1
|
Oliveira de Lima JG, Alves Oshiro A, Falcão Haddad F, de Souza Alves Guimarães A, Scarim CB, de Baptista Neto Á, Santos-Ebinuma VC. Biotechnological advances in torularhodin production: artificial neural networks as a tool for improving and biocompatibility studies. Prep Biochem Biotechnol 2025:1-11. [PMID: 40387852 DOI: 10.1080/10826068.2025.2502767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Torularhodin is a bioactive carotenoid synthesized by certain microorganisms through complex cellular processes regulated by factors like nutrient availability. However, enhancing torularhodin production is a challenging task that requires costly and time-intensive experimental approaches. To address these limitations, computational modeling and simulation have become valuable tools for predicting and optimizing carotenoid biosynthesis. Among these techniques, polynomial models derived from multiple regressions provide useful insights but often struggle with the nonlinear nature of biological systems. In contrast, Artificial Neural Networks (ANNs) offer a more flexible alternative, improving predictive accuracy where traditional models fall short. This study aimed to optimize torularhodin production in Rhodotorula glutinis using ANN-based simulations and Response Surface Methodology (RSM) while also assessing the biocompatibility of the crude extract containing carotenoids. An experimental design with two independent variables (Tween 80 and malt extract) was implemented to evaluate their impact on torularhodin yield. ANN modeling successfully increased torularhodin production by approximately 10.69%, demonstrating its efficiency in bioprocess optimization. Additionally, microbial biomass extracts containing carotenoids exhibited biocompatibility in the Chorioallantoic Membrane assay, suggesting potential applications in pharmaceutical and food industries. These findings reinforce the importance of ANN modeling in optimizing microbial carotenoid production for sustainable biotechnology.
Collapse
Affiliation(s)
- Júlio Gabriel Oliveira de Lima
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ariane Alves Oshiro
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Felipe Falcão Haddad
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - André de Souza Alves Guimarães
- Academic Unit of Biotechnology and Bioprocess Engineering, Center for Sustainable Development of the Semi-Arid, Federal University of Campina Grande (UFCG), Sumé, Brazil
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Álvaro de Baptista Neto
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Valéria C Santos-Ebinuma
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| |
Collapse
|
2
|
Liu L, Chen Z, Tian X, Chu J. Effect of catalase on CPC production during fermentation of Acremonium chrysogenum. BIORESOUR BIOPROCESS 2025; 12:1. [PMID: 39753989 PMCID: PMC11699191 DOI: 10.1186/s40643-024-00831-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/01/2024] [Indexed: 01/06/2025] Open
Abstract
Cephalosporin C (CPC) is a critical raw material for cephalosporin antibiotics produced by Acremonium chrysogenum. During fermentation, the oxygen supply is a crucial factor limiting the efficient biosynthesis of CPC. This study demonstrated that the addition of exogenous surfactants significantly increased the dissolved oxygen (DO) level, extracellular catalase content, and final CPC titer. Consequently, we hypothesized and examined a correlation between catalase and CPC biosynthesis in A. chrysogenum through both the exogenous addition of hydrogen peroxide (H₂O₂) and the endogenous modulation of the catA expression level. The results indicated that both the addition of H₂O₂ and the ∆catA mutation exhibited similar fermentation trends, leading to decreased extracellular catalase activity and increased intracellular reactive oxygen species (ROS) content, which resulted in reduced CPC production. Conversely, strains that overexpress varying levels of the catA accelerated hyphal differentiation under DO-limiting conditions, reducing intracellular ROS accumulation and decreasing cellular apoptosis, which stabilized CPC yield during the later stages of fermentation. This study provides a critical foundation for further investigations into the regulatory mechanisms governing CPC biosynthesis in A. chrysogenum.
Collapse
Affiliation(s)
- Ling Liu
- Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Zhen Chen
- Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China
| | - Xiwei Tian
- Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| | - Ju Chu
- Qingdao Innovation Institute of East China University of Science and Technology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
3
|
Tian Y, Wang S, Ma Y, Li Y, Li R, Fu Y, Zhang R, Zhu R, Zhao F. Gene expression screening and cell factory engineering for enhancing echinocandin B production in Aspergillus nidulans NRRL8112. Microb Cell Fact 2024; 23:305. [PMID: 39533300 PMCID: PMC11559128 DOI: 10.1186/s12934-024-02577-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Echinocandin B (ECB) is a key precursor of the antifungal drug anidulafungin and its biosynthesis occurs via ani gene cluster in Aspergillus nidulans NRRL8112. Strain improvement for industrial ECB production has mainly relied on mutation breeding due to the lack of genetic tools. RESULTS Here, a CRISPR-base-editing tool was developed in A. nidulans NRRL8112 for simultaneous inactivation of the nkuA gene and two marker genes, pryoA and riboB, which enabled efficient genetic manipulation. Then, in-vivo plasmid assembly was harnessed for ani gene expression screening, identifying the rate-limiting enzyme AniA and a pathway-specific transcription factor AniJ. Stepwise titer enhancement was achieved by overexpressing aniA and/or aniJ, and ECB production reached 1.5 g/L during 5-L fed-batch fermentation, an increase of ~ 30-fold compared with the parent strain. CONCLUSION This study, for the first time, revealed the regulatory mechanism of ECB biosynthesis and harnessed genetic engineering for the development of an efficient ECB-producing strain.
Collapse
Affiliation(s)
- Yuan Tian
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Shumin Wang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youchu Ma
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Yanling Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Li
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Youxiu Fu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhang
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Rui Zhu
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China
| | - Fanglong Zhao
- College of Life Science, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271016, China.
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China.
| |
Collapse
|
4
|
Yi Y, Jin X, Chen M, Coldea TE, Zhao H. Surfactant-mediated bio-manufacture: A unique strategy for promoting microbial biochemicals production. Biotechnol Adv 2024; 73:108373. [PMID: 38704106 DOI: 10.1016/j.biotechadv.2024.108373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Biochemicals are widely used in the medicine and food industries and are more efficient and safer than synthetic chemicals. The amphipathic surfactants can interact with the microorganisms and embed the extracellular metabolites, which induce microbial metabolites secretion and biosynthesis, performing an attractive prospect of promoting the biochemical production. However, the commonness and differences of surfactant-mediated bio-manufacture in various fields are largely unexplored. Accordingly, this review comprehensively summarized the properties of surfactants, different application scenarios of surfactant-meditated bio-manufacture, and the mechanism of surfactants increasing metabolites production. Various biochemical productions such as pigments, amino acids, and alcohols could be enhanced using the cloud point and the micelles of surfactants. Besides, the amphiphilicity of surfactants also promoted the utilization of fermentation substrates, especially lignocellulose and waste sludge, by microorganisms, indirectly increasing the metabolites production. The increase in target metabolites production was attributed to the surfactants changing the permeability and composition of the cell membrane, hence improving the secretion ability of microorganisms. Moreover, surfactants could regulate the energy metabolism, the redox state and metabolic flow in microorganisms, which induced target metabolites synthesis. This review aimed to broaden the application fields of surfactants and provide novel insights into the production of microbial biochemicals.
Collapse
Affiliation(s)
- Yunxin Yi
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofan Jin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
5
|
Jiang K, Luo P, Wang X, Lu L. Insight into advances for the biosynthetic progress of fermented echinocandins of antifungals. Microb Biotechnol 2024; 17:e14359. [PMID: 37885073 PMCID: PMC10832530 DOI: 10.1111/1751-7915.14359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Invasive fungal infections have increased remarkably, which have become unprecedented concern to human health. However, the effectiveness of current antifungal drugs is limited due to drug resistance and toxic side-effects. It is urgently required to establish the effective biosynthetic strategy for developing novel and safe antifungal molecules economically. Echinocandins become a promising option as a mainstay family of antifungals, due to specifically targeting the fungal specific cell wall. To date, three kinds of echinocandins for caspofungin, anidulafungin, and micafungin, which derived from pneumocandin B0 , echinocandin B, and FR901379, are commercially available in clinic and have shown potential in managing invasive fungal infections in a cost-effective manner. However, current echinocandins-derived precursors all are produced by environmental fungal isolates with long fermentation cycle and low yields, which challenge the production efficacy of these precursors in industry. Therefore, understanding their biosynthetic machinery is of great importance for improving antifungal titres and creating new echinocandins-derived products. With the development of genome-wide sequencing and establishment of gene-editing technology, there are a growing number of reports on echinocandins-derived products and their biosynthetic gene clusters. This review briefly summarizes the discovery and development history of echinocandins, compares their structural characteristics and biosynthetic processes, and sums up existed strategies for improving their production. Moreover, the genomic analysis of related biosynthetic gene clusters of echinocandins is discussed, highlighting the similarities and differences among the clusters. Last, the biosynthetic processes of echinocandins are compared, focusing on the activation and attachment of side-chains and the formation of the hexapeptide core. This review aims to provide insights into the development and production of new echinocandin drugs by modifying the structure of echinocandin-derived precursors and/or optimizing the fermentation processes; and achieve a new microbial chassis for efficient production of echinocandins in heterologous hosts.
Collapse
Affiliation(s)
- Kaili Jiang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Pan Luo
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Xinxin Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu, Engineering and Technology Research Center for Microbiology, College of Life SciencesNanjing Normal UniversityNanjingChina
| |
Collapse
|
6
|
Niu K, Qi YX, Cai HW, Ye YX, Zhou HY, Liu XT, Liu ZQ, Zheng YG. Investigation of the enhancement for Echinocandin B fermentation with methyl oleate from transcription level. Bioprocess Biosyst Eng 2023:10.1007/s00449-023-02883-4. [PMID: 37253987 DOI: 10.1007/s00449-023-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
Echinocandin B (ECB) is the key precursor compound of the antifungal drug Anidulafungin. The effects of the five precursor amino acids on ECB biosynthesis were firstly investigated. It showed that although L-threonine was a main compound of the hexapeptide scaffold of ECB, exogenous addition of L-threonine had no significant effect on the increase of ECB fermentation titer. Meanwhile, the ECB fermentation titer with methyl oleate showed two times higher than that of the other carbon sources. Transcription level analysis of the key genes for ECB biosynthesis indicated that the gene an655543 related to L-threonine biosynthesis showed higher value during the fermentation process, therefore, the exogenous addition of L-threonine had no obvious affection. Furthermore, it indicated that the transcription level of gene ecdA might be the main restriction factor for the ECB biosynthesis. The study provided the research foundation for the modification of the ECB producing strains in the following work.
Collapse
Affiliation(s)
- Kun Niu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Xin Qi
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hong-Wei Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Xin Ye
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hai-Yan Zhou
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Xiao-Tian Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 200235, People's Republic of China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|