan Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Xuefeng Chen
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Nan Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| | - Fuxin Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an, China
| | - Jie Zhang
- The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuxi Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, China
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, China
- Key Laboratory of Precision Nutrition and Functional Product Development in Xi'an, Shaanxi University of Science and Technology, Xi'an, China
| |
Collapse
|
3
|
Alanís-Ríos SA, González GM, Montoya AM, Villanueva-Lozano H, Treviño-Rangel RDJ. Sertraline exhibits in vivo antifungal activity against Candida auris and enhances the effect of voriconazole in combination. Microb Pathog 2025; 199:107212. [PMID: 39647545 DOI: 10.1016/j.micpath.2024.107212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Candida auris is a global health threat due to its multidrug-resistant nature, particularly in intensive care units, where outbreaks are associated with high mortality rates. The urgency for alternative effective strategies has led to the exploration of combination therapy and drug repurposing Out of the possible drugs known with a potential antifungal effect, sertraline, a selective serotonin reuptake inhibitor widely used on clinical settings has shown promising results. This study aimed to evaluate the antifungal activity of sertraline and voriconazole alone and in combination in a murine model of candidaemia due to C. auris. Immunosuppressed BALB/c mice were infected via intravenous injection with C. auris and then received experimental treatments intraperitoneally for 7 days. The therapeutic efficacy was assessed by determining fungal tissue burden and animal survival. Sertraline exhibited a dose-dependent decrease in fungal burden, with the kidneys showing the most substantial reduction. Combination therapy of sertraline + voriconazole demonstrated an enhanced antifungal effect compared to the monotherapy of both drugs. As far as we know, this preclinical study is the first to evaluate the antifungal activity of sertraline, alone and in combination with an antifungal, against C. auris, representing a possible promissory option for adjuvant treatment of candidaemia due to this organism.
Collapse
Affiliation(s)
- Sergio A Alanís-Ríos
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de MicrobiologíaAve. Francisco I. Madero & Dr. Eduardo A. Pequeño, S/n. Colonia Mitras Centro, 64460, Monterrey, N.L, Mexico
| | - Gloria M González
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de MicrobiologíaAve. Francisco I. Madero & Dr. Eduardo A. Pequeño, S/n. Colonia Mitras Centro, 64460, Monterrey, N.L, Mexico
| | - Alexandra M Montoya
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de MicrobiologíaAve. Francisco I. Madero & Dr. Eduardo A. Pequeño, S/n. Colonia Mitras Centro, 64460, Monterrey, N.L, Mexico
| | - Hiram Villanueva-Lozano
- Hospital Regional ISSSTE Monterrey, Departamento de Medicina Interna, Servicio de InfectologíaAdolfo López Mateos 122, Col. Burócratas Federales, 64380, Monterrey, N.L, Mexico
| | - Rogelio de J Treviño-Rangel
- Universidad Autónoma de Nuevo León, Facultad de Medicina, Departamento de MicrobiologíaAve. Francisco I. Madero & Dr. Eduardo A. Pequeño, S/n. Colonia Mitras Centro, 64460, Monterrey, N.L, Mexico.
| |
Collapse
|
4
|
Rocha CHL, Galvão Rocha FM, Sanches PR, Rossi A, Martinez-Rossi NM. The Antidepressant Sertraline Modulates Gene Expression and Alternative Splicing Events in the Dermatophyte Trichophyton rubrum: A Comprehensive Analysis. Genes (Basel) 2025; 16:146. [PMID: 40004476 PMCID: PMC11855152 DOI: 10.3390/genes16020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Dermatophytosis, a prevalent fungal infection of keratinized tissues, is primarily caused by the filamentous fungus Trichophyton rubrum. Sertraline (SRT), an antidepressant with antifungal activity, has already demonstrated therapeutic potential against this fungus. Elucidating the effects of SRT may provide insights into its mechanism of action and fungal adaptation to this drug. Differential gene expression and alternative splicing (AS) facilitate fungal adaptations to various environmental conditions. This study aimed to provide a comprehensive overview of AS events and their implications in T. rubrum cultivated under sub-inhibitory concentrations of SRT. METHOD The transcriptome of T. rubrum challenged with SRT was analyzed to detect AS events. RESULTS RNA-seq analysis revealed that SRT affected transcriptional and post-transcriptional events in numerous T. rubrum genes, including those encoding transcription factors, kinases, and efflux pumps. Among the AS events, intron retention was predominant. After 12 h of SRT exposure, intron-3 retention levels in the serine/arginine protein kinase mRNA transcripts were significantly increased compared with those in the control. This new isoform would produce a putative protein that partially lost its phosphotransferase domain. CONCLUSIONS These findings highlight the potential mechanisms of action of SRT and suggest how T. rubrum adapts itself to this drug.
Collapse
Affiliation(s)
| | | | | | | | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil; (C.H.L.R.); (F.M.G.R.); (P.R.S.); (A.R.)
| |
Collapse
|
5
|
Souza CMD, Bezerra BT, Mellon DA, de Oliveira HC. The evolution of antifungal therapy: Traditional agents, current challenges and future perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100341. [PMID: 39897698 PMCID: PMC11786858 DOI: 10.1016/j.crmicr.2025.100341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Fungal infections kill more than 3 million people every year. This high number reflects the significant challenges that treating these diseases worldwide presents. The current arsenal of antifungal drugs is limited and often accompanied by high toxicity to patients, elevated treatment costs, increased frequency of resistance rates, and the emergence of naturally resistant species. These treatment challenges highlight the urgency of developing new antifungal therapies, which could positively impact millions of lives each year globally. Our review offers an overview of the antifungal drugs currently available for treatment, presents the status of new antifungal drugs under clinical study, and explores ahead to future candidates that aim to help address this important global health issue.
Collapse
Affiliation(s)
| | | | - Daniel Agreda Mellon
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Programa de Pós-Graduação em Biologia Parasitária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Haroldo Cesar de Oliveira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Department of Microbiology, Immunology, and Parasitology, Discipline of Cellular Biology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| |
Collapse
|
6
|
Yan ZZ, Hu HW, Xiong C, Peleg AY, Chen QL, Sáez-Sandino T, Maestre F, Delgado-Baquerizo M, Singh BK. Environmental microbiome, human fungal pathogens, and antimicrobial resistance. Trends Microbiol 2025; 33:112-129. [PMID: 39304419 DOI: 10.1016/j.tim.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Traditionally, antifungal resistance (AFR) has received much less attention compared with bacterial resistance to antibiotics. However, global changes, pandemics, and emerging new fungal infections have highlighted global health consequences of AFR. The recent report of the World Health Organisation (WHO) has identified fungal priority pathogens, and recognised AFR among the greatest global health threats. This is particularly important given the significant increase in fungal infections linked to climate change and pandemics. Environmental factors play critical roles in AFR and fungal infections, as many clinically relevant fungal pathogens and AFR originate from the environment (mainly soil). In addition, the environment serves as a potential rich source for the discovery of new antifungal agents, including mycoviruses and bacterial probiotics, which hold promise for effective therapies. In this article, we summarise the environmental pathways of AFR development and spread among high priority fungal pathogens, and propose potential mechanisms of AFR development and spread. We identify a research priority list to address key knowledge gaps in our understanding of environmental AFR. Further, we propose an integrated roadmap for predictive risk management of AFR that is critical for effective surveillance and forecasting of public health outcomes under current and future climatic conditions.
Collapse
Affiliation(s)
- Zhen-Zhen Yan
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Hang-Wei Hu
- School of Agriculture, Food, and Ecosystem Science, Faculty of Science, The University of Melbourne, Victoria, Australia
| | - Chao Xiong
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Anton Y Peleg
- Department of Infectious Disease, The Alfred Hospital and Central Clinical School, Monash University, Victoria, Australia; Department of Microbiology, Monash University, Melbourne, Australia; Centre to Impact Antimicrobial Resistance, Monash University, Melbourne, Australia
| | - Qing-Lin Chen
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Science, Xiamen, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tadeo Sáez-Sandino
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Fernando Maestre
- Environmental Sciences and Engineering, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia.
| |
Collapse
|
7
|
Karrar Alsharif MH, Poyil MM, Bin Dayel S, Alqahtani MS, Albadrani AA, Omar ZMM, Arafah AMR, Alarabi TGM, Fayyad RM, Abd El-Lateef AELS. Eradication of Biofilms on Catheters: Potentials of Tamarix ericoides Rottl. Bark Coating in Preventing Catheter-Associated Urinary Tract Infections (CAUTIs). Life (Basel) 2024; 14:1593. [PMID: 39768301 PMCID: PMC11677003 DOI: 10.3390/life14121593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) cause serious complications among hospitalized patients due to biofilm-forming microorganisms which make treatment ineffective by forming antibiotic-resistant strains. As most CAUTI-causing bacterial pathogens have already developed multidrug resistance, there is an urgent need for alternative antibacterial agents to prevent biofilms on catheter surfaces. As a trial to find out such a potential agent of natural origin, the bark of Tamarix ericoides Rottl., a little-known plant from the Tamaricaceae family, was examined for its antibacterial and antibiofilm activities against one of the major, virulent, CAUTI-causing bacterial pathogens: Enterococcus faecalis. The methanolic T. ericoides bark extract was analyzed for its antibacterial activity using the well diffusion method and microdilution method. Killing kinetics were calculated using time-kill assay, and the ability of biofilm formation and its eradication upon treatment with the T. ericoides bark extract was studied by crystal violet assay. GC-MS analysis was performed to understand the phytochemical presence in the extract. A in vitro bladder model study was performed using extract-coated catheters against E. faecalis, and the effect was visualized using CLSM. The changes in the cell morphology of the bacterium after treatment with the T. ericoides bark extract were observed using SEM. The biocompatibility of the extract towards L929 cells was studied by MTT assay. The anti-E. faecalis activity of the extract-coated catheter tube was quantified by viable cell count method, which exposed 20% of growth after five days of contact with E. faecalis. The anti-adhesive property of the T. ericoides bark extract was studied using CLSM. The extract showed potential antibacterial activity, and the lowest inhibitory concentration needed to inhibit the growth of E. faecalis was found to be 2 mg/mL. The GC-MS analysis of the methanolic fractions of the T. ericoides bark extract revealed the presence of major phytochemicals, such as diethyl phthalate, pentadecanoic acid, methyl 6,11-octadecadienoate, cyclopropaneoctanoic acid, 2-[(2-pentylcyclopropyl) methyl]-, methyl ester, erythro-7,8-bromochlorodisparlure, etc., that could be responsible for the antibacterial activity against E. faecalis. The killing kinetics of the extract against E. faecalis was calculated and the extract showed promising antibiofilm activity on polystyrene surfaces. The T. ericoides bark extract effectively reduced the E. faecalis mature biofilms by 75%, 82%, and 83% after treatment with 1X MIC (2 mg/mL), 2X MIC (4 mg/mL), and 3X MIC (6 mg/mL) concentrations, respectively, which was further confirmed by SEM analysis. The anti-adhesive property of the T. ericoides bark extract studied using CLSM revealed a reduction in the biofilm thickness, and the FDA and PI combination revealed the death of 80% of the cells on the extract-coated catheter tube. In addition, SEM analysis showed extensive damage to the E. faecalis cells after the T. ericoides bark extract treatment, and it was not cytotoxic. Hence, after further studies, T. ericoides bark extract with potential antibacterial, antibiofilm, and anti-adhesive activities can be developed as an alternative agent for treating CAUTIs.
Collapse
Affiliation(s)
- Mohammed H. Karrar Alsharif
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.P.); (Z.M.M.O.); (A.M.A.); (A.E.-L.S.A.E.-L.)
| | - Muhammad Musthafa Poyil
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.P.); (Z.M.M.O.); (A.M.A.); (A.E.-L.S.A.E.-L.)
| | - Salman Bin Dayel
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (S.B.D.); (M.S.A.); (A.A.A.)
| | - Mohammed Saad Alqahtani
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (S.B.D.); (M.S.A.); (A.A.A.)
| | - Ahmed Abdullah Albadrani
- Department of Internal Medicine, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (S.B.D.); (M.S.A.); (A.A.A.)
| | - Zainab Mohammed M. Omar
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.P.); (Z.M.M.O.); (A.M.A.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Abdullah MR. Arafah
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.P.); (Z.M.M.O.); (A.M.A.); (A.E.-L.S.A.E.-L.)
| | | | - Reda M. Fayyad
- Department Pharmacology, General Medicine Practice Program, Batterjee Medical College, Asser 61961, Saudi Arabia;
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| | - Abd El-Lateef Saeed Abd El-Lateef
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; (M.M.P.); (Z.M.M.O.); (A.M.A.); (A.E.-L.S.A.E.-L.)
- Department of Pharmacology, Faculty of Medicine, Al-Azhar University, Cairo 11511, Egypt
| |
Collapse
|
8
|
Dakalbab S, Hamdy R, Holigová P, Abuzaid EJ, Abu-Qiyas A, Lashine Y, Mohammad MG, Soliman SSM. Uniqueness of Candida auris cell wall in morphogenesis, virulence, resistance, and immune evasion. Microbiol Res 2024; 286:127797. [PMID: 38851008 DOI: 10.1016/j.micres.2024.127797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Candida auris has drawn global attention due to its alarming multidrug resistance and the emergence of pan resistant strains. C. auris poses a significant risk in nosocomial candidemia especially among immunocompromised patients. C. auris showed unique virulence characteristics associated with cell wall including cell polymorphism, adaptation, endurance on inanimate surfaces, tolerance to external conditions, and immune evasion. Notably, it possesses a distinctive cell wall composition, with an outer mannan layer shielding the inner 1,3-β glucan from immune recognition, thereby enabling immune evasion and drug resistance. This review aimed to comprehend the association between unique characteristics of C. auris's cell wall and virulence, resistance mechanisms, and immune evasion. This is particularly relevant since the fungal cell wall has no human homology, providing a potential therapeutic target. Understanding the complex interactions between the cell wall and the host immune system is essential for devising effective treatment strategies, such as the use of repurposed medications, novel therapeutic agents, and immunotherapy like monoclonal antibodies. This therapeutic targeting strategy of C. auris holds promise for effective eradication of this resilient pathogen.
Collapse
Affiliation(s)
- Salam Dakalbab
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Science and Engineering (RISE), University of Sharjah, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | | | - Eman J Abuzaid
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Ameera Abu-Qiyas
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates
| | - Yasmina Lashine
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Egypt
| | - Mohammad G Mohammad
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box, Sharjah 27272, United Arab Emirates; Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
9
|
Barbarossa A, Rosato A, Carrieri A, Fumarola L, Tardugno R, Corbo F, Fracchiolla G, Carocci A. Exploring the Antibiofilm Effect of Sertraline in Synergy with Cinnamomum verum Essential Oil to Counteract Candida Species. Pharmaceuticals (Basel) 2024; 17:1109. [PMID: 39338275 PMCID: PMC11435152 DOI: 10.3390/ph17091109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence and spread of drug-resistant pathogens, resulting in antimicrobial resistance, continue to compromise our capability to handle commonly occurring infectious diseases. The rapid global spread of multi-drug-resistant pathogens, particularly systemic fungal infections, presents a significant concern, as existing antimicrobial drugs are becoming ineffective against them. In recent decades, there has been a notable increase in systemic fungal infections, primarily caused by Candida species, which are progressively developing resistance to azoles. Moreover, Candida species biofilms are among the most common in clinical settings. In particular, they adhere to biomedical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. In recent years, many research programs have concentrated on the development of novel compounds with possible antimicrobial effects to address this issue, and new sources, such as plant-derived antimicrobial compounds, have been thoroughly investigated. Essential oils (EOs), among their numerous pharmacological properties, exhibit antifungal, antibacterial, and antiviral activities and have been examined at a global scale as the possible origin of novel antimicrobial compounds. A recent work carried out by our research group concerned the synergistic antibacterial activities of commercially available and chemically characterized Cinnamomum verum L. essential oil (C. verum EO) in association with sertraline, a selective serotonin reuptake inhibitor whose repositioning as a non-antibiotic drug has been explored over the years with encouraging results. The aim of this work was to explore the synergistic effects of C. verum EO with sertraline on both planktonic and sessile Candida species cells. Susceptibility testing and testing of the synergism of sertraline and C. verum EO against planktonic and sessile cells were performed using a broth microdilution assay and checkerboard methods. A synergistic effect was evident in both the planktonic cells and mature biofilms, with significant reductions in fungal viability. Indeed, the fractional inhibitory concentration index (FICI) was lower than 0.5 for all the associations, thus indicating significant synergism of the associations with the Candida strains examined. Moreover, the concentrations of sertraline able to inhibit Candida spp. strain growth and biofilm formation significantly decreased when it was used in combination with C. verum EO for all the strains considered, with a reduction percentage in the amount of each associated component ranging from 87.5% to 97%.
Collapse
Affiliation(s)
- Alexia Barbarossa
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonio Rosato
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Antonio Carrieri
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Luciana Fumarola
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Filomena Corbo
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Giuseppe Fracchiolla
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| | - Alessia Carocci
- Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", 70125 Bari, Italy
| |
Collapse
|
10
|
Borgio JF, Almandil NB, Selvaraj P, John JS, Alquwaie R, AlHasani E, Alhur NF, Aldahhan R, AlJindan R, Almohazey D, Almofty S, Dhas TS, AbdulAzeez S. The Potential of Dutasteride for Treating Multidrug-Resistant Candida auris Infection. Pharmaceutics 2024; 16:810. [PMID: 38931930 PMCID: PMC11207579 DOI: 10.3390/pharmaceutics16060810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Novel antifungal drugs are urgently needed to treat candidiasis caused by the emerging fungal multidrug-resistant pathogen Candida auris. In this study, the most cost-effective drug repurposing technology was adopted to identify an appropriate option among the 1615 clinically approved drugs with anti-C. auris activity. High-throughput virtual screening of 1,3-beta-glucanosyltransferase inhibitors was conducted, followed by an analysis of the stability of 1,3-beta-glucanosyltransferase drug complexes and 1,3-beta-glucanosyltransferase-dutasteride metabolite interactions and the confirmation of their activity in biofilm formation and planktonic growth. The analysis identified dutasteride, a drug with no prior antifungal indications, as a potential medication for anti-auris activity in seven clinical C. auris isolates from Saudi Arabian patients. Dutasteride was effective at inhibiting biofilm formation by C. auris while also causing a significant reduction in planktonic growth. Dutasteride treatment resulted in disruption of the cell membrane, the lysis of cells, and crushed surfaces on C. auris, and significant (p-value = 0.0057) shrinkage in the length of C. auris was noted at 100,000×. In conclusion, the use of repurposed dutasteride with anti-C. auris potential can enable rapid recovery in patients with difficult-to-treat candidiasis caused by C. auris and reduce the transmission of nosocomial infection.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Prathas Selvaraj
- Entomology Research Unit (ERU), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627002, Tamil Nadu, India; (P.S.); (J.S.J.)
| | - J. Sherlin John
- Entomology Research Unit (ERU), Department of Zoology, St. Xavier’s College (Autonomous), Palayamkottai, Affiliated to Manonmaniam Sundaranar University, Tirunelveli 627002, Tamil Nadu, India; (P.S.); (J.S.J.)
| | - Rahaf Alquwaie
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia or (R.A.); or (E.A.)
| | - Eman AlHasani
- Master Program of Biotechnology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia or (R.A.); or (E.A.)
| | - Norah F. Alhur
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Razan Aldahhan
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| | - Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 40017, Saudi Arabia;
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (D.A.); (S.A.)
| | - Sarah Almofty
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (D.A.); (S.A.)
| | - T. Stalin Dhas
- Centre for Ocean Research (DST—FIST Sponsored Centre), MoES-Earth Science & Technology Cell, Sathyabama Institute of Science and Technology, Chennai 600119, India;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultation (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (J.F.B.); (N.F.A.); (R.A.)
| |
Collapse
|
11
|
Ganeshkumar A, Muthuselvam M, de Lima PMN, Rajaram R, Junqueira JC. Current Perspectives of Antifungal Therapy: A Special Focus on Candida auris. J Fungi (Basel) 2024; 10:408. [PMID: 38921394 PMCID: PMC11205254 DOI: 10.3390/jof10060408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024] Open
Abstract
Candida auris is an emerging Candida sp. that has rapidly spread all over the world. The evidence regarding its origin and emerging resistance is still unclear. The severe infection caused by this species results in significant mortality and morbidity among the elderly and immunocompromised individuals. The development of drug resistance is the major factor associated with the therapeutic failure of existing antifungal agents. Previous studies have addressed the antifungal resistance profile and drug discovery for C. auris. However, complete coverage of this information in a single investigation is not yet available. In this review, we have mainly focused on recent developments in therapeutic strategies against C. auris. Based on the available information, several different approaches were discussed, including existing antifungal drugs, chemical compounds, essential oils, natural products, antifungal peptides, immunotherapy, antimicrobial photodynamic therapy, drug repurposing, and drug delivery systems. Among them, synthetic chemicals, natural products, and antifungal peptides are the prime contributors. However, a limited number of resources are available to prove the efficiency of these potential therapies in clinical usage. Therefore, we anticipate that the findings gathered in this review will encourage further in vivo studies and clinical trials.
Collapse
Affiliation(s)
- Arumugam Ganeshkumar
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMTS), Chennai 602105, Tamil Nadu, India
| | - Manickam Muthuselvam
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Patricia Michelle Nagai de Lima
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| | - Rajendren Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India;
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), São José dos Campos 12245-000, SP, Brazil;
| |
Collapse
|
12
|
Periyasami G, Karuppiah P, Karthikeyan P, Palaniappan S. Anti-infective Efficacy of Duloxetine against Catheter-Associated Urinary Tract Infections Caused by Gram-Positive Bacteria. ACS OMEGA 2023; 8:48317-48325. [PMID: 38144107 PMCID: PMC10734014 DOI: 10.1021/acsomega.3c07676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
Catheter-associated urinary tract infections (CAUTIs) frequently occur following the insertion of catheters in hospitalized patients, often leading to severe clinical complications. These complications are exacerbated by biofilm-forming organisms such as Staphylococcus aureus, contributing to the emergence of multidrug-resistant (MDR) strains, which complicates treatment strategies. This study aims to investigate the antibacterial, antibiofilm, and antiadhesive properties of duloxetine against S. aureus in the context of CAUTI. Our findings demonstrate that duloxetine exhibits significant antibacterial activity, as evidenced by the agar diffusion method. A minimal inhibitory concentration (MIC) of 37.5 μg/mL was established using the microdilution method. Notably, duloxetine displayed inhibitory effects against biofilm formation on polystyrene surfaces up to its MIC level, as demonstrated by the crystal violet method. Intriguingly, the study also revealed that duloxetine could prevent biofilm formation at lower concentrations and reduce mature biofilms, as confirmed by scanning electron microscopy (SEM) and quantitative biofilm assays. Furthermore, duloxetine-coated silicone catheter tubes exhibited antibacterial properties against S. aureus in a bladder model, visualized by confocal laser scanning microscopy (CLSM) and corroborated through FDA and PI staining, highlighting noticeable morphological changes in S. aureus post-treatment. In conclusion, this study presents duloxetine as a promising alternative agent with antibacterial and antiadhesive properties against S. aureus in the prevention and management of CAUTI, warranting further exploration in the clinical setting.
Collapse
Affiliation(s)
- Govindasami Periyasami
- Department
of Chemistry, College of Science, King Saud
University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ponmurugan Karuppiah
- Department
of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Perumal Karthikeyan
- Department
of Chemistry and Biochemistry, Ohio State
University, 170A CBEC, 151 Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Selvakumar Palaniappan
- Department
of Food Science and Postharvest Technology, Haramaya Institute of
Technology, Haramaya University, Dire Dawa-P.O. Box 138, Ethiopia
| |
Collapse
|
13
|
Wang Q, Cheng S, Wang Y, Li F, Chen J, Du W, Kang H, Wang Z. Global characteristics and trends in research on Candida auris. Front Microbiol 2023; 14:1287003. [PMID: 38125576 PMCID: PMC10731253 DOI: 10.3389/fmicb.2023.1287003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Candida auris, a fungal pathogen first reported in 2009, has shown strong resistance to azole antifungal drugs and has caused severe nosocomial outbreaks. It can also form biofilms, which can colonize patients' skin and transmit to others. Despite numerous reports of C. auris isolation in various countries, many studies have reported contradictory results. Method A bibliometric analysis was conducted using VOSviewer to summarize research trends and provide guidance for future research on controlling C. auris infection. The analysis revealed that the United States and the US CDC were the most influential countries and research institutions, respectively. For the researchers, Jacques F. Meis published the highest amount of related articles, and Anastasia P. Litvintseva's articles with the highest average citation rate. The most cited publications focused on clade classification, accurate identification technologies, nosocomial outbreaks, drug resistance, and biofilm formation. Keyword co-occurrence analysis revealed that the top five highest frequencies were for 'drug resistance,' 'antifungal susceptibility test,' 'infection,' 'Candida auris,' and 'identification.' The high-frequency keywords clustered into four groups: rapid and precise identification, drug resistance research, pathogenicity, and nosocomial transmission epidemiology studies. These clusters represent different study fields and current research hotspots of C. auris. Conclusion The bibliometric analysis identified the most influential country, research institution, and researcher, indicating current research trends and hotspots for controlling C. auris.
Collapse
Affiliation(s)
- Qihui Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shitong Cheng
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yinling Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fushun Li
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Jingjing Chen
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Du
- National Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hui Kang
- Laboratory of Microbiology, Department of Clinical Laboratory, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhongqing Wang
- Department of Information Centre, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Almeida-Paes R, Frases S. Repurposing drugs for fungal infections: advantages and limitations. Future Microbiol 2023; 18:1013-1016. [PMID: 37721174 DOI: 10.2217/fmb-2023-0108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Tweetable abstract Repurposing existing drugs for fungal infections has demonstrated potential in both in vitro and animal models, but there are still obstacles to overcome for clinical application. #antifungal #drugrepurposing #fungalinfections.
Collapse
Affiliation(s)
- Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
| | - Susana Frases
- Rede Micologia - FAPERJ, Rio de Janeiro, 21040-360, Brazil
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Cidade Universitária, Ilha do Fundão, Rio de Janeiro, 21040-360, Brazil
| |
Collapse
|
15
|
Rodrigues DS, Cabral VP, Barbosa AD, Valente Sá LG, Silva CR, Moreira LE, Neto JB, Silva J, Santos HS, Marinho ES, Cavalcanti BC, Moraes MO, Nobre Júnior HV. Sertraline has fungicidal activity against Candida spp. and acts by inhibiting membrane and cell wall biosynthesis. Future Microbiol 2023; 18:1025-1039. [PMID: 37540066 DOI: 10.2217/fmb-2022-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Aim: Our study evaluated the activity of sertraline (SER) alone and associated with antifungal drugs in planktonic Candida spp. strains, and investigated its mechanism of action. Materials & methods: Broth microdilution method and minimum fungicidal concentration/MIC ratio were used to assess SER anticandidal activity, and the interaction with antifungals was determined by fractional inhibitory concentration index. The mechanism of action was investigated by flow cytometry and in silico tests. Results: SER inhibited Candida spp. strains at low concentrations by the fungicidal effect and showed no loss of effectiveness when combined. Its action seemed to be related to the membrane and cell wall biosynthesis inhibition. Conclusion: SER has activity against Candida spp. isolated and associated with antifungals, and acts by causing cell wall and membrane damage.
Collapse
Affiliation(s)
- Daniel S Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Vitória Pf Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Amanda D Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lívia Ga Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Cecília R Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Lara Ea Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Joao Ba Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Hélcio S Santos
- Science and Technology Center, Chemistry Course, Vale do Acaraú State University, CE, 040-370, Sobral
| | - Emmanuel S Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, 930-000, Brazil
| | - Bruno C Cavalcanti
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Manoel O Moraes
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| | - Hélio V Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, 430-372, Brazil
- Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, 430-275, Brazil
| |
Collapse
|
16
|
Zhang J, Sun J, Zhang Y, Zhang M, Liu X, Yang L, Yin Y. Dehydrocostus lactone inhibits Candida albicans growth and biofilm formation. AMB Express 2023; 13:82. [PMID: 37540386 PMCID: PMC10403490 DOI: 10.1186/s13568-023-01587-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/25/2023] [Indexed: 08/05/2023] Open
Abstract
Candida albicans infections are threatening public health but there are only several antifungal drugs available. This study was to assess the effects of dehydrocostus lactone (DL) on the Candida albicans growth and biofilms Microdilution assays revealed that DL inhibits a panel of standard Candida species, including C. albicans, as well as 9 C. albicans clinical isolates. The morphological transition of C. albicans in RPMI-1640 medium and the adhesion to polystyrene surfaces can also be decreased by DL treatment, as evidenced by microscopic, metabolic activity and colony forming unit (CFU) counting assays. The XTT assay and microscopy inspection demonstrated that DL can inhibit the biofilms of C. albicans. Confocal microscopy following propidium iodide (PI) staining and DCFH-DA staining after DL treatment revealed that DL can increase the membrane permeability and intracellular reactive oxygen species (ROS) production. N-acetyl-cysteine could mitigate the inhibitory effects of DL on growth, morphological transition and biofilm formation, further confirming that ROS production induced by DL contributes to its antifungal and antibiofilm effects. This study showed that DL demonstrated antifungal and antibiofilm activity against C. albicans. The antifungal mechanisms may involve membrane damage and ROS overproduction. This study shows the potential of DL to fight Candida infections.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Jian Sun
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Yu Zhang
- Department of Clinical Laboratory, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Min Zhang
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China
| | - Longfei Yang
- Jilin provincial key laboratory on molecular and chemical genetic, The Second Hospital of Jilin University, 265# Ziqiang Street, Changchun, 130041, China.
| | - Yongjie Yin
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, 218# Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
17
|
Coelho RA, Figueiredo-Carvalho MHG, Almeida-Silva F, de Souza Rabello VB, de Souza GR, Sangenito LS, Joffe LS, Santos ALSD, da Silva Lourenço MC, Rodrigues ML, Almeida-Paes R. Repurposing Benzimidazoles against Causative Agents of Chromoblastomycosis: Albendazole Has Superior In Vitro Activity Than Mebendazole and Thiabendazole. J Fungi (Basel) 2023; 9:753. [PMID: 37504741 PMCID: PMC10381309 DOI: 10.3390/jof9070753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
Chromoblastomycosis (CBM) is a neglected human implantation mycosis caused by several dematiaceous fungal species. Currently available therapy is usually associated with physical methods, especially surgery, and with high refractoriness. Therefore, drug discovery for CBM is essential. Drug repositioning is a strategy used to facilitate the discovery of new treatments for several diseases. The aim of this study was to discover substances with antifungal activity against CBM agents from a collection of drugs previously approved for use in human diseases. A screening was performed with the NIH Clinical Collection against Fonsecaea pedrosoi. Ten substances, with clinical applicability in CBM, inhibited fungal growth by at least 60%. The minimum inhibitory concentration (MIC) of these substances was determined against other CBM agents, and the benzimidazoles albendazole, mebendazole and thiabendazole presented the lowest MIC values. The selectivity index, based on MIC and cytotoxicity of these substances, revealed albendazole to be more selective. To investigate a possible synergism of this benzimidazole with itraconazole and terbinafine, the chequerboard method was used. All interactions were classified as indifferent. Our current results suggest that benzimidazoles have repositioning potential against CBM agents. Albendazole seems to be the most promising, since it presented the highest selectivity against all dematiaceous fungi tested.
Collapse
Affiliation(s)
- Rowena Alves Coelho
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Fernando Almeida-Silva
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Vanessa Brito de Souza Rabello
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Gabriela Rodrigues de Souza
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Leandro Stefano Sangenito
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Nilópolis 26530-060, RJ, Brazil
| | - Luna Sobrino Joffe
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11792, USA
| | - André Luis Souza Dos Santos
- Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes, Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Maria Cristina da Silva Lourenço
- Plataforma de Bioensaios RPT 11B, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
| | - Marcio L Rodrigues
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba 81350-010, PR, Brazil
- Instituto de Microbiologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, INI/Fiocruz, Rio de Janeiro 21040-900, RJ, Brazil
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21941-901, RJ, Brazil
| |
Collapse
|
18
|
de Oliveira H, Bezerra BT, Rodrigues ML. Antifungal Development and the Urgency of Minimizing the Impact of Fungal Diseases on Public Health. ACS BIO & MED CHEM AU 2023; 3:137-146. [PMID: 37101810 PMCID: PMC10125384 DOI: 10.1021/acsbiomedchemau.2c00055] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 04/28/2023]
Abstract
Fungal infections are a major public health problem resulting from the lack of public policies addressing these diseases, toxic and/or expensive therapeutic tools, scarce diagnostic tests, and unavailable vaccines. In this Perspective, we discuss the need for novel antifungal alternatives, highlighting new initiatives based on drug repurposing and the development of novel antifungals.
Collapse
Affiliation(s)
| | - Bárbara T. Bezerra
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
| | - Marcio L. Rodrigues
- Instituto
Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba81310-020, Brazil
- Instituto
de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro, Rio de Janeiro21941-902, Brazil
| |
Collapse
|
19
|
Rodrigues DS, Cabral VPDF, Barbosa AD, Sá LGDAV, Moreira LEA, de Andrade Neto JB, da Silva CR, de Moraes MO, Silva J, Marinho ES, Dos Santos HS, da Costa ÉRM, Silveira MJCB, E Silva LH, Nobre Júnior HV. Sertraline has in vitro activity against both mature and forming biofilms of different Candida species. J Med Microbiol 2023; 72. [PMID: 36762524 DOI: 10.1099/jmm.0.001664] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Candida spp. infections are a serious health problem, especially in patients with risk factors. The acquisition of resistance, often associated with biofilm production, makes treatment more difficult due to the reduced effectiveness of available antifungals. Drug repurposing is a good alternative for the treatment of infections by Candida spp. biofilms. The present study evaluated the in vitro antibiofilm activity of sertraline in reducing the cell viability of forming and matured biofilms, in addition to elucidating whether effective concentrations are safe. Sertraline reduced biofilm cell viability by more than 80 % for all Candida species tested, acting at low and safe concentrations, both on mature biofilm and in preventing its formation, even the one with highest virulence. Its preventive mechanism seemed to be related to binding with ALS3. These data indicate that sertraline is a promising drug with anticandidal biofilm potential in safe doses. However, further studies are needed to elucidate the antibiofilm mechanism and possible application of pharmaceutical forms.
Collapse
Affiliation(s)
- Daniel Sampaio Rodrigues
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Vitória Pessoa de Farias Cabral
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Amanda Dias Barbosa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Lívia Gurgel do Amaral Valente Sá
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Lara Elloyse Almeida Moreira
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil.,Christus University Center (UNICHRISTUS), Fortaleza, CE, Brazil
| | - Cecília Rocha da Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Manoel Odorico de Moraes
- Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jacilene Silva
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Emmanuel Silva Marinho
- Department of Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), State University of Ceará, Limoeiro do Norte, Ceará, Brazil
| | - Helcio Silva Dos Santos
- Science and Technology Centre, Course of Chemistry, State University Vale do Acaraú, Sobral, CE, Brazil
| | - Érica Rayanne Mota da Costa
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Larissa Holanda E Silva
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil
| | - Hélio Vitoriano Nobre Júnior
- School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE, Brazil.,Center of Drug Research and Development (NPDM), Federal University of Ceará, Fortaleza, CE, Brazil
| |
Collapse
|
20
|
De Bels D, Maillart E, Van Bambeke F, Redant S, Honoré PM. Existing and emerging therapies for the treatment of invasive candidiasis and candidemia. Expert Opin Emerg Drugs 2022; 27:405-416. [PMID: 36317695 DOI: 10.1080/14728214.2022.2142207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Invasive candidiasis or candidemia is a severe infection affecting more than 250,000 people worldwide every year. It is present in up to 16% of ICU patients. The prognosis of these infections is unfavorable, with global death estimated around 50,000 per year, which corresponds to up to 40% depending on patient severity and comorbidities. Therapeutic failure is not rare due to the emergence of multiresistant strains and of new species poorly responsive to current therapies like Candida auris. AREAS COVERED We first review the positioning of antifungal drugs used to treat candidiasis, namely polyenes, azoles, echinocandins and pyrimidine analogues. We then discuss the progresses brought by new formulations, new derivatives within these classes, compounds acting on new targets or repurposed drugs in terms of pharmacokinetic profile, spectrum of activity, potency, safety or risk of drug-drug interactions. EXPERT OPINION While new formulations (amphotericin B cochleate) improve oral bioavailability of the corresponding drugs, new azoles or echinocandins offer higher potency including against strains resistant to former generations of drugs. Repurposed drugs show synergism with current therapies in vitro. Results from ongoing and future clinical trials will be decisive to establish the interest for these drugs in our arsenal.
Collapse
Affiliation(s)
- David De Bels
- Intensive Care Department, Brugmann University Hospital, Brussels, Belgium
| | - Evelyne Maillart
- Department of Infectious Disease, Brugmann University Hospital, Brussels, Belgium
| | - Françoise Van Bambeke
- Louvain Drug Research Institute, Department of Pharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Sebastien Redant
- Intensive Care Department, Brugmann University Hospital, Brussels, Belgium
| | - Patrick M Honoré
- Intensive Care Department, Brugmann University Hospital, Brussels, Belgium
- Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Department of ICU, CHU UCL Godinne-Namur, UCL Louvain Medical School
| |
Collapse
|
21
|
Synergistic Action of Cinnamomum verum Essential Oil with Sertraline. Antibiotics (Basel) 2022; 11:antibiotics11111617. [PMID: 36421261 PMCID: PMC9686778 DOI: 10.3390/antibiotics11111617] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cinnamomum verum L. essential oil (CEO), commonly known as Ceylon cinnamon or cinnamon tree, is regarded as one of the most employed essential oils in the field of aromatherapy. It is usually applied externally as astringent, antipruritic, rubefacient, and anti-septic agent. Furthermore, both in vitro and in vivo research have demonstrated its numerous pharmacological effects, including the potentiality for treating neuralgia, myalgia, headache, and migraine. Several pieces of research also corroborated its significant antiviral and antimicrobial properties. Cinnamaldehyde, eugenol, caryophyllene, cinnamyl acetate, and cinnamic acid are the most representative compounds that are generally found in greater quantities in CEO and play a pivotal role in determining its pharmacological activities. Due to the global antibiotic resistance scenario and the dwindling amount of funding dedicated to developing new antibiotics, in recent years research has concentrated on exploring specific economic approaches against microbial infections. In this context, the purpose of this study was the investigation of the synergistic antibacterial activities of commercially available and chemically characterized CEO in combination with sertraline, a selective serotonin reuptake inhibitor (SSRI), whose repositioning as a non-antibiotic drug has been explored over the years with encouraging results. In vitro effects of the titled combination were assessed toward a wide panel of both Gram-positive and Gram-negative bacteria. The antimicrobial efficacy was investigated by using the checkerboard microdilution method. The interesting preliminary results obtained suggested a synergistic effect (fractional inhibitory index, FICI < 0.5) of sertraline in combination with CEO, leading to severe growth inhibition for all bacterial species under investigation.
Collapse
|
22
|
Tu J, Liu N, Huang Y, Yang W, Sheng C. Small molecules for combating multidrug-resistant superbug Candida auris infections. Acta Pharm Sin B 2022; 12:4056-4074. [PMID: 36386475 PMCID: PMC9643296 DOI: 10.1016/j.apsb.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/12/2023] Open
Abstract
Candida auris is emerging as a major global threat to human health. C. auris infections are associated with high mortality due to intrinsic multi-drug resistance. Currently, therapeutic options for the treatment of C. auris infections are rather limited. We aim to provide a comprehensive review of current strategies, drug candidates, and lead compounds in the discovery and development of novel therapeutic agents against C. auris. The drug resistance profiles and mechanisms are briefly summarized. The structures and activities of clinical candidates, drug combinations, antifungal chemosensitizers, repositioned drugs, new targets, and new types of compounds will be illustrated in detail, and perspectives for guiding future research will be provided. We hope that this review will be helpful to prompting the drug development process to combat this fungal pathogen.
Collapse
Affiliation(s)
| | | | - Yahui Huang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wanzhen Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunquan Sheng
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
23
|
Candida auris, a singular emergent pathogenic yeast: its resistance and new therapeutic alternatives. Eur J Clin Microbiol Infect Dis 2022; 41:1371-1385. [PMID: 36198878 DOI: 10.1007/s10096-022-04497-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/09/2022] [Indexed: 11/03/2022]
Abstract
Nowadays, fungal infections affect millions of people across the world. Candida auris, a new emergent yeast, is a worrisome pathogen because it associates with a high rate of incidence and prevalence, including in the nosocomial environment. The hard identification, the phenotypic plasticity, and the easy adaptation to stressful conditions are some of the C. auris traits that render this latest yeast singular challenging. C. auris infections have already been reported from more than 30 countries and are associated with high mortality rates. This is the result from rapid transmission and the difficulty of prevention, control, and eradication. There are several factors related to the high virulence of C. auris, such as the multidrug resistance, biofilm development, and the ability to escape the response of the innate immune system. So, C. auris infections are a serious and alarming problem, not only because of the high pathogenicity of the fungal agent but also because of the low effectiveness of the treatments available. Although new formulations have been developed against C. auris strains, a better understanding is essential to efficiently treat, prevent, and control C. auris infections.
Collapse
|
24
|
Cui X, Wang L, Lü Y, Yue C. Development and research progress of anti-drug resistant fungal drugs. J Infect Public Health 2022; 15:986-1000. [PMID: 35981408 DOI: 10.1016/j.jiph.2022.08.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022] Open
Abstract
With the widespread use of immunosuppressive agents and the increase in patients with severe infections, the incidence of fungal infections worldwide has increased year by year. The fungal pathogens Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus cause a total of more than 1 million deaths each year. Long-term use of antifungal drugs can easily lead to fungal resistance, and the prevalence of drug-resistant fungi is a major global health challenge. In order to effectively control global fungal infections, there is an urgent need for new drugs that can exert effective antifungal activity and overcome drug resistance. We must promote the discovery of new antifungal targets and drugs, and find effective ways to control drug-resistant fungi through different ways, so as to reduce the threat of drug-resistant fungi to human life, health and safety. In the past few years, certain progress has been made in the research and development of antifungal drugs. In addition to summarizing some of the antifungal drugs currently approved by the FDA, this review also focuses on potential antifungal drugs, the repositioned drugs, and drugs that can treat drug-resistant bacteria and fungal infections, and provide new ideas for the development of antifungal drugs in the future.
Collapse
Affiliation(s)
- Xiangyi Cui
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Lanlin Wang
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Yuhong Lü
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| | - Changwu Yue
- Key Laboratory of Microbial Drugs Innovation and Transformation of Yan'an, School of Basic Medicine, Yan'an University, Yan'an 716000, Shaanxi, China; Shaanxi Engineering & Technological Research Center for Conversation & Utilization of Regional Biological Resources,Yan'an University, NO.580 Shengdi Road, Baota District, Yan'an 716000, Shaanxi, China.
| |
Collapse
|
25
|
Alanís-Ríos SA, González GM, Andrade A, Becerril-García MA, Bonifaz A, Robledo-Leal ER, Montoya AM, Treviño-Rangel RDJ. Evaluation of the synergistic antifungal activity of micafungin and voriconazole plus sertraline against Candida auris. Braz J Microbiol 2022; 53:2003-2008. [PMID: 36036298 PMCID: PMC9421114 DOI: 10.1007/s42770-022-00817-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
Candida auris is an emerging global public health threat. It is an opportunistic yeast that usually affects critically ill patients in healthcare settings and is characterized by reduced susceptibility to multiple antifungal classes. Combination therapy with antifungals and repurposed drugs is a feasible alternative to overcome this problem. The aim of this study was to examine the in vitro interactions and potential synergy of micafungin (MFG) and voriconazole (VRC) plus the antidepressant sertraline (SRT) against clinical isolates of C. auris. Conventional antifungal testing was first performed with the three drugs according to the CLSI methodology. Drug interactions were determined by the checkerboard microdilution assay using the fractional inhibitory concentration (FIC) index. Synergistic interactions were noted with the combination of MFG and SRT plus VRC with FIC values of 0.37 to 0.49 for some strains. Indifferent interactions were observed when MFG was combined with SRT with just one exception (FIC 0.53). No antagonism was observed for any combination. The combination of VRC with MCF or SRT may be relevant for treating C. auris infections.
Collapse
Affiliation(s)
- Sergio A Alanís-Ríos
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico
| | - Gloria M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico
| | - Angel Andrade
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico
| | - Miguel A Becerril-García
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico
| | - Alexandro Bonifaz
- Servicio de Dermatología and Departamento de Micología, Hospital General de México "Dr. Eduardo Liceaga", Mexico City, Mexico
| | - Efrén R Robledo-Leal
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Mexico
| | - Alexandra M Montoya
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico
| | - Rogelio de J Treviño-Rangel
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Ave. Francisco I. Madero & Dr. Eduardo A. Pequeño. Mitras Centro, 64460, Monterrey, Mexico.
| |
Collapse
|
26
|
Rocha CHL, Rocha FMG, Bitencourt TA, Martins MP, Sanches PR, Rossi A, Martinez-Rossi NM. Synergism between the Antidepressant Sertraline and Caspofungin as an Approach to Minimise the Virulence and Resistance in the Dermatophyte Trichophyton rubrum. J Fungi (Basel) 2022; 8:jof8080815. [PMID: 36012803 PMCID: PMC9409809 DOI: 10.3390/jof8080815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 02/04/2023] Open
Abstract
Trichophyton rubrum is responsible for several superficial human mycoses. Novel strategies aimed at controlling this pathogen are being investigated. The objective of this study was to evaluate the antifungal activity of the antidepressant sertraline (SRT), either alone or in combination with caspofungin (CASP). We calculated the minimum inhibitory concentrations of SRT and CASP against T. rubrum. Interactions between SRT and CASP were evaluated using a broth microdilution chequerboard. We assessed the differential expression of T. rubrum cultivated in the presence of SRT or combinations of SRT and CASP. We used MTT and violet crystal assays to compare the effect of SRT alone on T. rubrum biofilms with that of the synergistic combination of SRT and CASP. A human nail infection assay was performed. SRT alone, or in combination with CASP, exhibited antifungal activity against T. rubrum. SRT targets genes involved in the biosyntheses of cell wall and ergosterol. Furthermore, the metabolic activity of the T. rubrum biofilm and its biomass were affected by SRT and the combination of SRT and CASP. SRT alone, or in combination, shows potential as an approach to minimise resistance and reduce virulence.
Collapse
|
27
|
Izadi A, Aghaei Gharehbolagh S, Sadeghi F, Talebi M, Darmiani K, Zarrinnia A, Zarei F, Peymaeei F, Khojasteh S, Borman AM, Mahmoudi S. Drug repurposing against Candida auris: A systematic review. Mycoses 2022; 65:784-793. [PMID: 35665544 DOI: 10.1111/myc.13477] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
Candida auris is a drug-resistant pathogen with several reported outbreaks. The treatment of C. auris infections is difficult due to a limited number of available antifungal drugs. Thus, finding alternative drugs through repurposing approaches would be clinically beneficial. A systematic search in PubMed, Scopus and Web of Science databases, as well as Google Scholar up to 1 November 2021, was conducted to find all articles with data regarding the antifungal activity of non-antifungal drugs against the planktonic and biofilm forms of C. auris. During database and hand searching, 290 articles were found, of which 13 were eligible for inclusion in the present study. Planktonic and biofilm forms have been studied in 11 and 8 articles (with both forms examined in 6 articles), respectively. In total, 22 and 12 drugs/compounds have been reported as repositionable against planktonic and biofilm forms of C. auris, respectively. Antiparasitic drugs, with the dominance of miltefosine, were the most common repurposed drugs against both forms of C. auris, followed by anticancer drugs (e.g. alexidine dihydrochloride) against the planktonic form and anti-inflammatory drugs (e.g. ebselen) against the biofilm form of the fungus. A collection of other drugs from various classes have also shown promising activity against C. auris. Following drug repurposing approaches, a number of drugs/compounds from various classes have been found to inhibit the planktonic and biofilm forms of C. auris. Accordingly, drug repurposing is an encouraging approach for discovering potential alternatives to conventional antifungal agents to combat drug resistance in fungi, especially C. auris.
Collapse
Affiliation(s)
- Alireza Izadi
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran.,Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Sanaz Aghaei Gharehbolagh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Sadeghi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Meysam Talebi
- Department of Medicinal Chemistry, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Kimia Darmiani
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Zarrinnia
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fateme Zarei
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Peymaeei
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Khojasteh
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Andrew M Borman
- Public Health England UK National Mycology Reference Laboratory, Southmead Hospital Bristol, Bristol, UK.,Medical Research Council Centre for Medical Mycology (MRC CMM), University of Exeter, Exeter, UK
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Jauregizar N, Quindós G, Gil-Alonso S, Suárez E, Sevillano E, Eraso E. Postantifungal Effect of Antifungal Drugs against Candida: What Do We Know and How Can We Apply This Knowledge in the Clinical Setting? J Fungi (Basel) 2022; 8:jof8070727. [PMID: 35887482 PMCID: PMC9317160 DOI: 10.3390/jof8070727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
The study of the pharmacological properties of an antifungal agent integrates the drug pharmacokinetics, the fungal growth inhibition, the fungicidal effect and the postantifungal activity, laying the basis to guide optimal dosing regimen selection. The current manuscript reviews concepts regarding the postantifungal effect (PAFE) of the main classes of drugs used to treat Candida infections or candidiasis. The existence of PAFE and its magnitude are highly dependent on both the fungal species and the class of the antifungal agent. Therefore, the aim of this article was to compile the information described in the literature concerning the PAFE of polyenes, azoles and echinocandins against the Candida species of medical interest. In addition, the mechanisms involved in these phenomena, methods of study, and finally, the clinical applicability of these studies relating to the design of dosing regimens were reviewed and discussed. Additionally, different factors that could determine the variability in the PAFE were described. Most PAFE studies were conducted in vitro, and a scarcity of PAFE studies in animal models was observed. It can be stated that the echinocandins cause the most prolonged PAFE, followed by polyenes and azoles. In the case of the triazoles, it is worth noting the inconsistency found between in vitro and in vivo studies.
Collapse
Affiliation(s)
- Nerea Jauregizar
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
- Correspondence:
| | - Guillermo Quindós
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Sandra Gil-Alonso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Suárez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Elena Sevillano
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain; (G.Q.); (S.G.-A.); (E.S.); (E.E.)
| |
Collapse
|
29
|
Non-Antibiotic Drug Repositioning as an Alternative Antimicrobial Approach. Antibiotics (Basel) 2022; 11:antibiotics11060816. [PMID: 35740222 PMCID: PMC9220406 DOI: 10.3390/antibiotics11060816] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
The worldwide scenario of antibiotic resistance and the falling number of funds for the development of novel antibiotics have led research efforts toward the study of specific cost-effective strategies aimed at discovering drugs against microbial infections. Among the potential options, drug repositioning, which has already exhibited satisfactory results in other medical fields, came out as the most promising. It consists of finding new uses for previously approved medicines and, over the years, many “repurposed drugs” displayed some encouraging in vitro and in vivo results beyond their initial application. The principal theoretical justification for reusing already existing drugs is that they have known mechanisms of action and manageable side effects. Reuse of old drugs is now considered an interesting approach to overcome the drawbacks of conventional antibiotics. The purpose of this review is to offer the reader a panoramic view of the updated studies concerning the repositioning process of different classes of non-antibiotic drugs in the antimicrobial field. Several research works reported the ability of some non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, antipsychotics, and statins to counteract the growth of harmful microorganisms, demonstrating an interesting winning mode to fight infectious diseases caused by antimicrobial resistant bacteria.
Collapse
|
30
|
Ramos LDS, Silva LN, de Mello TP, Frota HF, Branquinha MH, Dos Santos ALS. Prospective Medicines against the Widespread, Emergent and Multidrug-Resistant Opportunistic Fungal Pathogen Candida auris: A Breath of Hope. Curr Top Med Chem 2022; 22:1297-1305. [PMID: 35619311 DOI: 10.2174/1568026622666220520153748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
The emergence of the pathogen Candida auris is a real concern worldwide, especially due to its multidrug resistance profile, besides the difficulties in establishing the correct identification by conventional laboratory methods and its capacity of causing outbreaks in healthcare settings. The limited arsenal of available antifungal drugs, coupled with the lack of momentum for the development of new reagents, represent a challenge in the management of such a pathogen. In this perspective, we have focused on discussing new, promising treatment options for C. auris infections. These novel drugs include an antifungal agent already approved for medical use in the United States of America, compounds that are already in clinical trials and those with potential for repurposing use against this important fungal pathogen.
Collapse
Affiliation(s)
- Lívia de Souza Ramos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura Nunes Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thaís Pereira de Mello
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heloísa Freire Frota
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marta Helena Branquinha
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ
| | - André Luis Souza Dos Santos
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Rede Micologia RJ - FAPERJ.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
31
|
Li W, Yun Z, Ji C, Tu J, Yang W, Li J, Liu N, Sheng C. Discovery of Novel Sertraline Derivatives as Potent Anti- Cryptococcus Agents. J Med Chem 2022; 65:6541-6554. [DOI: 10.1021/acs.jmedchem.1c01845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wang Li
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Zhaolin Yun
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Changjin Ji
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Jie Tu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wanzhen Yang
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Jian Li
- School of Pharmacy, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Na Liu
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Chunquan Sheng
- Department of Medicinal Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| |
Collapse
|
32
|
OUP accepted manuscript. Med Mycol 2022; 60:6526320. [PMID: 35142862 PMCID: PMC8929677 DOI: 10.1093/mmy/myac008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Candida auris is an emerging, multi drug resistant fungal pathogen that has caused infectious outbreaks in over 45 countries since its first isolation over a decade ago, leading to in-hospital crude mortality rates as high as 72%. The fungus is also acclimated to disinfection procedures and persists for weeks in nosocomial ecosystems. Alarmingly, the outbreaks of C. auris infections in Coronavirus Disease-2019 (COVID-19) patients have also been reported. The pathogenicity, drug resistance and global spread of C. auris have led to an urgent exploration of novel, candidate antifungal agents for C. auris therapeutics. This narrative review codifies the emerging data on the following new/emerging antifungal compounds and strategies: antimicrobial peptides, combinational therapy, immunotherapy, metals and nano particles, natural compounds, and repurposed drugs. Encouragingly, a vast majority of these exhibit excellent anti- C. auris properties, with promising drugs now in the pipeline in various stages of development. Nevertheless, further research on the modes of action, toxicity, and the dosage of the new formulations are warranted. Studies are needed with representation from all five C. auris clades, so as to produce data of grater relevance, and broader significance and validity.
Collapse
|
33
|
Current scenario of the search for new antifungal agents to treat Candida auris infections: An integrative review. J Mycol Med 2021; 32:101232. [PMID: 34883404 DOI: 10.1016/j.mycmed.2021.101232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Candida auris emerges as an important causative agent of fungal infections, with worrisome mortality rates, mainly in immunocompromised individuals. This scenario is worsened by the limited availability of antifungal drugs and the increasing development of resistance to them. Due to the relevance of C. auris infections to public health, several studies aimed to discover new antifungal compounds capable of overcoming this fungus. Nonetheless, these information are decentralized, precluding the understandment of the current status of the search for new anti-C. auris compounds. Thus, this integrative review aimed to summarize information regarding anti-C. auris compounds reported in literature. After using predefined selection criteria, 71 articles were included in this review, and data from a total of 101 substances were extracted. Most of the studies tested synthetic substances, including several azoles. Moreover, drug repurposing emerges as a suitable strategy to discover new anti-C. auris agents. Few studies, however, assessed the mechanism of action and the in vivo antifungal activity of the compounds. Therefore, more studies must be performed to evaluate the usefulness of these substances as anti-C. auris therapies.
Collapse
|
34
|
Malacrida AM, Salci TP, Negri M, Svidzinski TIE. Insight into the antifungals used to address human infection due to Trichosporon spp.: a scoping review. Future Microbiol 2021; 16:1277-1288. [PMID: 34689610 PMCID: PMC8544482 DOI: 10.2217/fmb-2021-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Trichosporonosis infections have been increasing worldwide. Providing adequate treatment for these infections remains a challenge. This scoping review contains information about potential antifungals to treat this pathology. Using online databases, we found 76 articles published between 2010 and 2020 related to this topic. Classic antifungals, molecules and biomolecules, repositioned drugs and natural products have been tested against species of Trichosporon. Experimental research has lacked depth or was limited to in vitro and in vivo tests, so there are no promising new candidates for the clinical treatment of patients with trichosporonosis. Furthermore, most studies did not present appropriate scientific criteria for drug tests, compromising their quality.
Collapse
Affiliation(s)
- Amanda M Malacrida
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Tânia P Salci
- Departament of Pharmacy and Science, Faculdade Integrado de Campo Mourão, Campo Mourão, Paraná, CEP, 87300-970, Brazil
| | - Melyssa Negri
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| | - Terezinha IE Svidzinski
- Departament of Clinical Analyses and Biomedicine, Universidade Estadual de Maringá, Maringá, Paraná, CEP, 87020-900, Brazil
| |
Collapse
|
35
|
Problems associated with the use of the term "antibiotics". Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2153-2166. [PMID: 34536087 PMCID: PMC8449524 DOI: 10.1007/s00210-021-02144-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022]
Abstract
The term “antibiotics” is a broadly used misnomer to designate antibacterial drugs. In a recent article, we have proposed to replace, e.g., the term “antibiotics” by “antibacterial drugs”, “antibiosis” by “antibacterial therapy”, “antibiogram” by “antibacteriogram”, and “antibiotic stewardship” by “antibacterial stewardship” (Seifert and Schirmer Trends Microbiol, 2021). In the present article, we show that many traditional terms related to antibiotics are used much more widely in the biomedical literature than the respective scientifically precise terms. This practice should be stopped. Moreover, we provide arguments to end the use of other broadly used terms in the biomedical literature such as “narrow-spectrum antibiotics” and “reserve antibiotics”, “chemotherapeutics”, and “tuberculostatics”. Finally, we provide several examples showing that antibacterial drugs are used for non-antibacterial indications and that some non-antibacterial drugs are used for antibacterial indications now. Thus, the increasing importance of drug repurposing renders it important to drop short designations of drug classes such as “antibiotics”. Rather, the term “drug” should be explicitly used, facilitating the inclusion of newly emerging indications such as antipsychotic and anti-inflammatory. This article is part of an effort to implement a new rational nomenclature of drug classes across the entire field of pharmacology.
Collapse
|
36
|
Giacobbe DR, Magnasco L, Sepulcri C, Mikulska M, Koehler P, Cornely OA, Bassetti M. Recent advances and future perspectives in the pharmacological treatment of Candida auris infections. Expert Rev Clin Pharmacol 2021; 14:1205-1220. [PMID: 34176393 DOI: 10.1080/17512433.2021.1949285] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Candida auris is responsible for hospital outbreaks worldwide. Some C. auris isolates may show concomitant resistance to azoles, echinocandins, and polyenes, thereby possibly leaving clinicians with few therapeutic options. AREAS COVERED Antifungal agents both in early and in late phases of clinical development showing anti-C. auris activity. EXPERT OPINION The research on antifungal agents active against C. auris has made important steps forward in recent years: (i) the development of drugs with novel mechanisms of action, such as ibrexafungerp and fosmanogepix, could provide a valid option against C. auris strains resistant to one or more older antifungals, including pan-resistant strains; (ii) rezafungin could allow once weekly administration of an active drug in the case of echinocandin-susceptible isolates, providing an effective outpatient treatment, while at the same time relieving selective pressure on novel classes; (iii) the development of oral formulations could allow step-down therapy and/or early discharge, or even to avoid hospitalization in mild or noninvasive diseases; (iv) according to available data, these novel agents show a good safety profile and a low potential for drug-drug interactions.
Collapse
Affiliation(s)
- Daniele R Giacobbe
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Laura Magnasco
- Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Chiara Sepulcri
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| | - Philipp Koehler
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Oliver A Cornely
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Excellence Center for Medical Mycology (ECMM), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Chair Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), Cologne, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Matteo Bassetti
- Department of Health Sciences, University of Genoa, Genoa, Italy.,Clinica Malattie Infettive, San Martino Policlinico Hospital - IRCCS, Genoa, Italy
| |
Collapse
|
37
|
Drug repurposing strategies in the development of potential antifungal agents. Appl Microbiol Biotechnol 2021; 105:5259-5279. [PMID: 34151414 PMCID: PMC8214983 DOI: 10.1007/s00253-021-11407-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Abstract The morbidity and mortality caused by invasive fungal infections are increasing across the globe due to developments in transplant surgery, the use of immunosuppressive agents, and the emergence of drug-resistant fungal strains, which has led to a challenge in terms of treatment due to the limitations of three classes of drugs. Hence, it is imperative to establish effective strategies to identify and design new antifungal drugs. Drug repurposing is a potential way of expanding the application of existing drugs. Recently, various existing drugs have been shown to be useful in the prevention and treatment of invasive fungi. In this review, we summarize the currently used antifungal agents. In addition, the most up-to-date information on the effectiveness of existing drugs with antifungal activity is discussed. Moreover, the antifungal mechanisms of existing drugs are highlighted. These data will provide valuable knowledge to stimulate further investigation and clinical application in this field. Key points • Conventional antifungal agents have limitations due to the occurrence of drug-resistant strains. • Non-antifungal drugs act as antifungal agents in various ways toward different targets. • Non-antifungal drugs with antifungal activity are demonstrated as effective antifungal strategies.
Collapse
|
38
|
Drug Repurposing in Medical Mycology: Identification of Compounds as Potential Antifungals to Overcome the Emergence of Multidrug-Resistant Fungi. Pharmaceuticals (Basel) 2021; 14:ph14050488. [PMID: 34065420 PMCID: PMC8161392 DOI: 10.3390/ph14050488] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Immunodepression, whether due to HIV infection or organ transplantation, has increased human vulnerability to fungal infections. These conditions have created an optimal environment for the emergence of opportunistic infections, which is concomitant to the increase in antifungal resistance. The use of conventional antifungal drugs as azoles and polyenes can lead to clinical failure, particularly in immunocompromised individuals. Difficulties related to treating fungal infections combined with the time required to develop new drugs, require urgent consideration of other therapeutic alternatives. Drug repurposing is one of the most promising and rapid solutions that the scientific and medical community can turn to, with low costs and safety advantages. To treat life-threatening resistant fungal infections, drug repurposing has led to the consideration of well-known and potential molecules as a last-line therapy. The aim of this review is to provide a summary of current antifungal compounds and their main resistance mechanisms, following by an overview of the antifungal activity of non-traditional antimicrobial drugs. We provide their eventual mechanisms of action and the synergistic combinations that improve the activity of current antifungal treatments. Finally, we discuss drug repurposing for the main emerging multidrug resistant (MDR) fungus, including the Candida auris, Aspergillus or Cryptococcus species.
Collapse
|
39
|
Xu X, Lin D, Tu S, Gao S, Shao A, Sheng J. Is Ferroptosis a Future Direction in Exploring Cryptococcal Meningitis? Front Immunol 2021; 12:598601. [PMID: 33815361 PMCID: PMC8017140 DOI: 10.3389/fimmu.2021.598601] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/03/2021] [Indexed: 12/31/2022] Open
Abstract
Cryptococcal meningitis (CM) is the leading cause of mortality among patients infected with human immunodeficiency virus (HIV). Although treatment strategies for CM are continually being developed, the mortality rate is still high. Therefore, we need to explore more therapeutic strategies that are aimed at hindering its pathogenic mechanism. In the field of CM, several studies have observed rapid iron accumulation and lipid peroxidation within the brain, all of which are hallmarks of ferroptosis, which is a type of programmed cell death that is characterized by iron dependence and lipid peroxidation. In recent years, many studies have confirmed the involvement of ferroptosis in many diseases, including infectious diseases such as Mycobacterium tuberculosis infection and coronavirus disease-2019 (COVID-19). Furthermore, ferroptosis is considered as immunogenic and pro-inflammatory as the ferroptotic cells release damage-associated molecular pattern molecules (DAMPs) and alarmin, both of which regulate immunity and pro-inflammatory activity. Hence, we hypothesize that there might be a relationship between this unique cell death modality and CM. Herein, we review the evidence of ferroptosis in CM and consider the hypothesis that ferroptotic cell death may be involved in the cell death of CM.
Collapse
Affiliation(s)
- Xianbin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Danfeng Lin
- Department of Surgical Oncology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
Billamboz M, Fatima Z, Hameed S, Jawhara S. Promising Drug Candidates and New Strategies for Fighting against the Emerging Superbug Candida auris. Microorganisms 2021; 9:microorganisms9030634. [PMID: 33803604 PMCID: PMC8003017 DOI: 10.3390/microorganisms9030634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Invasive fungal infections represent an expanding threat to public health. During the past decade, a paradigm shift of candidiasis from Candida albicans to non-albicans Candida species has fundamentally increased with the advent of Candida auris. C. auris was identified in 2009 and is now recognized as an emerging species of concern and underscores the urgent need for novel drug development strategies. In this review, we discuss the genomic epidemiology and the main virulence factors of C. auris. We also focus on the different new strategies and results obtained during the past decade in the field of antifungal design against this emerging C. auris pathogen yeast, based on a medicinal chemist point of view. Critical analyses of chemical features and physicochemical descriptors will be carried out along with the description of reported strategies.
Collapse
Affiliation(s)
- Muriel Billamboz
- Inserm, CHU Lille, Institut Pasteur Lille, Université Lille, U1167—RID-AGE—Facteurs de Risque et Déterminants Moléculaires des Maladies liées au Vieillissement, F-59000 Lille, France
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India; (Z.F.); (S.H.)
| | - Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, INSERM U1285, University of Lille, F-59000 Lille, France
- Correspondence: (M.B.); (S.J.)
| |
Collapse
|
41
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
42
|
A small molecule that mitigates bacterial infection disrupts Gram-negative cell membranes and is inhibited by cholesterol and neutral lipids. PLoS Pathog 2020; 16:e1009119. [PMID: 33290418 PMCID: PMC7748285 DOI: 10.1371/journal.ppat.1009119] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/18/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
Infections caused by Gram-negative bacteria are difficult to fight because these pathogens exclude or expel many clinical antibiotics and host defense molecules. However, mammals have evolved a substantial immune arsenal that weakens pathogen defenses, suggesting the feasibility of developing therapies that work in concert with innate immunity to kill Gram-negative bacteria. Using chemical genetics, we recently identified a small molecule, JD1, that kills Salmonella enterica serovar Typhimurium (S. Typhimurium) residing within macrophages. JD1 is not antibacterial in standard microbiological media, but rapidly inhibits growth and curtails bacterial survival under broth conditions that compromise the outer membrane or reduce efflux pump activity. Using a combination of cellular indicators and super resolution microscopy, we found that JD1 damaged bacterial cytoplasmic membranes by increasing fluidity, disrupting barrier function, and causing the formation of membrane distortions. We quantified macrophage cell membrane integrity and mitochondrial membrane potential and found that disruption of eukaryotic cell membranes required approximately 30-fold more JD1 than was needed to kill bacteria in macrophages. Moreover, JD1 preferentially damaged liposomes with compositions similar to E. coli inner membranes versus mammalian cell membranes. Cholesterol, a component of mammalian cell membranes, was protective in the presence of neutral lipids. In mice, intraperitoneal administration of JD1 reduced tissue colonization by S. Typhimurium. These observations indicate that during infection, JD1 gains access to and disrupts the cytoplasmic membrane of Gram-negative bacteria, and that neutral lipids and cholesterol protect mammalian membranes from JD1-mediated damage. Thus, it may be possible to develop therapeutics that exploit host innate immunity to gain access to Gram-negative bacteria and then preferentially damage the bacterial cell membrane over host membranes.
Collapse
|
43
|
Kim JH, Cheng LW, Chan KL, Tam CC, Mahoney N, Friedman M, Shilman MM, Land KM. Antifungal Drug Repurposing. Antibiotics (Basel) 2020; 9:antibiotics9110812. [PMID: 33203147 PMCID: PMC7697925 DOI: 10.3390/antibiotics9110812] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/30/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
Control of fungal pathogens is increasingly problematic due to the limited number of effective drugs available for antifungal therapy. Conventional antifungal drugs could also trigger human cytotoxicity associated with the kidneys and liver, including the generation of reactive oxygen species. Moreover, increased incidences of fungal resistance to the classes of azoles, such as fluconazole, itraconazole, voriconazole, or posaconazole, or echinocandins, including caspofungin, anidulafungin, or micafungin, have been documented. Of note, certain azole fungicides such as propiconazole or tebuconazole that are applied to agricultural fields have the same mechanism of antifungal action as clinical azole drugs. Such long-term application of azole fungicides to crop fields provides environmental selection pressure for the emergence of pan-azole-resistant fungal strains such as Aspergillus fumigatus having TR34/L98H mutations, specifically, a 34 bp insertion into the cytochrome P450 51A (CYP51A) gene promoter region and a leucine-to-histidine substitution at codon 98 of CYP51A. Altogether, the emerging resistance of pathogens to currently available antifungal drugs and insufficiency in the discovery of new therapeutics engender the urgent need for the development of new antifungals and/or alternative therapies for effective control of fungal pathogens. We discuss the current needs for the discovery of new clinical antifungal drugs and the recent drug repurposing endeavors as alternative methods for fungal pathogen control.
Collapse
Affiliation(s)
- Jong H. Kim
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
- Correspondence: ; Tel.: +1-510-559-5841
| | - Luisa W. Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Kathleen L. Chan
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Christina C. Tam
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Noreen Mahoney
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA; (L.W.C.); (K.L.C.); (C.C.T.); (N.M.)
| | - Mendel Friedman
- Healthy Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | | | - Kirkwood M. Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA;
| |
Collapse
|
44
|
In Vitro Activity of Sertraline, an Antidepressant, Against Antibiotic-Susceptible and Antibiotic-Resistant Helicobacter pylori Strains. Pathogens 2019; 8:pathogens8040228. [PMID: 31717683 PMCID: PMC6963513 DOI: 10.3390/pathogens8040228] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/02/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance of Helicobacter pylori, a spiral bacterium associated with gastric diseases, is a topic that has been intensively discussed in last decades. Recent discoveries indicate promising antimicrobial and antibiotic-potentiating properties of sertraline (SER), an antidepressant substance. The aim of the study, therefore, was to determine the antibacterial activity of SER in relation to antibiotic-sensitive and antibiotic-resistant H. pylori strains. The antimicrobial tests were performed using a diffusion-disk method, microdilution method, and time-killing assay. The interaction between SER and antibiotics (amoxicillin, clarithromycin, tetracycline, and metronidazole) was determined by using a checkerboard method. In addition, the study was expanded to include observations by light, fluorescence, and scanning electron microscopy. The growth inhibition zones were in the range of 19–37 mm for discs impregnated with 2 mg of SER. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations (MBCs) counted for 2–8 µg/mL and 4–8 µg/mL, respectively. The time-killing assay showed the time-dependent and concentration-dependent bactericidal activity of SER. Bacteria exposed to MBCs (but not sub-MICs and MICs ≠ MBCs) underwent morphological transformation into coccoid forms. This mechanism, however, was not protective because these cells after a 24-h incubation had a several-fold reduced green/red fluorescence ratio compared to the control. Using the checkerboard assay, a synergistic/additive interaction of SER with all four antibiotics tested was demonstrated. These results indicate that SER may be a promising anti-H. pylori compound.
Collapse
|