1
|
Javed S, Latif Z, Javed GA, Munir A, Mushtaq M, Hameed M, Arshad M, Arshad N. Weissella confusa MW051433 Mitigates Hypercholesterolemia by Biliary Cholesterol Excretion: The In Vivo Evidence. Curr Microbiol 2025; 82:222. [PMID: 40169457 DOI: 10.1007/s00284-025-04173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/01/2025] [Indexed: 04/03/2025]
Abstract
The current study explored cholesterol-lowering potential and the underlying mechanism (biliary cholesterol excretion) of a prebiotic (mannitol), probiotic (Weissella confusa MW051433), and their synbiotic (mannitol + W. confusa MW051433) in high fat diet induced hypercholesterolemic murine model. The experiment employed a randomized controlled design consisting of five groups: negative control, positive control and three treatment groups, with six rats in each group. Positive control and treatment groups were maintained on high fat (18.37%) diet throughout experimental period (60 days). The high-fat diet induced significant (p < 0.05) augmentation in total serum cholesterol, triglycerides, low-density lipoprotein and decrease in high-density lipoprotein within 15 days. By 60th day of experiment, it further led to elevation in liver cholesterol, and hepatic enzymes, and depletion in hemoglobin (35.85%), erythrocytes (34.78%), and hematocrit (27.31%) in PC group. ANOVA followed by Tukey's test revealed that treatment (day 15-60 of experiment) with W. confusa MW051433 and its synbiotic, significantly improved blood lipid profile, liver functions and led to remarkable increase in fecal cholesterol (70.48%, 107.85%) and cholic acid (123.21%, 100.91%) content, respectively. Histopathological findings, including hepatic lipid droplet count, adipocyte size, and cellular integrity, further indicated that the strain facilitated cholesterol reduction through biliary cholesterol excretion mechanism. While the synbiotic showed slight superiority in one parameter, the probiotic alone yielded comparable results. To our information, this is the first report on in vivo hypocholesterolemic efficacy of W. confusa MW051433. Further research exploring its role in cholesterol homeostasis through in silico modeling, and gene/protein expression, is recommended.
Collapse
Affiliation(s)
- Saman Javed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
- Department of Biology, Lahore Garrison University, Lahore, Pakistan
| | - Zakia Latif
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Aneela Munir
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Maria Mushtaq
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Mamoona Hameed
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Arshad
- Department of Zoology, University of Education, Lahore, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, Lahore, 54590, Pakistan.
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), The University of Lahore, Lahore, 54792, Pakistan.
| |
Collapse
|
2
|
Farmakioti I, Stylianopoulou E, Siskos N, Karagianni E, Kandylas D, Vasileiou AR, Fragkiskatou F, Somalou P, Tsaroucha A, Ypsilantis P, Panas P, Kourkoutas Y, Skavdis G, Grigoriou ME. Enhancing Gut Microbiome and Metabolic Health in Mice Through Administration of Presumptive Probiotic Strain Lactiplantibacillus pentosus PE11. Nutrients 2025; 17:442. [PMID: 39940300 PMCID: PMC11820638 DOI: 10.3390/nu17030442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
Background: Over the past decade, probiotics have gained increasing recognition for their health benefits to the host. While most research has focused on the therapeutic effects of probiotics in the treatment of various diseases, recent years have seen a shift towards exploring their role in enhancing and supporting overall health. Methods: In this work, we have studied the effects of a novel potential probiotic strain, Lactiplantibacillus pentosus PE11, in healthy mice following a six-week dietary intervention. The assessment included monitoring the general health of the animals, biochemical analyses, profiling of the gut and fecal microbial communities, and gene expression analysis. Results: Our results showed that the administration of Lactiplantibacillus pentosus PE11 led to changes in the composition of the fecal microbiome, specifically an increase in the Firmicutes/Bacteroidetes ratio and in the relative abundance of the Lachnospiraceae, Ruminococcaceae, and Rikenellaceae families. Reduced Tnf expression and elevated Zo1 expression were also observed in the cecum, pointing to anti-inflammatory properties and improved intestinal barrier integrity. Additionally, a significant reduction in triglycerides and alanine aminotransferase levels-within physiological ranges-was observed, along with a trend toward decreased total cholesterol levels. Conclusions: These findings suggest that in healthy mice, Lactiplantibacillus pentosus PE11 has the potential to positively influence gut microbiome structure and metabolism, thereby supporting improved overall health.
Collapse
Affiliation(s)
- Ioanna Farmakioti
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Electra Stylianopoulou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Nikistratos Siskos
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Evangelia Karagianni
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Dionysios Kandylas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Andreas Rafail Vasileiou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Fragkiski Fragkiskatou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Paraskevi Somalou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Alexandra Tsaroucha
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.T.); (P.Y.)
| | - Petros Ypsilantis
- Department of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.T.); (P.Y.)
| | | | - Yiannis Kourkoutas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - George Skavdis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| | - Maria E. Grigoriou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (I.F.); (E.S.); (N.S.); (E.K.); (D.K.); (A.R.V.); (F.F.); (P.S.); (Y.K.); (G.S.)
| |
Collapse
|
3
|
Luangphiphat W, Prombutara P, Jamjuree P, Chantarangkul C, Vitheejongjaroen P, Muennarong C, Fukfon K, Onwan M, Taweechotipatr M. The efficacy of Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1 probiotics in modulating gut microbiota and reducing the risk of the characteristics of metabolic syndrome: A randomized, double-blinded, placebo-controlled study. PLoS One 2025; 20:e0317202. [PMID: 39792908 PMCID: PMC11723615 DOI: 10.1371/journal.pone.0317202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Modern treatment, a healthy diet, and physical activity routines lower the risk factors for metabolic syndrome; however, this condition is associated with all-cause and cardiovascular mortality worldwide. This investigation involved a randomized controlled trial, double-blind, parallel study. Fifty-eight participants with risk factors of metabolic syndrome according to the inclusion criteria were randomized into two groups and given probiotics (Lacticaseibacillus paracasei MSMC39-1 and Bifidobacterium animalis TA-1) (n = 31) or a placebo (n = 27). The participants had a mean age of 42.29 ± 7.39 and 43.89 ± 7.54 years in the probiotics and placebo groups, respectively. Stool samples, anthropometric data, and blood chemistries were taken at baseline and at 12 weeks. The primary outcome was achieved by the probiotics group as their low-density lipoprotein-cholesterol level dramatically lowered compared to the placebo group (the difference was 39.97 ± 26.83 mg/dl, p-value <0.001). Moreover, significant reductions in body weight, body mass index, waist circumference, systolic blood pressure, and total cholesterol were observed in the volunteers treated with probiotics compared to the placebo. In the gut microbiome analysis, the results showed statistically significant differences in the beta diversity in the post-intervention probiotics group. Blautia, Roseburia, Collinsella, and Ruminococcus were among the gut microbiomes that were more prevalent in the post-intervention probiotics group. In addition, this group exhibited increases in the predicted functional changes in ATP-binding cassette (ABC) transporters, as well as ribonucleic acid transport, the biosynthesis of unsaturated fatty acids, glycerophospholipid metabolism, and pyruvate metabolism. In conclusion, this research demonstrated that the probiotics L. paracasei MSMC39-1 and B. animalis TA-1 have the efficacy to lower risk factors associated with metabolic syndrome.
Collapse
Affiliation(s)
- Wongsakorn Luangphiphat
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
- Division of Cardiology, Department of Medicine, Chulabhorn Hospital, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Mod Gut Co., Ltd, Bangkok, Thailand
| | | | | | | | | | - Krittapat Fukfon
- Boromarajonani College of Nursing Phayao, Faculty of Nursing, Praboromarajchanok Institute, Phayao, Thailand
| | - Manasvin Onwan
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
| | - Malai Taweechotipatr
- Center of Excellence in Probiotics, Srinakharinwirot University, Bangkok, Thailand
- Clinical Research Center, Faculty of Medicine, Srinakharinwirot University, Ongkharak, Nakhon Nayok, Thailand
- Department of Microbiology, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| |
Collapse
|
4
|
Deng M, Zhang S, Wu S, Jiang Q, Teng W, Luo T, Ouyang Y, Liu J, Gu B. Lactiplantibacillus plantarum N4 ameliorates lipid metabolism and gut microbiota structure in high fat diet-fed rats. Front Microbiol 2024; 15:1390293. [PMID: 38912346 PMCID: PMC11190066 DOI: 10.3389/fmicb.2024.1390293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Lowing blood lipid levels with probiotics has good application prospects. This study aimed to isolate probiotics with hypolipidemic efficacy from homemade na dish and investigate their mechanism of action. In vitro experiments were conducted to determine the cholesterol-lowering ability of five isolates, with results showing that Lactiplantibacillus plantarum N4 exhibited a high cholesterol-lowering rate of 50.27% and significant resistance to acid (87%), bile salt (51.97%), and pepsin (88.28%) in simulated gastrointestinal fluids, indicating promising application prospects for the use of probiotics in lowering blood lipids. The findings from the in vivo experiment demonstrated that the administration of N4 effectively attenuated lipid droplet accumulation and inflammatory cell infiltration in the body weight and liver of hyperlipidemic rats, leading to restoration of liver tissue morphology and structure, as well as improvement in lipid and liver biochemical parameters. 16S analysis indicated that the oral administration of N4 led to significant alterations in the relative abundance of various genera, including Sutterella, Bacteroides, Clostridium, and Ruminococcus, in the gut microbiota of hyperlipidemia rats. Additionally, fecal metabolomic analysis identified a total of 78 metabolites following N4 intervention, with carboxylic acids and their derivatives being the predominant compounds detected. The transcriptomic analysis revealed 156 genes with differential expression following N4 intervention, leading to the identification of 171 metabolic pathways through Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Notably, the glutathione metabolism pathway, PPAR signaling pathway, and bile secretion pathway emerged as the primary enrichment pathways. The findings from a comprehensive multi-omics analysis indicate that N4 influences lipid metabolism and diminishes lipid levels in hyperlipidemic rats through modulation of fumaric acid and γ-aminobutyric acid concentrations, as well as glutathione and other metabolic pathways in the intestinal tract, derived from both the gut microbiota and the host liver. This research offers valuable insights into the therapeutic potential of probiotics for managing lipid metabolism disorders and their utilization in the development of functional foods.
Collapse
Affiliation(s)
- Manqi Deng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Shuaiying Zhang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Siying Wu
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Qiunan Jiang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Wenyao Teng
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Tao Luo
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Yerui Ouyang
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Jiantao Liu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| | - Bing Gu
- Key Laboratory of Natural Microbial Medicine Research of Jiangxi Province, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
- Key Laboratory of Microbial Resources and Metabolism of Nanchang City, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, China
| |
Collapse
|
5
|
Sadeghi M, Haghshenas B, Nami Y. Bifidobacterium exopolysaccharides: new insights into engineering strategies, physicochemical functions, and immunomodulatory effects on host health. Front Microbiol 2024; 15:1396308. [PMID: 38770019 PMCID: PMC11103016 DOI: 10.3389/fmicb.2024.1396308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Bifidobacteria are a prominent type of bacteria that have garnered significant research attention for their exceptional probiotic properties and capacity to produce exopolysaccharides (EPSs). These compounds exhibit diverse physical, chemical, and biological characteristics, prompting numerous investigations into their potential applications. Researchers have noted their beneficial effects as immune modulators within the host's body across various industries. Extensive research has been conducted on the immunomodulatory effects of bifidobacteria-derived EPSs, with emerging engineering strategies aimed at enhancing their immune-modulating capabilities. Understanding the structure, physicochemical properties, and biological activities of these compounds is crucial for their effective utilization across different industries. Our review encompassed numerous studies exploring Bifidobacterium and its metabolites, including EPSs, across various sectors, drawing from diverse databases. The distinctive properties of EPSs have spurred investigations into their applications, revealing their potential to bolster the immune system, combat inflammation, and treat various ailments. Additionally, these compounds possess antioxidant and antimicrobial properties, making them suitable for incorporation into a range of products spanning food, health, and medicine.
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
6
|
Goudarzi F, Kiani A, Nami Y, Shahmohammadi A, Mohammadalipour A, Karami A, Haghshenas B. Potential probiotic Lactobacillus delbrueckii subsp. lactis KUMS-Y33 suppresses adipogenesis and promotes osteogenesis in human adipose-derived mesenchymal stem cell. Sci Rep 2024; 14:9689. [PMID: 38678043 PMCID: PMC11055903 DOI: 10.1038/s41598-024-60061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Today, probiotics are considered to be living microorganisms whose consumption has a certain number of beneficial effects on the consumer. The present study aimed to investigate the effect of a new probiotic extract (Lactobacillus delbrueckii subsp. lactis KUMS Y33) on the differentiation process of human adipose-derived stem cells (hADSCs) into adipocytes and osteocytes and, as a result, clarify its role in the prevention and treatment of bone age disease. Several bacteria were isolated from traditional yogurt. They were evaluated to characterize the probiotic's activity. Then, the isolated hADSCs were treated with the probiotic extract, and then osteogenesis and adipogenesis were induced. To evaluate the differentiation process, oil red O and alizarin red staining, a triglyceride content assay, an alkaline phosphatase (ALP) activity assay, as well as real-time PCR and western blot analysis of osteocyte- and adipocyte-specific genes, were performed. Ultimately, the new strain was sequenced and registered on NBCI. In the probiotic-treated group, the triglyceride content and the gene expression and protein levels of C/EBP-α and PPAR-γ2 (adipocyte-specific markers) were significantly decreased compared to the control group (P < 0.05), indicating an inhibited adipogenesis process. Furthermore, the probiotic extract caused a significant increase in the ALP activity, the expression levels of RUNX2 and osteocalcin, and the protein levels of collagen I and FGF-23 (osteocyte-specific markers) in comparison to the control group (P < 0.05), indicating an enhanced osteogenesis process. According to the results of the present study, the probiotic extract inhibits adipogenesis and significantly increases osteogenesis, suggesting a positive role in the prevention and treatment of osteoporosis and opening a new aspect for future in-vivo study.
Collapse
Affiliation(s)
- Farjam Goudarzi
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Azin Shahmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, Isfahan Pharmaceutical Sciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Afshin Karami
- Departments of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Bhukya KK, Bhukya B. Exploration of Antidiabetic, Cholesterol-Lowering, and Anticancer Upshot of Probiotic Bacterium Pediococcus pentosaceus OBK05 Strain of Buttermilk. Probiotics Antimicrob Proteins 2023; 15:1484-1500. [PMID: 36282441 DOI: 10.1007/s12602-022-10002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/30/2022]
Abstract
Chronic metabolic disorders such as hyperglycemia (diabetes), hyperlipidemia (high cholesterol), and cancer have become catastrophic diseases worldwide. Accordingly, probiotic intervention is a new approach for alleviating catastrophic diseases. In the present study, Pediococcus pentosaceus OBK05 was investigated as a potential probiotic bacterium for antidiabetic, cholesterol-lowering, and anticancer activities by in vitro and in vivo studies. Cell-free supernatant (CFS) of OBK05 showed potent antidiabetic activity by inhibition of α-amylase (72 ± 0.9%) and α-glucosidase (61 ± 0.8%) activity in vitro when compared to that of acarbose as standard (86 ± 0.9%). Furthermore, the in vivo cholesterol-lowering activity of OBK05 was studied using cholesterol-fed hypercholesterolemic mice. When compared to the cholesterol-fed group, the OBK05-intervened cholesterol-fed mice group had significantly lowered the levels of lipids and showed significantly lower lipid droplet accumulation in the histology of hepatocytes. Similarly, CFS exhibited higher anticancer activity (87.57 ± 1.27%) against HT-29 cells with an IC50 of 54.51 ± 1.8. Fluorescence-activated cell sorting (FACS) analysis revealed that CFS induced the cell cycle arrest by inhibiting the G1 to S phase transition. Further, in vivo anticancer activities were confirmed in BALB/c mice models, which were divided into four groups and held for 16 weeks. HT-29 cells (5×109/mice) were injected subcutaneously twice (0 and 2nd week), and OBK05 (3 ×105 CFU/mL) was given orally to the respective groups. The OBK05-intervened HT-29 cell-induced mice group showed significant improvement at the histological level and alleviated the degree of atypia in the intestine.
Collapse
Affiliation(s)
- Kiran Kumar Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India
| | - Bhima Bhukya
- Centre for Microbial and Fermentation Technology, Department of Microbiology, University College of Science, Osmania University, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
8
|
Egea MB, de Oliveira Filho JG, Lemes AC. Investigating the Efficacy of Saccharomyces boulardii in Metabolic Syndrome Treatment: A Narrative Review of What Is Known So Far. Int J Mol Sci 2023; 24:12015. [PMID: 37569390 PMCID: PMC10418856 DOI: 10.3390/ijms241512015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Metabolic syndrome (MetS) is characterized by complex metabolic changes involving a cluster of co-occurring conditions, such as abdominal obesity, high blood pressure, high fasting plasma glucose, high serum triglycerides, and high LDL cholesterol levels or low HDL cholesterol levels. The incidence and risk factors of MetS occurrence increase every year. It is estimated that MetS affects approximately 30% of the population of some countries. Therefore, novel strategies are being studied to reduce the negative impact of having an unbalanced diet and a lack of physical activity. One of these strategies is the administration of probiotic microorganisms, such as the yeast Saccharomyces boulardii, which has been associated with several beneficial health effects (including modulation of the intestinal microbiota and improvement of the inflammatory, antioxidant, antibacterial, antitumor, and anti-inflammatory profiles). Thus, the objective of this study was to review the risk factors of MetS occurrence and the beneficial effects of S. boulardii ingestion in the treatment of MetS. Here, we critically evaluate the treatment necessary to promote these benefits. Using the pre-established inclusion criteria, eight studies were reviewed, including five animal and three human studies. The results reported the regulation of the lipid profile, modulation of the intestinal microbiota and gene expression, and a decrease in mass gain as positive results when S. boulardii was administered. Although more experiments are needed to validate these results, especially using human models, there is a trend toward improvement in MetS and a reduction in its risk factors with the administration of S. boulardii.
Collapse
Affiliation(s)
- Mariana Buranelo Egea
- Goiano Federal Institute of Education, Science and Technology, Campus Rio Verde, Rio Verde 75901-970, Brazil
| | | | - Ailton Cesar Lemes
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
| |
Collapse
|
9
|
Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep. Foods 2022; 11:foods11172644. [PMID: 36076827 PMCID: PMC9455658 DOI: 10.3390/foods11172644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this study, 12 Sunit sheep were randomly divided into an experimental group (LTF, basal feed + Lactiplantibacillusplantarum powder) and a control group (CTF, basal feed). The results of sheep crude tail fat analysis showed that blood lipid parameters were significantly lower and the expression of fatty acid synthase and stearoyl-CoA desaturase genes higher in the LTF group than in the CTF group (p < 0.05). Metabolomic analysis via liquid chromatography−mass spectrometry showed that the contents of metabolites such as eicosapentaenoic acid, 16-hydroxypalmitic acid, and L-citrulline were higher in the LTF group (p < 0.01). Gas chromatography−mass spectrometry detection of volatile flavor compounds in the tail fat showed that nonanal, decanal, and 1-hexanol were more abundant in the LTF group (p < 0.05). Therefore, Lactiplantibacillus plantarum feeding affected blood lipid parameters, expression of lipid metabolism-related genes, tail fat metabolites, and volatile flavor compounds in Sunit sheep. In this study, probiotics feeding was demonstrated to support high-value sheep crude tail fat production.
Collapse
|
10
|
The Activity of Prebiotics and Probiotics in Hepatogastrointestinal Disorders and Diseases Associated with Metabolic Syndrome. Int J Mol Sci 2022; 23:ijms23137229. [PMID: 35806234 PMCID: PMC9266451 DOI: 10.3390/ijms23137229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 12/11/2022] Open
Abstract
The components of metabolic syndrome (MetS) and hepatogastrointestinal diseases are widespread worldwide, since many factors associated with lifestyle and diet influence their development and correlation. Due to these growing health problems, it is necessary to search for effective alternatives for prevention or adjuvants in treating them. The positive impact of regulated microbiota on health is known; however, states of dysbiosis are closely related to the development of the conditions mentioned above. Therefore, the role of prebiotics, probiotics, or symbiotic complexes has been extensively evaluated; the results are favorable, showing that they play a crucial role in the regulation of the immune system, the metabolism of carbohydrates and lipids, and the biotransformation of bile acids, as well as the modulation of their central receptors FXR and TGR-5, which also have essential immunomodulatory and metabolic activities. It has also been observed that they can benefit the host by displacing pathogenic species, improving the dysbiosis state in MetS. Current studies have reported that paraprobiotics (dead or inactive probiotics) or postbiotics (metabolites generated by active probiotics) also benefit hepatogastrointestinal health.
Collapse
|
11
|
Munir A, Ayesha Javed G, Javed S, Arshad N. Levilactobacillus brevis from carnivores can ameliorate hypercholesterolemia: in vitro and in vivo mechanistic evidence. J Appl Microbiol 2022; 133:1725-1742. [PMID: 35729721 DOI: 10.1111/jam.15678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/28/2022]
Abstract
AIMS To explore the probiotic and hypocholesterolemic potential of two Levilactobacillus brevis strains of carnivore origin along with selected underlying mechanisms. METHODS AND RESULTS L. brevis MT950194 and L. brevis MW365351 were analyzed in vitro for oro-gastro-intestinal stress tolerance, cholesterol reduction, cholesterol adsorption (through scanning electron microscopy) and bile salt hydrolase (BSH) activity. Strains could survive (> 80%) in oro-gastro-intestinal conditions, reduce high amount of cholesterol (35% and 54%) from media containing bile salts (0.3%) as compared with Lactobacillus acidophilus ATCC4356 and presented least pathogenicity towards mammalian cells. Exopolysaccharide production, cell surface cholesterol adherence and BSH activity were witnessed as possible cholesterol lowering mechanisms. In in vivo experiment, the treatments of hypercholesterolemic rats with L. brevis MT950194, L. brevis MW365351 and their mixture led to significant (p < 0.05) reduction in serum and hepatic cholesterol, low density lipids, cholesterol ratio, liver steatosis, and size of adipocytes. It further ameliorated diet induced changes in hepatic enzymes. CONCLUSIONS L. brevis MT950194 and L. brevis MW365351 from carnivores have probiotic pharmacological potential and can reduce serum cholesterol through surface adherence and BSH production. SIGNIFICANCE AND IMPACT OF STUDY These strains may be utilized in treating hypercholesterolemia and production of low fat functional foods.
Collapse
Affiliation(s)
- Aneela Munir
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | | | - Saman Javed
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, Lahore, Pakistan.,Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular, Medicine (CRIMM), The University of Lahore, Pakistan
| |
Collapse
|
12
|
de Souza da Motta A, Nespolo CR, Breyer GM. Probiotics in milk and dairy foods. PROBIOTICS 2022:103-128. [DOI: 10.1016/b978-0-323-85170-1.00004-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Yoo J, Lee J, Zhang M, Mun D, Kang M, Yun B, Kim YA, Kim S, Oh S. Enhanced γ-aminobutyric acid and sialic acid in fermented deer antler
velvet and immune promoting effects. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 64:166-182. [PMID: 35174351 PMCID: PMC8819328 DOI: 10.5187/jast.2021.e132] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 11/20/2022]
Abstract
Deer antler velvet is widely used in traditional medicine for its anti-aging,
antioxidant, and immunity-enhancing effects. However, few studies have reported
on the discovery of probiotic strains for deer antler fermentation to increase
functional ingredient absorption. This study evaluated the ability of probiotic
lactic acid bacteria to enhance the concentrations of bioactive molecules (e.g.,
sialic acid and gamma-aminobutyric acid [GABA]) in extracts of deer antler
velvet. Seventeen strains of Lactobacillus spp. that were
isolated from kimchi and infant feces, including L. sakei,
L. rhamnosus, L. brevis, and L.
plantarum, and those that improved the life span of
Caenorhabditis elegans were selected for evaluation. Of the
17 strains, 2 (L. rhamnosus LFR20-004 and L.
sakei LFR20-007) were selected based on data showing that these
strains increased both the sialic acid and GABA contents of deer antler extract
after fermentation for 2 d and significantly improved the life span of
C. elegans. Co-fermentation with both strains further
increased the concentrations of sialic acid, GABA, and metabolites such as
short-chain fatty acids and amino acids. We evaluated the biological effects of
the fermented antler velvet (FAV) on the antibacterial immune response in
C. elegans by assessing worm survival after pathogen
infection. The survival of the C. elegans conditioned with FAV
for 24 h was significantly higher compared with that of the control worm group
fed only normal feed (non-pathogenic E. coli OP50) exposed to
E. coli O157:H7, Salmonella typhi, and
Listeria monocytogenes. To evaluate the protective effects
of FAV on immune response, cyclophosphamide (Cy), an immune-suppressing agent
was treated to in vitro and in vivo. We found
that FAV significantly restored viability of mice splenocytes and immune
promoting-related cytokines (interleukin [IL]-6, IL-10, inducible nitric oxide
synthase [iNOS], interferon [IFN]-γ, and tumor necrosis factor
[TNF]-α) were activated compared to non-fermented deer antlers. This
finding indicated the protective effect of FAV against Cy-induced cell death and
immunosuppressed mice. Taken together, our study suggests that immune-promoting
antler velvet can be produced through fermentation using L.
rhamnosus LFR20-004 and L. sakei LFR20-007.
Collapse
Affiliation(s)
- Jiseon Yoo
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Juyeon Lee
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Ming Zhang
- Department of Environment Science &
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Daye Mun
- Department of Agricultural Biotechnology
and Research Institute of Agriculture and Life Science, Seoul National
University, Seoul 08826, Korea
| | - Minkyoung Kang
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Bohyun Yun
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
| | - Yong-An Kim
- Department of Animal Science, Chonbuk
National University, Jeonju 54896, Korea
| | - Sooah Kim
- Department of Environment Science &
Biotechnology, Jeonju University, Jeonju 55069, Korea
| | - Sangnam Oh
- Department of Functional Food and
Biotechnology, Jeonju University, Jeonju 55069 Korea
- Corresponding author: Sangnam Oh, Department of
Functional Food and Biotechnology, Jeonju University, Jeonju 55069 Korea. Tel:
+82-63-220-3109, E-mail:
| |
Collapse
|
14
|
Wang B, Yu H, He Y, Wen L, Gu J, Wang X, Miao X, Qiu G, Wang H. Effect of soybean insoluble dietary fiber on prevention of obesity in high-fat diet fed mice via regulation of the gut microbiota. Food Funct 2021; 12:7923-7937. [PMID: 34251010 DOI: 10.1039/d1fo00078k] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has shown that the gut microbiota plays an important role in preventing obesity; however, the mechanism by which insoluble dietary fiber (IDF) prevents high-fat diet (HFD)-induced obesity remains unclear. This study aimed to investigate the effect of SIDF on obesity in HFD mice and determine the mechanism by which it prevents obesity through regulating the gut microbiota. Soybean insoluble dietary fiber (SIDF) was used as an intervention in HFD mice for 20 weeks. The results showed that SIDF significantly reduced the body weight (BW), fat index, total cholesterol, triglyceride, and low-density lipoprotein cholesterol while increasing the content of high-density lipoprotein cholesterol in HFD mice. SIDF intervention was also beneficial for the reduction of liver lipid content and fatty droplets in mice. Furthermore, SIDF intervention improved the gut microbiota composition by increasing the relative abundance of potentially beneficial bacteria (such as Lactobacillales [order], Lactobacillus [genus], Lachnospirace_Nk4A136_group [genus]), and reduced the relative abundance of potentially harmful bacteria (such as Lachnospiraceae [family] and Bacteroides_acidifaciens [species]), which correlated with obesity (at least p < 0.05 in all instances). Finally, SIDF was fermented by related beneficial bacteria, which increased the content of the short-chain fatty acids (SCFAs), and promoted the secretion of satiety hormones. In conclusion, SIDF intervention could prevent obesity in HFD mice by modulating the gut microbiota composition. Hence, SIDF may be used as a potential ingredient in functional foods.
Collapse
Affiliation(s)
- Bixiang Wang
- Department of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Romero-Luna HE, Peredo-Lovillo AG, Jiménez-Fernández M. Probiotic and Potentially Probiotic Bacteria with Hypocholesterolemic Properties. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1926481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Haydee Eliza Romero-Luna
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Audry Gustavo Peredo-Lovillo
- Subdirección de Posgrado e Investigación, Instituto Tecnológico Superior De Xalapa, Tecnológico Nacional De México, Xalapa Enríquez, Veracruz, México
| | - Maribel Jiménez-Fernández
- Departamento de Estabilidad de Alimentos, Centro De Investigación Y Desarrollo En Alimentos. Universidad Veracruzana. Dr. Castelazo Ayala S/n Industrial Ánimas, Xalapa, Veracruz, México
| |
Collapse
|
16
|
Moringa oleifera polysaccharides regulates caecal microbiota and small intestinal metabolic profile in C57BL/6 mice. Int J Biol Macromol 2021; 182:595-611. [PMID: 33836198 DOI: 10.1016/j.ijbiomac.2021.03.144] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/03/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
This study investigated the effects of Moringa oleifera polysaccharides (MOP) on the serum indexes, small intestinal morphology, small intestinal metabolic profile, and caecal microbiota of mice. A new type of polysaccharides with 104,031 Da molecular weight and triple helix structure was isolated from M. oleifera leaves for in vivo experiment. Forty male SPF C57BL/6 mice aged 4 weeks were average divided into four groups randomly according to the MOP gavaged daily (0, 20, 40 and 60 mg/kg body weight MOP). After a 7-day preliminary trial period and a 28-day official trial period, the mice were slaughtered. Results showed that MOP reduced glucose, total cholesterol, and malondialdehyde. It also improved superoxide dismutase and catalase in serum (P < 0.05). For small intestinal morphology, MOP improved the villi length and crypt depth in both ileum and jejunum (P < 0.05); the ratio of villi length to crypt depth in jejunum increased (P < 0.05). MOP could cause the increase of beneficial bacteria and the decrease of harmful bacteria in caecum, further affecting the function of microbiota. In addition, MOP regulated 114 metabolites enriched in the pathway related to the synthesis and metabolism of micromolecules. In sum, MOP exerted positive effects on the serum indexes and intestinal health of mice.
Collapse
|
17
|
Brandão LR, de Brito Alves JL, da Costa WKA, Ferreira GDAH, de Oliveira MP, Gomes da Cruz A, Braga VDA, Aquino JDS, Vidal H, Noronha MF, Cabral L, Pimentel TC, Magnani M. Live and ultrasound-inactivated Lacticaseibacillus casei modulate the intestinal microbiota and improve biochemical and cardiovascular parameters in male rats fed a high-fat diet. Food Funct 2021; 12:5287-5300. [PMID: 34009228 DOI: 10.1039/d1fo01064f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This study aimed to evaluate the effects of ingestion of live (9 log CFU mL-1) and ultrasound-inactivated (paraprobiotic, 20 kHz, 40 min) Lacticaseibacillus casei 01 cells for 28 days on healthy parameters (biochemical and cardiovascular) and intestinal microbiota (amplicon sequencing of 16S ribosomal RNA) of rats fed a high-fat diet. Twenty-four male Wistar rats were divided into four groups of six animals: CTL (standard diet), HFD (high-fat diet), HFD-LC (high-fat diet and live L. casei), and HFD-ILC (high-fat diet and inactivated L. casei). The administration of live and ultrasound-inactivated L. casei prevented the increase (p < 0.05) in cholesterol levels (total and LDL) and controlled the insulin resistance in rats fed a high-fat diet. Furthermore, it promoted a modulation of the intestinal microbial composition by increasing (p < 0.05) beneficial bacteria (Lachnospiraceae and Ruminoccocaceae) and decreasing (p < 0.05) harmful bacteria (Clostridiaceae, Enterobacteriaceae, and Helicobacteriacea), attenuating the effects promoted by the HFD ingestion. Only live cells could increase (p < 0.05) the HDL-cholesterol, while only inactivated cells caused attenuation (p < 0.05) of the blood pressure. Results show beneficial effects of live and inactivated L. casei 01 and indicate that ultrasound inactivation produces a paraprobiotic with similar or improved health properties compared to live cells.
Collapse
Affiliation(s)
- Larissa Ramalho Brandão
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| | - José Luiz de Brito Alves
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | | | - Adriano Gomes da Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Valdir de Andrade Braga
- Department of Biotechnology, Biotechnology Center Federal University of Paraíba, João Pessoa, Brazil
| | - Jailane de Souza Aquino
- Department of Nutrition, Health Sciences Center, Federal University of Paraiba, Joao Pessoa, Brazil
| | - Hubert Vidal
- Univ-Lyon, CarMeN (Cardio, Metabolism, Diabetes and Nutrition) Laboratory, INSERM, INRAE, Université Claude Bernard Lyon 1, INSA Lyon, Oullins, France
| | - Melline Fontes Noronha
- Research Informatics Core, Research Resource Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Lucélia Cabral
- Institute of Biosciences, Department of General and Applied Biology, São Paulo State University, Rio Claro, SP, Brazil
| | | | - Marciane Magnani
- Department of Food Engineering, Technology, Federal University of Paraíba, João Pessoa, Brazil.
| |
Collapse
|
18
|
The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2020; 12:360-373. [PMID: 33346905 PMCID: PMC8106557 DOI: 10.1007/s13238-020-00814-7] [Citation(s) in RCA: 262] [Impact Index Per Article: 52.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
It is well known that an unhealthy lifestyle is a major risk factor for metabolic diseases, while in recent years, accumulating evidence has demonstrated that the gut microbiome and its metabolites also play a crucial role in the onset and development of many metabolic diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, cardiovascular disease and so on. Numerous microorganisms dwell in the gastrointestinal tract, which is a key interface for energy acquisition and can metabolize dietary nutrients into many bioactive substances, thus acting as a link between the gut microbiome and its host. The gut microbiome is shaped by host genetics, immune responses and dietary factors. The metabolic and immune potential of the gut microbiome determines its significance in host health and diseases. Therefore, targeting the gut microbiome and relevant metabolic pathways would be effective therapeutic treatments for many metabolic diseases in the near future. This review will summarize information about the role of the gut microbiome in organism metabolism and the relationship between gut microbiome-derived metabolites and the pathogenesis of many metabolic diseases. Furthermore, recent advances in improving metabolic diseases by regulating the gut microbiome will be discussed.
Collapse
|
19
|
Badran M, Mashaqi S, Gozal D. The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea. Expert Opin Ther Targets 2020; 24:1263-1282. [PMID: 33180654 PMCID: PMC9394230 DOI: 10.1080/14728222.2020.1841749] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Gut dysbiosis is assumed to play a role in obstructive sleep apnea (OSA)-associated morbidities. Pre- and probiotics, short chain fatty acids (SCFA) and fecal matter transplantation (FMT) may offer potential as novel therapeutic strategies that target this gut dysbiosis. As more mechanisms of OSA-induced dysbiosis are being elucidated, these novel approaches are being tested in preclinical and clinical development. Areas covered: We examined the evidence linking OSA to gut dysbiosis and discuss the effects of pre- and probiotics on associated cardiometabolic, neurobehavioral and gastrointestinal disorders. The therapeutic potential of SCFA and FMT are also discussed. We reviewed the National Center for Biotechnology Information database, including PubMed and PubMed Central between 2000 - 2020. Expert opinion: To date, there are no clinical trials and only limited evidence from animal studies describing the beneficial effects of pre- and probiotic supplementation on OSA-mediated dysbiosis. Thus, more work is necessary to assess whether prebiotics, probiotics and SCFA are promising future novel strategies for targeting OSA-mediated dysbiosis.
Collapse
Affiliation(s)
- Mohammad Badran
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| | - Saif Mashaqi
- Department of Pulmonary, Critical Care and Sleep Medicine, University of Arizona School of Medicine , Tucson, AZ, USA
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine , Columbia, MO, USA
| |
Collapse
|