1
|
Nakajima T, Tamura S, Kawabata-Iwakawa R, Itoh H, Hasegawa H, Kobari T, Harasawa S, Sekine A, Nishiyama M, Kurabayashi M, Imoto K, Kaneko Y, Nakatani Y, Horie M, Ishii H. Novel KCNQ1 Q234K variant, identified in patients with long QT syndrome and epileptiform activity, induces both gain- and loss-of-function of slowly activating delayed rectifier potassium currents. Front Physiol 2024; 15:1401822. [PMID: 39100276 PMCID: PMC11294085 DOI: 10.3389/fphys.2024.1401822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction KCNQ1 and KCNE1 form slowly activating delayed rectifier potassium currents (IKs). Loss-of-function of IKs by KCNQ1 variants causes type-1 long QT syndrome (LQTS). Also, some KCNQ1 variants are reported to cause epilepsy. Segment 4 (S4) of voltage-gated potassium channels has several positively-charged amino acids that are periodically aligned, and acts as a voltage-sensor. Intriguingly, KCNQ1 has a neutral-charge glutamine at the third position (Q3) in the S4 (Q234 position in KCNQ1), which suggests that the Q3 (Q234) may play an important role in the gating properties of IKs. We identified a novel KCNQ1 Q234K (substituted for a positively-charged lysine) variant in patients (a girl and her mother) with LQTS and epileptiform activity on electroencephalogram. The mother had been diagnosed with epilepsy. Therefore, we sought to elucidate the effects of the KCNQ1 Q234K on gating properties of IKs. Methods Wild-type (WT)-KCNQ1 and/or Q234K-KCNQ1 were transiently expressed in tsA201-cells with KCNE1 (E1) (WT + E1-channels, Q234K + E1-channels, and WT + Q234K + E1-channels), and membrane currents were recorded using whole-cell patch-clamp techniques. Results At 8-s depolarization, current density (CD) of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly larger than the WT + E1-channels (WT + E1: 701 ± 59 pA/pF; Q234K + E1: 912 ± 50 pA/pF, p < 0.01; WT + Q234K + E1: 867 ± 48 pA/pF, p < 0.05). Voltage dependence of activation (VDA) of the Q234K + E1-channels or WT + Q234K + E1-channels was slightly but significantly shifted to depolarizing potentials in comparison to the WT + E1-channels ([V1/2] WT + E1: 25.6 ± 2.6 mV; Q234K + E1: 31.8 ± 1.7 mV, p < 0.05; WT + Q234K + E1: 32.3 ± 1.9 mV, p < 0.05). Activation rate of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly delayed in comparison to the WT + E1-channels ([half activation time] WT + E1: 664 ± 37 ms; Q234K + E1: 1,417 ± 60 ms, p < 0.01; WT + Q234K + E1: 1,177 ± 71 ms, p < 0.01). At 400-ms depolarization, CD of the Q234K + E1-channels or WT + Q234K + E1-channels was significantly decreased in comparison to the WT + E1-channels (WT + E1: 392 ± 42 pA/pF; Q234K + E1: 143 ± 12 pA/pF, p < 0.01; WT + Q234K + E1: 209 ± 24 pA/pF, p < 0.01) due to delayed activation rate and depolarizing shift of VDA. Conclusion The KCNQ1 Q234K induced IKs gain-of-function during long (8-s)-depolarization, while loss of-function during short (400-ms)-depolarization, which indicates that the variant causes LQTS, and raises a possibility that the variant may also cause epilepsy. Our data provide novel insights into the functional consequences of charge addition on the Q3 in the S4 of KCNQ1.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Hideki Itoh
- Division of Patient Safety, Hiroshima University Hospital, Hiroshima, Japan
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shun Harasawa
- Division of Neurology, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | - Akiko Sekine
- Division of Neurology, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | | | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Keiji Imoto
- National Institutes of Natural Sciences, Tokyo, Japan
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yosuke Nakatani
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Minoru Horie
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Ohtsu, Japan
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
2
|
Hasegawa H, Tamura S, Nakajima T, Kawabata-Iwakawa R, Kobari T, Matsumoto N, Sano Y, Nishiyama M, Kurabayashi M, Kaneko Y, Nakatani Y, Ishii H. Diverse Phenotypic Manifestations in a Family with a Novel RYR2 E4107A Variant. Int Heart J 2024; 65:580-585. [PMID: 38825499 DOI: 10.1536/ihj.23-652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Cardiac ryanodine receptor (RyR2) gain-of-function mutations cause catecholaminergic polymorphic ventricular tachycardia (CPVT). Conversely, RyR2 loss-of-function mutations cause a new disease entity, termed calcium release deficiency syndrome (CRDS), which may include RYR2-related long QT syndrome (LQTS). Importantly, unlike CPVT, patients with CRDS do not always exhibit exercise- or epinephrine-induced ventricular arrhythmias, which precludes a diagnosis of CRDS. Here we report a boy and his father, who both experienced exercise-induced cardiac events and harbor the same RYR2 E4107A variant. In the boy, an exercise stress test (EST) and epinephrine provocation test (EPT) did not induce any ventricular arrhythmias. QTc was slightly prolonged (QTc: 474 ms), and an EPT induced QTc prolongation (QTc-baseline: 466 ms, peak: 532 ms, steady-state: 527 ms). In contrast, in his father, QTc was not prolonged (QTc: 417 ms), and neither an EST nor EPT induced QTc prolongation. However, an EST induced multifocal premature ventricular contraction (PVC) bigeminy and bidirectional PVC couplets. Thus, they exhibited distinct clinical phenotypes: the boy exhibited LQTS (or CRDS) phenotype, whereas his father exhibited CPVT phenotype. These findings suggest that, in addition to the altered RyR2 function, other unidentified factors, such as other genetic, epigenetic, and environmental factors, and aging, may be involved in the diverse phenotypic manifestations. Considering that a single RYR2 variant can cause both CPVT and LQTS (or CRDS) phenotypes, in cascade screening of patients with CPVT and CRDS, an EST and EPT are not sufficient and genetic analysis is required to identify individuals who are at increased risk for life-threatening arrhythmias.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Yukie Sano
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | | | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Yosuke Nakatani
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| | - Hideki Ishii
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine
| |
Collapse
|
3
|
Takahashi Y, Fukuda H, Hayakawa A, Sano R, Kubo R, Kawabata-Iwakawa R, Nakajima T, Ishige T, Tokue H, Asano K, Seki T, Hsiao YY, Ishizawa F, Takei H, Kominato Y. Postmortem genetic analysis of 17 sudden cardiac deaths identified nonsense and frameshift variants in two cases of arrhythmogenic cardiomyopathy. Int J Legal Med 2023; 137:1927-1937. [PMID: 37328711 DOI: 10.1007/s00414-023-03037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Sudden death, or unexpected natural death of a healthy individual, is a serious problem in all nations. Sudden cardiac death (SCD) mainly due to ischemic heart diseases is the top cause of sudden death. However, there are pathophysiological conditions, referred to as sudden arrhythmic death syndrome, in which no apparent lesion can be identified even after complete conventional or ordinary autopsy. While postmortem genetic analyses have accumulated evidence about underlying genetic abnormality in such cases, the precise relationships between genetic background and the phenotype have been largely elusive. In this study, a retrospective investigation of 17 autopsy cases in which lethal arrhythmia was suspected to be the cause of death was carried out. Genetic analysis focusing on 72 genes reported to be associated with cardiac dysfunctions was performed, in combination with detailed histopathological and postmortem imaging examination, and a family study. As a result, in two cases of suspected arrhythmogenic cardiomyopathy (ACM), we found a nonsense variant in PKP2 and frameshift variant in TRPM4 gene. In contrast, the other 15 cases showed no morphological changes in the heart despite the presence of a frameshift variant and several missense variants, leaving the clinical significance of these variants obscure. The findings of the present study suggest that nonsense and frameshift variants could be involved in the morphological abnormality in cases of SCD due to ACM, while missense variants alone rarely contribute to massive structural changes in the heart.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Ishige
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Tokue
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuya Asano
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Tomohiro Seki
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yi-Yang Hsiao
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fujio Ishizawa
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Takei
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
- Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
4
|
Novel SCN5A p.Val1667Asp Missense Variant Segregation and Characterization in a Family with Severe Brugada Syndrome and Multiple Sudden Deaths. Int J Mol Sci 2021; 22:ijms22094700. [PMID: 33946750 PMCID: PMC8125150 DOI: 10.3390/ijms22094700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/23/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Genetic testing in Brugada syndrome (BrS) is still not considered to be useful for clinical management of patients in the majority of cases, due to the current lack of understanding about the effect of specific variants. Additionally, family history of sudden death is generally not considered useful for arrhythmic risk stratification. We sought to demonstrate the usefulness of genetic testing and family history in diagnosis and risk stratification. The family history was collected for a proband who presented with a personal history of aborted cardiac arrest and in whom a novel variant in the SCN5A gene was found. Living family members underwent ajmaline testing, electrophysiological study, and genetic testing to determine genotype-phenotype segregation, if any. Patch-clamp experiments on transfected human embryonic kidney 293 cells enabled the functional characterization of the SCN5A novel variant in vitro. In this study, we provide crucial human data on the novel heterozygous variant NM_198056.2:c.5000T>A (p.Val1667Asp) in the SCN5A gene, and demonstrate its segregation with a severe form of BrS and multiple sudden deaths. Functional data revealed a loss of function of the protein affected by the variant. These results provide the first disease association with this variant and demonstrate the usefulness of genetic testing for diagnosis and risk stratification in certain patients. This study also demonstrates the usefulness of collecting the family history, which can assist in understanding the severity of the disease in certain situations and confirm the importance of the functional studies to distinguish between pathogenic mutations and harmless genetic variants.
Collapse
|
5
|
Nakajima T, Tamura S, Kurabayashi M, Kaneko Y. Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes. Int J Mol Sci 2021; 22:ijms22083930. [PMID: 33920294 PMCID: PMC8069124 DOI: 10.3390/ijms22083930] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/08/2021] [Indexed: 12/19/2022] Open
Abstract
Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel-related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterologous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the pathophysiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a unique mixed electrophysiological property of V392I-Kv4.3. Since the epileptic phenotype appears to manifest prior to cardiac events in this mutation carrier, identifying KCND3 mutations in patients with epilepsy and providing optimal therapy will help prevent sudden unexpected death in epilepsy. Further studies using the iPSC technology may provide novel insights into the pathophysiology of atypical clinical phenotypes of IASs and the development of mutation-specific precision medicine.
Collapse
|
6
|
Sasaki T, Ikeda K, Nakajima T, Kawabata-Iwakawa R, Iizuka T, Dharmawan T, Tamura S, Niwamae N, Tange S, Nishiyama M, Kaneko Y, Kurabayashi M. Multiple arrhythmic and cardiomyopathic phenotypes associated with an SCN5A A735E mutation. J Electrocardiol 2021; 65:122-127. [PMID: 33610078 DOI: 10.1016/j.jelectrocard.2021.01.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND SCN5A mutations are associated with multiple arrhythmic and cardiomyopathic phenotypes including Brugada syndrome (BrS), sinus node dysfunction (SND), atrioventricular block, supraventricular tachyarrhythmias (SVTs), long QT syndrome (LQTS), dilated cardiomyopathy and left ventricular noncompaction. Several single SCN5A mutations have been associated with overlap of some of these phenotypes, but never with overlap of all the phenotypes. OBJECTIVE We encountered two pedigrees with multiple arrhythmic phenotypes with or without cardiomyopathic phenotypes, and sought to identify a responsible mutation and reveal its functional abnormalities. METHODS Target panel sequencing of 72 genes, including inherited arrhythmia syndromes- and cardiomyopathies-related genes, was employed in two probands. Cascade screening was performed by Saner sequencing. Wild-type or identified mutant SCN5A were expressed in tsA201 cells, and whole-cell sodium currents (INa) were recorded using patch-clamp techniques. RESULTS We identified an SCN5A A735E mutation in these probands, but did not identify any other mutations. All eight mutation carriers exhibited at least one of the arrhythmic phenotypes. Two patients exhibited multiple arrhythmic phenotypes: one (15-year-old girl) exhibited BrS, SND, and exercise and epinephrine-induced QT prolongation, the other (4-year-old boy) exhibited BrS, SND, and SVTs. Another one (30-year-old male) exhibited all arrhythmic and cardiomyopathic phenotypes, except for LQTS. One male suddenly died at age 22. Functional analysis revealed that the mutant did not produce functional INa. CONCLUSIONS A non-functional SCN5A A735E mutation could be associated with multiple arrhythmic and cardiomyopathic phenotypes, although there remains a possibility that other unidentified factors may be involved in the phenotypic variability of the mutation carriers.
Collapse
Affiliation(s)
- Takashi Sasaki
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Kentaro Ikeda
- Department of Cardiology, Gunma Children's Medical Center, Shibukawa, Gunma, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Gunma, Japan
| | - Takashi Iizuka
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Nogiku Niwamae
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Gunma, Japan
| | | | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
7
|
Nakajima T, Dharmawan T, Kawabata-Iwakawa R, Tamura S, Hasegawa H, Kobari T, Ota M, Tange S, Nishiyama M, Kaneko Y, Kurabayashi M. Reduced current density, partially rescued by mexiletine, and depolarizing shift in activation of SCN5A W374G channels as a cause of severe form of Brugada syndrome. Ann Noninvasive Electrocardiol 2021; 26:e12828. [PMID: 33463855 PMCID: PMC8164156 DOI: 10.1111/anec.12828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND SCN5A-related Brugada syndrome (BrS) can be caused by multiple mechanisms including trafficking defects and altered channel gating properties. Most SCN5A mutations at pore region cause trafficking defects, and some of them can be rescued by mexiletine (MEX). OBJECTIVE We recently encountered symptomatic siblings with BrS and sought to identify a responsible mutation and reveal its biophysical defects. METHODS Target panel sequencing was performed. Wild-type (WT) or identified mutant SCN5A was transfected into tsA201 cells. After incubation of transfected cells with or without 0.1 mM MEX for 24-36 hr, whole-cell sodium currents (INa ) were recorded using patch-clamp techniques. RESULTS The proband was 29-year-old male who experienced cardiopulmonary arrest. Later, his 36-year-old sister, who had been suffering from recurrent episodes of syncope since 12 years, was diagnosed with BrS. An SCN5A W374G mutation, located at pore region of domain 1 (D1 pore), was identified in both. The peak density of W374G-INa was markedly reduced (WT: 521 ± 38 pA/pF, W374G: 60 ± 10 pA/pF, p < .01), and steady-state activation (SSA) was shifted to depolarizing potentials compared with WT-INa (V1/2 -WT: -39.1 ± 0.8 mV, W374G: -30.9 ± 1.1 mV, p < .01). Incubation of W374G-transfected cells with MEX (W374G-MEX) increased INa density, but it was still reduced compared with WT-INa (W374G-MEX: 174 ± 19 pA/pF, p < .01 versus W374G, p < .01 versus WT). The SSA of W374G-MEX-INa was comparable to W374G-INa (V1/2 -W374G-MEX: -31.6 ± 0.7 mV, P = NS). CONCLUSIONS Reduced current density, possibly due to a trafficking defect, and depolarizing shift in activation of SCN5A W374G are underlying biophysical defects in this severe form of BrS. Trafficking defects of SCN5A mutations at D1 pore may be commonly rescued by MEX.
Collapse
Affiliation(s)
- Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tommy Dharmawan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Maebashi, Japan
| | - Shuntaro Tamura
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroshi Hasegawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Kobari
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masaki Ota
- Department of Cardiovascular Medicine, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Japanese Red Cross Maebashi Hospital, Maebashi, Japan
| | | | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
8
|
El Moheb MN, Refaat MM. A cardiac sodium channel mutation associated with epinephrine-induced marked QT-prolongation. J Cardiovasc Electrophysiol 2020; 31:2116-2117. [PMID: 32437005 DOI: 10.1111/jce.14572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamad N El Moheb
- Division of Trauma Emergency Surgery and Surgical Critical Care, Massachusetts General Hospital, Boston, Massachusetts
| | - Marwan M Refaat
- Division of Cardiology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|