1
|
Barbosa RN, Felipe MTC, Silva LF, Silva EA, Silva SA, Herculano PN, Prazeres JFSA, Lima JMS, Bezerra JDP, Moreira KA, Magalhães OMC, Souza-Motta CM. A Review of the Biotechnological Potential of Cave Fungi: A Toolbox for the Future. J Fungi (Basel) 2025; 11:145. [PMID: 39997439 PMCID: PMC11856267 DOI: 10.3390/jof11020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The study of the intersection between biodiversity and biotechnology has revealed a rich source of innovations. Fungi, with their vast range of morphologies and lifestyles, thrive in various habitats, including caves. With impressive metabolic characteristics, they play a key role in producing essential biotechnological compounds for various economic sectors. This paper aims to consolidate evidence on the biotechnological potential of fungi isolated from caves, highlighting the urgency of conserving and exploring these ecosystems. For this purpose, we conducted a comprehensive literature search using scientific databases (SciELO, Medline Complete, Medline/PubMed, Web of Science, Scopus (Elsevier), and Google Scholar). We adopted an interdisciplinary approach by collecting information from 22 papers published between 2013 and 2024. Based on these data, our survey revealed broad potential, including antimicrobial compounds, antioxidants, antitumor agents, enzymes, and organic acids. We emphasize that accurately identifying and depositing fungal isolates in reference collections are crucial for reliable research and effective industrial applications, driving metabolic bioactivity and the production of substances with the potential to inhibit pathogens. Conserving and protecting the cave environment is imperative, considering its continuous potential for discovery and contribution to scientific advancement.
Collapse
Affiliation(s)
- Renan N. Barbosa
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Maria Tamara C. Felipe
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Leticia F. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Edna A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Sabrina A. Silva
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Polyanna N. Herculano
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - José F. S. A. Prazeres
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Joenny M. S. Lima
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
| | - Jadson D. P. Bezerra
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia 74605-050, Goiás, Brazil
| | - Keila A. Moreira
- Departamento de Medicina Veterinária, Universidade Federal do Agreste de Pernambuco, Garanhuns 55292-270, Pernambuco, Brazil
| | - Oliane M. C. Magalhães
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| | - Cristina M. Souza-Motta
- Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50740-600, Pernambuco, Brazil (J.F.S.A.P.); (J.M.S.L.)
- Programa de Pós-Graduação em Biologia de Fungos, Departamento de Micologia, Universidade Federal de Pernambuco, Recife 50670-901, Pernambuco, Brazil
| |
Collapse
|
2
|
Kang S, Kim KT, Choi J, Kim H, Cheong K, Bandara A, Lee YH. Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. PHYTOPATHOLOGY 2022; 112:981-995. [PMID: 34889667 DOI: 10.1094/phyto-10-21-0418-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Genomics' impact on crop production continuously expands. The number of sequenced plant and microbial species and strains representing diverse populations of individual species rapidly increases thanks to the advent of next-generation sequencing technologies. Their genomic blueprints revealed candidate genes involved in various functions and processes crucial for crop health and helped in understanding how the sequenced organisms have evolved at the genome level. Functional genomics quickly translates these blueprints into a detailed mechanistic understanding of how such functions and processes work and are regulated; this understanding guides and empowers efforts to protect crops from diverse biotic and abiotic threats. Metagenome analyses help identify candidate microbes crucial for crop health and uncover how microbial communities associated with crop production respond to environmental conditions and cultural practices, presenting opportunities to enhance crop health by judiciously configuring microbial communities. Efficient conversion of disparate types of massive genomics data into actionable knowledge requires a robust informatics infrastructure supporting data preservation, analysis, and sharing. This review starts with an overview of how genomics came about and has quickly transformed life science. We illuminate how genomics and informatics can be applied to investigate various crop health-related problems using selected studies. We end the review by noting why community empowerment via crowdsourcing is crucial to harnessing genomics to protect global food and nutrition security without continuously expanding the environmental footprint of crop production.
Collapse
Affiliation(s)
- Seogchan Kang
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Ki-Tae Kim
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea
| | - Jaeyoung Choi
- Korea Institute of Science and Technology Gangneung Institute of Natural Products, Gangneung 25451, Korea
| | - Hyun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Kyeongchae Cheong
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| | - Ananda Bandara
- Department of Plant Pathology and Environmental Microbiology, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Plant Immunity Research Center, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Lofgren LA, Stajich JE. Fungal biodiversity and conservation mycology in light of new technology, big data, and changing attitudes. Curr Biol 2021; 31:R1312-R1325. [PMID: 34637742 PMCID: PMC8516061 DOI: 10.1016/j.cub.2021.06.083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fungi have successfully established themselves across seemingly every possible niche, substrate, and biome. They are fundamental to biogeochemical cycling, interspecies interactions, food production, and drug bioprocessing, as well as playing less heroic roles as difficult to treat human infections and devastating plant pathogens. Despite community efforts to estimate and catalog fungal diversity, we have only named and described a minute fraction of the fungal world. The identification, characterization, and conservation of fungal diversity is paramount to preserving fungal bioresources, and to understanding and predicting ecosystem cycling and the evolution and epidemiology of fungal disease. Although species and ecosystem conservation are necessarily the foundation of preserving this diversity, there is value in expanding our definition of conservation to include the protection of biological collections, ecological metadata, genetic and genomic data, and the methods and code used for our analyses. These definitions of conservation are interdependent. For example, we need metadata on host specificity and biogeography to understand rarity and set priorities for conservation. To aid in these efforts, we need to draw expertise from diverse fields to tie traditional taxonomic knowledge to data obtained from modern -omics-based approaches, and support the advancement of diverse research perspectives. We also need new tools, including an updated framework for describing and tracking species known only from DNA, and the continued integration of functional predictions to link genetic diversity to functional and ecological diversity. Here, we review the state of fungal diversity research as shaped by recent technological advancements, and how changing viewpoints in taxonomy, -omics, and systematics can be integrated to advance mycological research and preserve fungal biodiversity.
Collapse
Affiliation(s)
- Lotus A Lofgren
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA.
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, Leipe D, Mcveigh R, O'Neill K, Robbertse B, Sharma S, Soussov V, Sullivan JP, Sun L, Turner S, Karsch-Mizrachi I. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database (Oxford) 2020; 2020:baaa062. [PMID: 32761142 PMCID: PMC7408187 DOI: 10.1093/database/baaa062] [Citation(s) in RCA: 970] [Impact Index Per Article: 194.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 04/04/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
The National Center for Biotechnology Information (NCBI) Taxonomy includes organism names and classifications for every sequence in the nucleotide and protein sequence databases of the International Nucleotide Sequence Database Collaboration. Since the last review of this resource in 2012, it has undergone several improvements. Most notable is the shift from a single SQL database to a series of linked databases tied to a framework of data called NameBank. This means that relations among data elements can be adjusted in more detail, resulting in expanded annotation of synonyms, the ability to flag names with specific nomenclatural properties, enhanced tracking of publications tied to names and improved annotation of scientific authorities and types. Additionally, practices utilized by NCBI Taxonomy curators specific to major taxonomic groups are described, terms peculiar to NCBI Taxonomy are explained, external resources are acknowledged and updates to tools and other resources are documented. Database URL: https://www.ncbi.nlm.nih.gov/taxonomy.
Collapse
Affiliation(s)
- Conrad L Schoch
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Stacy Ciufo
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Mikhail Domrachev
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Carol L Hotton
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Sivakumar Kannan
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Rogneda Khovanskaya
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Detlef Leipe
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Mcveigh
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Kathleen O'Neill
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Barbara Robbertse
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Shobha Sharma
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Vladimir Soussov
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - John P Sullivan
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Lu Sun
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Seán Turner
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| | - Ilene Karsch-Mizrachi
- National Center of Biotechnology Information, National Library of Medicine, National Institutes of Health, 9600 Rockville Pike, Bethesda, MD 20892, USA
| |
Collapse
|