1
|
Li H, Lei Y, Chen N, Guo G, Xiang X, Huang Y. circRNA-CPA4 Regulates Cell Proliferation and Apoptosis of Non-small Cell Lung Cancer via the miR-1183/PDPK1 Axis. Biochem Genet 2024; 62:4087-4102. [PMID: 38273153 DOI: 10.1007/s10528-023-10641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
Non-small-cell lung cancer (NSCLC) stands as a prevalent subtype of lung cancer, with circular RNAs emerging as key players in cancer development. This study elucidates the role of circRNA-CPA4 in NSCLC. Elevated circRNA-CPA4 expression in NSCLC lines was confirmed through qRT-PCR. Silencing circRNA-CPA4 with shRNA revealed, through CCK-8, colony formation, and flow cytometry assays, a notable constraint on proliferation and promotion of apoptosis in NSCLC cells. Subcellular localization analysis, RNA immunoprecipitation, and expression level assessments were employed to decipher the intricate interplay among miR-1183, circRNA-CPA4, and PDPK1. Results demonstrated heightened circRNA-CPA4 levels in NSCLC, and its knockdown curtailed NSCLC growth in vivo. Acting as a molecular sponge for miR-1183, circRNA-CPA4 regulated PDPK1 expression. Conversely, inhibiting miR-1183 counteracted the impact of circRNA-CPA4 silencing, reinstating NSCLC cell proliferation, and impeding apoptosis. Overall, this study unveils a novel mechanism: circRNA-CPA4 promotes PDPK1 expression by sequestering miR-1183, fostering NSCLC cell proliferation, and hindering apoptosis.
Collapse
Affiliation(s)
- Heng Li
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yujie Lei
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China
| | - Nan Chen
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Gang Guo
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Xudong Xiang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China
| | - Yunchao Huang
- Department of Thoracic Surgery II, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, 650118, China.
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunzhou Road 519, Kunming, 650118, China.
| |
Collapse
|
2
|
An F, Chang W, Song J, Zhang J, Li Z, Gao P, Wang Y, Xiao Z, Yan C. Reprogramming of glucose metabolism: Metabolic alterations in the progression of osteosarcoma. J Bone Oncol 2024; 44:100521. [PMID: 38288377 PMCID: PMC10823108 DOI: 10.1016/j.jbo.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/25/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
Metabolic reprogramming is an adaptive response of tumour cells under hypoxia and low nutrition conditions. There is increasing evidence that glucose metabolism reprogramming can regulate the growth and metastasis of osteosarcoma (OS). Reprogramming in the progress of OS can bring opportunities for early diagnosis and treatment of OS. Previous research mainly focused on the glycolytic pathway of glucose metabolism, often neglecting the tricarboxylic acid cycle and pentose phosphate pathway. However, the tricarboxylic acid cycle and pentose phosphate pathway of glucose metabolism are also involved in the progression of OS and are closely related to this disease. The research on glucose metabolism in OS has not yet been summarized. In this review, we discuss the abnormal expression of key molecules related to glucose metabolism in OS and summarize the glucose metabolism related signaling pathways involved in the occurrence and development of OS. In addition, we discuss some of the targeted drugs that regulate glucose metabolism pathways, which can lead to effective strategies for targeted treatment of OS.
Collapse
Affiliation(s)
- Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Weirong Chang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jiayi Song
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jie Zhang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhonghong Li
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Peng Gao
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Yujie Wang
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Zhipan Xiao
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Chunlu Yan
- School of Tradional Chinese and Werstern Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China
| |
Collapse
|
3
|
Zheng N, Wei J, Wu D, Xu Y, Guo J. Master kinase PDK1 in tumorigenesis. Biochim Biophys Acta Rev Cancer 2023; 1878:188971. [PMID: 37640147 DOI: 10.1016/j.bbcan.2023.188971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/13/2023] [Accepted: 08/05/2023] [Indexed: 08/31/2023]
Abstract
3-phosphoinositide-dependent protein kinase 1 (PDK1) is considered as master kinase regulating AGC kinase family members such as AKT, SGK, PLK, S6K and RSK. Although autophosphorylation regulates PDK1 activity, accumulating evidence suggests that PDK1 is manipulated by many other mechanisms, including S6K-mediated phosphorylation, and the E3 ligase SPOP-mediated ubiquitination and degradation. Dysregulation of these upstream regulators or downstream signals involves in cancer development, as PDK1 regulating cell growth, metastasis, invasion, apoptosis and survival time. Meanwhile, overexpression of PDK1 is also exposed in a plethora of cancers, whereas inhibition of PDK1 reduces cell size and inhibits tumor growth and progression. More importantly, PDK1 also modulates the tumor microenvironments and markedly influences tumor immunotherapies. In summary, we comprehensively summarize the downstream signals, upstream regulators, mouse models, inhibitors, tumor microenvironment and clinical treatments for PDK1, and highlight PDK1 as a potential cancer therapeutic target.
Collapse
Affiliation(s)
- Nana Zheng
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Jiaqi Wei
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Yang Xu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China.
| | - Jianping Guo
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510275, China.
| |
Collapse
|
4
|
Jun L, Xuhong L, Hui L. Circ_SIPA1L1 Promotes Osteosarcoma Progression Via miR-379-5p/MAP3K9 Axis. Cancer Biother Radiopharm 2023; 38:604-618. [PMID: 32897735 DOI: 10.1089/cbr.2020.3891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Osteosarcoma (OS) is a common malignant bone tumor. Circular RNAs (circRNAs) exert important roles in the pathogenesis of human cancers, including OS. In this study, the authors focused on the role and mechanism of circRNA signal-induced proliferation-associated 1 like 1 (circ_SIPA1L1) in OS. Methods: The enrichment of SIPA1L1, circ_SIPA1L1, microRNA-379-5p (miR-379-5p), and mitogen-activated protein kinase kinase kinase 9 (MAP3K9) was assessed by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The colony formation capacity was assessed through colony formation assay. Transwell assays were used to detect the migration and invasion abilities. Western blot assay was used to measure the expression of metastasis-related proteins and MAP3K9. The target interactions between the genes in circ_SIPA1L1/miR-379-5p/MAP3K9 axis were predicted by StarBase and confirmed by dual-luciferase reporter assay. The in vivo role of circ_SIPA1L1 was verified by murine xenograft assay. Results: Circ_SIPA1L1 abundance was aberrantly elevated in OS tissues and cell lines. Circ_SIPA1L1 accelerated the proliferation and metastasis abilities of OS cells. Circ_SIPA1L1 promoted the malignant behaviors of OS cells through elevating MAP3K9 level. MiR-379-5p directly bound to circ_SIPA1L1 and MAP3K9. MiR-379-5p interference rescued the abilities of proliferation and metastasis in OS cells, which were suppressed by the silencing of circ_SIPA1L1. Circ_SIPA1L1 promoted the development of OS via miR-379-5p/MAP3K9 in vivo. Conclusion: Circ_SIPA1L1 promoted the progression of OS via miR-379-5p/MAP3K9 axis.
Collapse
Affiliation(s)
- Liu Jun
- Department of Traumatic Orthopedics II Ward and Weifang People's Hospital, Weifang, China
| | - Li Xuhong
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| | - Liu Hui
- Department of Pharmacy Intravenous Admixture Service, Weifang People's Hospital, Weifang, China
| |
Collapse
|
5
|
Cassidy JR, Voss G, Underbjerg KR, Persson M, Ceder Y. Expression of microRNA-379 reduces metastatic spread of prostate cancer. Front Oncol 2023; 13:1252915. [PMID: 37781173 PMCID: PMC10539900 DOI: 10.3389/fonc.2023.1252915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Prostate cancer (PCa) is the most common type of cancer in males, and the metastatic form is a leading cause of death worldwide. There are currently no curative treatments for this subset of patients. To decrease the mortality of this disease, greater focus must be placed on developing therapeutics to reduce metastatic spread. We focus on dissemination to the bone since this is both the most common site of metastatic spread and associated with extreme pain and discomfort for patients. Our strategy is to exploit microRNAs (miRNAs) to disrupt the spread of primary PCa to the bone. Methods PCa cell lines were transduced to overexpress microRNA-379 (miR-379). These transduced PCa cells were assessed using cell growth, migration, colony formation and adhesion assays. We also performed in vivo intracardiac injections to look at metastatic spread in NSG mice. A cytokine array was also performed to identify targets of miR-379 that may drive metastatic spread. Results PCa cells with increased levels of miR-379 showed a significant decrease in proliferation, migration, colony formation, and adhesion to bone cells in vitro. In vivo miR-379 overexpression in PC3 cells significantly decreased metastatic spread to bone and reduced levels of miR-379 were seen in patients with metastases. We identified GDF-15 to be secreted from osteoblasts when grown in conditioned media from PCa cells with reduced miR-379 levels. Discussion Taken together, our in vitro and in vivo functional assays support a role for miR-379 as a tumour suppressor. A potential mechanism is unravelled whereby miR-379 deregulation in PCa cells affects the secretion of GDF-15 from osteoblasts which in turn facilitates the metastatic establishment in bone. Our findings support the potential role of miR-379 as a therapeutic solution for prostate cancer.
Collapse
Affiliation(s)
| | | | | | | | - Yvonne Ceder
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Salehi R, Wyse BA, Asare-Werehene M, Esfandiarinezhad F, Abedini A, Pan B, Urata Y, Gutsol A, Vinas JL, Jahangiri S, Xue K, Xue Y, Burns KD, Vanderhyden B, Li J, Osuga Y, Burger D, Tan SL, Librach CL, Tsang BK. Androgen-induced exosomal miR-379-5p release determines granulosa cell fate: cellular mechanism involved in polycystic ovaries. J Ovarian Res 2023; 16:74. [PMID: 37046285 PMCID: PMC10091561 DOI: 10.1186/s13048-023-01141-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/17/2023] [Indexed: 04/14/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a complex multi-factorial syndrome associated with androgen excess and anovulatory infertility. In the current study, we investigated the role of dihydrotestosterone-induced exosomal miR-379-5p release in determining the destiny of the developing follicles. Our hypothesis was that androgen regulates granulosa cell miR-379-5p content by facilitating its exosomal release in a follicular-stage dependent manner, a process which determines granulosa cell fate. Compared to human non-PCOS subjects, individuals with PCOS exhibit higher follicular fluid free testosterone levels, lower exosomal miR-379-5p content and granulosa cell proliferation. Androgenized rats exhibited lower granulosa cell miR-379-5p but higher phosphoinositide-dependent kinase-1 (PDK1; a miR-379-5p target) content and proliferation. Androgen reduced granulosa cell miR-379-5p content by increasing its exosomal release in preantral follicles, but not in antral follicles in vitro. Studies with an exosomal release inhibitor confirmed that androgen-induced exosomal miR-379-5p release decreased granulosa cell miR-379-5p content and proliferation. Ovarian overexpression of miR-379-5p suppressed granulosa cell proliferation, and basal and androgen-induced preantral follicle growth in vivo. These findings suggest that increased exosomal miR-379-5p release in granulosa cells is a proliferative response to androgenic stimulation specific for the preantral stage of follicle development and that dysregulation of this response at the antral stage is associated with follicular growth arrest, as observed in human PCOS.
Collapse
Affiliation(s)
- Reza Salehi
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- CReATe Fertility Centre, Toronto, ON, Canada
| | | | - Meshach Asare-Werehene
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Fereshteh Esfandiarinezhad
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Atefeh Abedini
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Bo Pan
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Yoko Urata
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Alex Gutsol
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Jose L Vinas
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | | | - Kai Xue
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital, Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Yunping Xue
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kevin D Burns
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Barbara Vanderhyden
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Julang Li
- Department of Animal BioScience, University of Guelph, Guelph, ON, Canada
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, University of Tokyo, Tokyo, Japan
| | - Dylan Burger
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Division of Nephrology, Department of Medicine, Kidney Research Centre, University of Ottawa, Ottawa, ON, Canada
| | - Seang-Lin Tan
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, Canada
- Originelle Fertility Clinic and Women's Health Centre, Ottawa, ON, Canada
| | - Clifford L Librach
- CReATe Fertility Centre, Toronto, ON, Canada
- Departments of Obstetrics and Gynaecology, Physiology, Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Benjamin K Tsang
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.
- Departments of Obstetrics and Gynecology, and Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
7
|
Komuro H, Aminova S, Lauro K, Harada M. Advances of engineered extracellular vesicles-based therapeutics strategy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:655-681. [PMID: 36277506 PMCID: PMC9586594 DOI: 10.1080/14686996.2022.2133342] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 05/09/2023]
Abstract
Extracellular vesicles (EVs) are a heterogeneous population of lipid bilayer membrane-bound vesicles which encapsulate bioactive molecules, such as nucleic acids, proteins, and lipids. They mediate intercellular communication through transporting internally packaged molecules, making them attractive therapeutics carriers. Over the last decades, a significant amount of research has implied the potential of EVs servings as drug delivery vehicles for nuclear acids, proteins, and small molecular drugs. However, several challenges remain unresolved before the clinical application of EV-based therapeutics, including lack of specificity, stability, biodistribution, storage, large-scale manufacturing, and the comprehensive analysis of EV composition. Technical development is essential to overcome these issues and enhance the pre-clinical therapeutic effects. In this review, we summarize the current advancements in EV engineering which demonstrate their therapeutic potential.
Collapse
Affiliation(s)
- Hiroaki Komuro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Shakhlo Aminova
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Katherine Lauro
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
8
|
Yang W, Wu H, Tong L, Wang Y, Guo Q, Xu L, Yan H, Yin C, Sun Z. A cuproptosis-related genes signature associated with prognosis and immune cell infiltration in osteosarcoma. Front Oncol 2022; 12:1015094. [PMID: 36276092 PMCID: PMC9582135 DOI: 10.3389/fonc.2022.1015094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent primary bone tumors at all ages of human development. The objective of our study was to develop a model of Cuproptosis-Related Genes (CRGs) for predicting prognosis in OS patients. All datasets of OS patients were obtained from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database and Gene Expression Omnibus (GEO) database. We obtained the gene set (81 CRGs) related to cuproptosis by accessing the database and previous literature. All the CRGs were analyzed by univariate COX regression, least absolute shrinkage and selection operator (LASSO) COX regression analysis to screen for CRGs associated with prognosis in OS patients. Then these CRGs were used to construct a prognostic signature, which was further verified by independent cohort (GSE21257) and clinical correlation analysis. Afterward, to identify underlying mechanisms, Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were used for the high-risk group by using the GSEA method. The association between the prognostic signature and 28 types of immune infiltrating cells in the tumor microenvironment was assessed. Ultimately, Lipoic Acid Synthetase (LIAS) (HR=0.632, P=0.004), Lipoyltransferase 1 (LIPT1) (HR=0.524, P=0.011), BCL2 Like 1 (BCL2L1/BCL-XL) (HR=0.593, P=0.022), and Pyruvate Dehydrogenase Kinase 1 (PDK1) (HR=0.662, P=0.025) were identified. Subsequently, they were used to calculate the risk score and build a prognostic model. In the training cohort, risk score (HR=1.878, P=0.003) could be considered as an independent prognostic factor, and OS patients with high-risk scores showed lower survival rates. Biological pathways related to substance metabolism and transport were enriched. There were significant differences in immune infiltrating cells in the tumor microenvironment. All in all, The CRGs signature is related to the tumor immune microenvironment and could be used as a credible predictor of the prognostic status in OS patients.
Collapse
Affiliation(s)
- Weiguang Yang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Haiyang Wu
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Linjian Tong
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Yulin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Graduate School, Tianjin Medical University, Tianjin, China
| | - Qiang Guo
- Department of Orthopaedics, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Lixia Xu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Chengliang Yin, ; Zhiming Sun,
| | - Chengliang Yin
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- *Correspondence: Hua Yan, ; Chengliang Yin, ; Zhiming Sun,
| | - Zhiming Sun
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Orthopaedics, Tianjin Huanhu Hospital, Tianjin, China
- *Correspondence: Hua Yan, ; Chengliang Yin, ; Zhiming Sun,
| |
Collapse
|
9
|
Yang K, Li D, Jia W, Song Y, Sun N, Wang J, Li H, Yin C. MiR-379-5p inhibits the proliferation, migration, and invasion of breast cancer by targeting KIF4A. Thorac Cancer 2022; 13:1916-1924. [PMID: 35608059 PMCID: PMC9250835 DOI: 10.1111/1759-7714.14437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Many studies have shown that microRNAs (miRNAs) play an essential role in gene regulation and tumor development. This study aimed to explore the expression of miR-379-5p and its mechanisms of affecting proliferation, migration, and invasion in breast cancer (BC). METHODS MiRNAs and mRNAs expression data of BC and normal breast tissue samples were downloaded from the TCGA and GEO databases. qRT-PCR was used to detect the expression of miR-379-5p in human normal breast epithelial cell lines and human BC cell lines. The proliferation ability of transfected cells was detected by colony formation and EdU assays. The mobility and invasion ability of transfected cells was measured by wound healing and transwell assays. The relative protein expression of transfected cells was detected by western blot. Dual luciferase reporter assay was performed to identify the targeted binding of miR-379-5p and KIF4A. RESULTS MiR-379-5p was lowly expressed in BC tissue samples and BC cell lines. The target genes of miR-379-5p were involved in many cancer-related signaling pathways. PPI analysis and the cytoHubba algorithm of Cytoscape identified 10 genes as the hub genes. Survival analysis showed that only KIF4A expression in 10 hub genes was significantly associated with the prognosis of BC patients and was significantly upregulated in BC. Overexpression of miR-379-5p inhibited proliferation, migration, and invasion in the BC cell line MDA-MB-231, which could be reversed by KIF4A. CONCLUSIONS MiR-379-5p inhibits proliferation, migration, and invasion of BC by targeting KIF4A.
Collapse
Affiliation(s)
- Ke Yang
- College of Nursing, Weifang Medical University, Weifang, China
| | - Danyang Li
- College of Nursing, Weifang Medical University, Weifang, China
| | - Weihui Jia
- College of Nursing, Weifang Medical University, Weifang, China
| | - Yanmei Song
- College of Nursing, Weifang Medical University, Weifang, China
| | - Ningxin Sun
- College of Nursing, Weifang Medical University, Weifang, China
| | - Jiemin Wang
- College of Nursing, Weifang Medical University, Weifang, China
| | - Hongli Li
- Medicine Research Center, Weifang Medical University, Weifang, China
| | - Chonggao Yin
- College of Nursing, Weifang Medical University, Weifang, China
| |
Collapse
|
10
|
Xie X, Ji J, Chen X, Xu W, Chen H, Zhu S, Wu J, Wu Y, Sun Y, Sai W, Liu Z, Xiao M, Bao B. Human umbilical cord mesenchymal stem cell-derived exosomes carrying hsa-miRNA-128-3p suppress pancreatic ductal cell carcinoma by inhibiting Galectin-3. Clin Transl Oncol 2022; 24:517-531. [PMID: 34811696 DOI: 10.1007/s12094-021-02705-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/31/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignant tumors of the digestive system. Many patients are diagnosed at an advanced stage and lose eligibility for surgery. Moreover, there are few effective methods for treating pancreatic ductal cell carcinoma. Increasing attention has been given to microRNAs (miRNAs) and their regulatory roles in tumor progression. In this study, we investigated the effects of exosomes extracted from human umbilical cord mesenchymal stem cells (HUCMSCs) carrying hsa-miRNA-128-3p on pancreatic cancer cells. METHODS Based on existing experimental and database information, we selected Galectin-3, which is associated with pancreatic cancer, and the corresponding upstream hsa-miRNA-128-3p. We extracted HUCMSCs from a fresh umbilical cord, hsa-miRNA-128-3p was transfected into HUCMSCs, and exosomes containing hsa-miRNA-128-3p were extracted and collected. The effect of exosomes rich in hsa-miRNA-128-3p on pancreatic cancer cells was analyzed. RESULTS The expression of Galectin-3 in normal pancreatic duct epithelial cells was significantly lower than that in PDAC cell lines. We successfully extracted HUCMSCs from the umbilical cord and transfected hsa-miRNA-128-3p into HUCMSCs. Then we demonstrated that HUCMSC-derived exosomes with hsa-miRNA-128-3p could suppress the proliferation, invasion, and migration of PANC-1 cells in vitro by targeting Galectin-3. CONCLUSION Hsa-miRNA-128-3p could be considered as a potential therapy for pancreatic cancer. We provided a new idea for targeted therapy of PDAC.
Collapse
Affiliation(s)
- X Xie
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - J Ji
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - X Chen
- Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - W Xu
- Department of Gastroenterology, Second People's Hospital of Nantong, Nantong, 226001, China
| | - H Chen
- Office of Infection Management, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - S Zhu
- Medical School of Nantong University Oral Medicine, Nantong, 226001, Jiangsu, China
| | - J Wu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Y Wu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - Y Sun
- Blood Center of Jiangsu Province, Nanjing, 210000, Jiangsu, China
| | - W Sai
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China
| | - Z Liu
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China
| | - M Xiao
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, China.
| | - B Bao
- Department of Gastroenterology, Affiliated Hospital and Medical School of Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
11
|
Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther 2022; 29:1105-1116. [PMID: 35082400 DOI: 10.1038/s41417-022-00427-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/11/2021] [Accepted: 01/14/2022] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are known as promising sources for cancer therapy and can be utilized as vehicles in cancer gene therapy. MSC-derived exosomes are central mediators in the therapeutic functions of MSCs, known as the novel cell-free alternatives to MSC-based cell therapy. MSC-derived exosomes show advantages including higher safety as well as more stability and convenience for storage, transport and administration compared to MSCs transplant therapy. Unmodified MSC-derived exosomes can promote or inhibit tumors while modified MSC-derived exosomes are involved in the suppression of cancer development and progression via the delivery of several therapeutics molecules including chemotherapeutic drugs, miRNAs, anti-miRNAs, specific siRNAs, and suicide gene mRNAs. In most malignancies, dysregulation of miRNAs not only occurs as a consequence of cancer progression but also is directly involved during tumor initiation and development due to their roles as oncogenes (oncomiRs) or tumor suppressors (TS-miRNAs). MiRNA restoration is usually achieved by overexpression of TS-miRNAs using synthetic miRNA mimics and viral vectors or even downregulation of oncomiRs using anti-miRNAs. Similar to other therapeutic molecules, the efficacy of miRNAs restoration in cancer therapy depends on the effectiveness of the delivery system. In the present review, we first provided an overview of the properties and potentials of MSCs in cancer therapy as well as the application of MSC-derived exosomes in cancer therapy. Finally, we specifically focused on harnessing the MSC-derived exosomes for the aim of miRNA delivery in cancer therapy.
Collapse
|
12
|
Wang B, Yang C, Zhou C, Xiao S, Li H. Knowledge atlas and emerging trends on ncRNAs of osteosarcoma: A bibliometric analysis. Front Endocrinol (Lausanne) 2022; 13:1028031. [PMID: 36440224 PMCID: PMC9685670 DOI: 10.3389/fendo.2022.1028031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Osteosarcoma is a common bone sarcoma that occurs in childhood and adolescence. Although research on non-coding RNAs (ncRNAs) of osteosarcoma has been developed rapidly in recent years, a specific bibliometric analysis on this topic has not yet been performed. The bibliometric analysis aims to summarize knowledge atlas, research hotspots, and emerging trends and to provide researchers with new perspectives in further studies. METHODS All publications regarding ncRNAs of osteosarcoma published from 2000 to 2021 were retrieved from the Web of Science Core Collection. Quantitative indicators including the number of publications and citations, H-index, and journal citation reports were analyzed by using Excel 2019 and R software. VOSviewer and CiteSpace were used to analyze the cooperation among countries/institutions/journals/authors and the co-occurrence of keywords, keywords bursts, and references. RESULTS A total of 3206 publications were extracted. A significant growth trend in the annual number of publications over the past 22 years is revealed (R 2 = 0.999). The most prolific country and institution were China (2260) and Shanghai Jiao Tong University (134), respectively. Professors Wang W and Liu W contributed the most to this field. The keywords were stratified into six clusters: Cluster 1 (apoptosis and growth), Cluster 2 (cancer and progression), Cluster 3 (microRNAs and downregulation), Cluster 4 (genes and differentiation), Cluster 5 (expression and biological functions), and Cluster 6 (metastasis). The long non-coding RNAs and circular RNAs have been considered as an important research hotspot in the near future. CONCLUSION This study offers a scientific perspective on ncRNAs of osteosarcoma and provides researchers with valuable information to understand the knowledge structure and to identify emerging trends in this field.
Collapse
Affiliation(s)
- Bo Wang
- Department of Orthopaedics, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chunhua Yang
- Department of Orthopaedics, The First Hospital of Changsha, Changsha, Hunan, China
| | - Chuqiao Zhou
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shipeng Xiao
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- *Correspondence: Hui Li,
| |
Collapse
|
13
|
Cao D, Ge S, Li M. MiR-451a Promotes Cell Growth, Migration and EMT in Osteosarcoma by Regulating YTHDC1-mediated m6A Methylation to Activate the AKT/mTOR Signaling Pathway. J Bone Oncol 2022; 33:100412. [PMID: 35198364 PMCID: PMC8842083 DOI: 10.1016/j.jbo.2022.100412] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/06/2022] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
It’s first proved that miR-451a can promote the malignant progression of osteosarcoma cells through AKT/mTOR pathway. It’s first proved that YTHDC1 modifies the m6A methylation of PDPK1. It’s first proved that YTHDC1 can promote the malignant progression of osteosarcoma cells.
Background Osteosarcoma is the most prevalent primary malignant bone tumor containing mesenchymal cells with poor prognosis. Being a hot spot of anti-tumor therapy researches, AKT/mammalian target of rapamycin (mTOR) signaling pathway could affect various cellular processes including transcription, protein synthesis, apoptosis, autophagy and growth. Materials and methods The levels of RNA and protein were detected by quantitative real-time polymerase chain reaction (q-PCR) and western blot analyses respectively. Functional assays were carried out to analyze the malignant phenotypes of osteosarcoma cells. RNA-binding protein immunoprecipitation (RIP), Co-immunoprecipitation (Co-IP), RNA pulldown, luciferase reporter and in vitro kinase assays were conducted to uncover the specific mechanism of microRNA-451a (miR-451a) in osteosarcoma cells. Results Functionally, miR-451a represses the malignant progression of osteosarcoma. Mechanically, miR-451a could curb the AKT/mTOR pathway via 3-phosphoinositide dependent protein kinase 1 (PDPK1)-mediated phosphorylation modification. After the certification that YTH domain containing 1 (YTHDC1) regulates the m6A phosphorylation modification of PDPK1 mRNA, we further proved that miR-451a-mediated YTHDC1 stabilizes PDPK1 mRNA via m6A-dependent regulation. Conclusion This study demonstrated that miR-451a regulates YTHDC1-mediated m6A methylation to activate the AKT/mTOR pathway, stimulating the malignancy of osteosarcoma.
Collapse
|
14
|
Shen S, Xu Y, Gong Z, Yao T, Qiao D, Huang Y, Zhang Z, Gao J, Ni H, Jin Z, Zhu Y, Wu H, Wang Q, Fang X, Huang K, Ma J. Positive Feedback Regulation of Circular RNA Hsa_circ_0000566 and HIF-1α promotes Osteosarcoma Progression and Glycolysis Metabolism. Aging Dis 2022; 14:529-547. [PMID: 37008055 PMCID: PMC10017158 DOI: 10.14336/ad.2022.0826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 11/18/2022] Open
Abstract
Hypoxia is an indispensable factor for cancer progression and is closely associated with the Warburg effect. Circular RNAs (CircRNA) have garnered considerable attention in molecular malignancy therapy as they are potentially important modulators. However, the roles of circRNAs and hypoxia in osteosarcoma (OS) progression have not yet been elucidated. This study reveals the hypoxia-sensitive circRNA, Hsa_circ_0000566, that plays a crucial role in OS progression and energy metabolism under hypoxic stress. Hsa_circ_0000566 is regulated by hypoxia-inducible factor-1α (HIF-1α) and directly binds to it as well as to the Von Hippel-Lindau (VHL) E3 ubiquitin ligase protein. Consequentially, binding between VHL and HIF-1α is impeded. Furthermore, Hsa_circ_0000566 contributes to OS progression by binding to HIF-1α (while competing with VHL) and by confers protection against HIF-1α against VHL-mediated ubiquitin degradation. These findings demonstrate the existence of a positive feedback loop formed by HIF-1α and Hsa_circ_0000566 and the key role they play in OS glycolysis. Taken together, these data indicate the significance of Hsa_circ_0000566 in the Warburg effect and suggest that Hsa_circ_0000566 could be a potential therapeutic target to combat OS progression.
Collapse
Affiliation(s)
- Shuying Shen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yining Xu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhe Gong
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Teng Yao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Di Qiao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Yizhen Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Zhenlei Zhang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Jun Gao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
| | - Haonan Ni
- Department of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force of the Chinese People’s Liberation Army, Kunming, China.
| | - Zhanping Jin
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Yingchun Zhu
- Department of Orthopedics, Ningbo First Hospital, Ningbo, Zhejiang, China.
| | - Hongfei Wu
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Qingxin Wang
- Departments of Orthopedics, Marine Police Hospital, Zhejiang, China.
| | - Xiangqian Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Kangmao Huang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| | - Jianjun Ma
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China.
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Zhejiang, China.
- Correspondence should be addressed to: Dr. Xiangqian Fang, Kangmao Huang, Jianjun Ma, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China. (J. Ma); (K. Huang); (X. Fang)
| |
Collapse
|
15
|
Abstract
Osteosarcoma is the most common primary bone malignancy in adolescents. Its high propensity to metastasize is the leading cause for treatment failure and poor prognosis. Although the research of osteosarcoma has greatly expanded in the past decades, the knowledge and new therapy strategies targeting metastatic progression remain sparse. The prognosis of patients with metastasis is still unsatisfactory. There is resonating urgency for a thorough and deeper understanding of molecular mechanisms underlying osteosarcoma to develop innovative therapies targeting metastasis. Toward the goal of elaborating the characteristics and biological behavior of metastatic osteosarcoma, it is essential to combine the diverse investigations that are performed at molecular, cellular, and animal levels from basic research to clinical translation spanning chemical, physical sciences, and biology. This review focuses on the metastatic process, regulatory networks involving key molecules and signaling pathways, the role of microenvironment, osteoclast, angiogenesis, metabolism, immunity, and noncoding RNAs in osteosarcoma metastasis. The aim of this review is to provide an overview of current research advances, with the hope to discovery druggable targets and promising therapy strategies for osteosarcoma metastasis and thus to overcome this clinical impasse.
Collapse
Affiliation(s)
- Gaohong Sheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Gao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Zheng D, Yang K, Chen X, Li Y, Chen Y. Analysis of Immune-Stromal Score-Based Gene Signature and Molecular Subtypes in Osteosarcoma: Implications for Prognosis and Tumor Immune Microenvironment. Front Genet 2021; 12:699385. [PMID: 34630511 PMCID: PMC8495166 DOI: 10.3389/fgene.2021.699385] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/03/2021] [Indexed: 11/25/2022] Open
Abstract
Objective: Infiltrating immune and stromal cells are essential for osteosarcoma progression. This study set out to analyze immune–stromal score-based gene signature and molecular subtypes in osteosarcoma. Methods: The immune and stromal scores of osteosarcoma specimens from the TARGET cohort were determined by the ESTIMATE algorithm. Then, immune-stromal score-based differentially expressed genes (DEGs) were screened, followed by univariate Cox regression analysis. A LASSO regression analysis was applied for establishing a prognostic model. The predictive efficacy was verified in the GSE21257 dataset. Associations between the risk scores and chemotherapy drug sensitivity, immune/stromal scores, PD-1/PD-L1 expression, immune cell infiltrations were assessed in the TARGET cohort. NMF clustering analysis was employed for characterizing distinct molecular subtypes based on immune-stromal score-based DEGs. Results: High immune/stromal scores exhibited the prolonged survival duration of osteosarcoma patients. Based on 85 prognosis-related stromal–immune score-based DEGs, a nine-gene signature was established. High-risk scores indicated undesirable prognosis of osteosarcoma patients. The AUCs of overall survival were 0.881 and 0.849 in the TARGET cohort and GSE21257 dataset, confirming the well predictive performance of this signature. High-risk patients were more sensitive to doxorubicin and low-risk patients exhibited higher immune/stromal scores, PD-L1 expression, and immune cell infiltrations. Three molecular subtypes were characterized, with distinct clinical outcomes and tumor immune microenvironment. Conclusion: This study developed a robust prognostic gene signature as a risk stratification tool and characterized three distinct molecular subtypes for osteosarcoma patients based on immune–stromal score-based DEGs, which may assist decision-making concerning individualized therapy and follow-up project.
Collapse
Affiliation(s)
- Dingzhao Zheng
- Department of Rehabilitation Medicine, The Fifth Hospital of Xiamen, Xiamen, China
| | - Kaichun Yang
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Xinjiang Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongwu Li
- Emergency Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yongchun Chen
- Department of Orthopaedics, The Fifth Hospital of Xiamen, Xiamen, China
| |
Collapse
|
17
|
Ghafouri-Fard S, Shaterabadi D, Abak A, Shoorei H, Bahroudi Z, Taheri M, Mousavinejad SA. An update on the role of miR-379 in human disorders. Biomed Pharmacother 2021; 139:111553. [PMID: 33845370 DOI: 10.1016/j.biopha.2021.111553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/24/2022] Open
Abstract
miR-379 is a miRNA transcribed from the MIR379 locus on 14q32.31. This miRNA is located in an evolutionarily conserved miRNA cluster in an imprinted region that contains DLK1 and DIO3 genes. The mouse homolog of this miRNA has been shown to be under-expressed in response to glucocorticoid receptor deficiency. Moreover, miR-379 has a tumor-suppressive role in a wide variety of tissues including the brain, breast, lung, and liver. In addition to restraining cell proliferation and migration, miR-379 can suppress the epithelial-mesenchymal transition process. Abnormal expression of this miRNA implies the pathogenesis of Duchene muscular dystrophy, spinal cord injury, diabetic nephropathy, acute myocardial infarction, and premature ovarian failure. This review aims to the summarization of the role of miR-379 in neoplastic and non-neoplastic conditions.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Donya Shaterabadi
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afete Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mousavinejad
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Chen K, Zhang B, Sun Z. MicroRNA 379 Regulates Klotho Deficiency-Induced Cardiomyocyte Apoptosis Via Repression of Smurf1. Hypertension 2021; 78:342-352. [PMID: 34120450 DOI: 10.1161/hypertensionaha.120.16888] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Kai Chen
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| | - Bo Zhang
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.)
| | - Zhongjie Sun
- From the Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis (K.C., B.Z., Z.S.).,Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center (K.C., Z.S.)
| |
Collapse
|
19
|
Hu R, Chen S, Yan J. Blocking circ-CNST suppresses malignant behaviors of osteosarcoma cells and inhibits glycolysis through circ-CNST-miR-578-LDHA/PDK1 ceRNA networks. J Orthop Surg Res 2021; 16:300. [PMID: 33962616 PMCID: PMC8103765 DOI: 10.1186/s13018-021-02427-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 04/14/2021] [Indexed: 12/18/2022] Open
Abstract
Background CircRNA CNST (circ-CNST) is a newly identified biomarker for prognosis of osteosarcoma (OS). However, its role in OS progression remains to be well documented. Methods Expression of circ-CNST, microRNA (miR)-578, lactate dehydrogenase A (LDHA), and pyruvate dehydrogenase kinase 1 (PDK1) was detected by quantitative real-time polymerase chain reaction and Western blotting. The physical interaction was confirmed by dual-luciferase reporter assay. Cell behaviors and glycolysis were measured by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry, transwell assays, xenograft experiment, and commercial kits. Results Circ-CNST was upregulated in human OS tissues and cells, accompanied with downregulation of miR-578 and upregulation of LDHA and PDK1. There were negative correlations between miR-578 expression and circ-CNST or LDHA/PDK1 in OS tissues. Moreover, high circ-CNST/LDHA/PDK1 or low miR-578 might predict shorter overall survival, advanced TNM stages, and lymph node metastasis. Physically, miR-578 was targeted by circ-CNST, and miR-578 could target LDHA/PDK1. Functionally, blocking circ-CNST and restoring miR-578 enhanced apoptosis rate and suppressed cell proliferation, colony formation, migration, and invasion in 143B and U2OS cells, accompanied with decreased glucose consumption, lactate production, and adenosine triphosphate (ATP)/adenosine diphosphate (ADP) ratio. Furthermore, in vivo growth of U2OS cells was retarded by silencing circ-CNST. Depletion of miR-578 could counteract the suppressive role of circ-CNST deficiency in 143B and U2OS cells, and restoring LDHA or PDK1 partially reversed the role of miR-578 inhibition as well. Conclusion Circ-CNST knockdown could antagonize malignant behaviors and glycolysis of OS cells by regulating miR-578-LDHA/PDK1 axes. Supplementary Information The online version contains supplementary material available at 10.1186/s13018-021-02427-0.
Collapse
Affiliation(s)
- Rui Hu
- Department of Spine Surgery Clinic, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Shan Chen
- Department of Oncology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi City, Hubei Province, China
| | - Jianxin Yan
- Department of Joint Surgery, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Avenue, Enshi City, 445000, Hubei Province, China.
| |
Collapse
|
20
|
Han N, Li Z. Non-coding RNA Identification in Osteonecrosis of the Femoral Head Using Competitive Endogenous RNA Network Analysis. Orthop Surg 2021; 13:1067-1076. [PMID: 33749138 PMCID: PMC8126913 DOI: 10.1111/os.12834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 07/21/2020] [Accepted: 09/28/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the regulatory network of long non-coding RNA (lncRNA) as competing endogenous RNAs (ceRNAs) in osteonecrosis of the femoral head (ONFH). METHODS The gene expression profile GSE74089 of ONFH and microRNA (miRNA) expression profile of GSE89587 were obtained from the Gene Expression Omnibus (GEO) database. The GSE74089 contained four ONFH samples and four controls. The GSE89587 included 10 ONFH samples and 10 control samples. The differentially expressed lncRNAs (DE-lncRNAs) and DE-mRNAs between ONFH group and control group were identified from GSE74089 using the limma package based on criteria of adjusted P value <0.05 and |log fold change (FC)| ≥2. The DEmiRNAs between ONFH group and control group were screened from GSE89587 on the basis of adjusted P value <0.05. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for DE-mRNAs were analyzed using DAVID 6.7 and GSEA 3.0, respectively. Coexpressed lncRNA-mRNA pairs were identified by corr.test method in R based on the criteria of adjusted P value <0.01 and |r| ≥ 0.9. A ceRNA network was constructed and visualized using cytoscape 3.7.0 by integrating the DE-lncRNA, DE-miRNA, and DEmRNA data. The key mRNAs and lncRNAs in the ceRNA network were further validated in an independent dataset of GSE123568. RESULTS Based on our analysis, a total of 28 DE-lncRNAs, 1403 DE-mRNAs, and 134 DE-miRNAs were identified, respectively. The DE-mRNAs were significantly enriched in the function of "skeletal system development," "collagen fibril organization," "blood vessel development," and "regulation of nervous system development." Besides, 72 KEGG pathways, including eight active pathways and 64 suppressed pathways were identified, including which immune pathway was the most significantly activated one and which ribosome-related function was the most suppressed. A co-expression network including 161 DE-mRNAs and 16 DE-lncRNAs was built. Highly connected nodes were identified among lncRNAs such as H19, C20orf203, LINC00355, SFTA3, CRNDE, CASC2, LINC00494, C9orf163, C10orf91, and LINC00301. The ceRNA network indicated that lncRNA H19 functioned as a ceRNA of hsa-miR-519b-3p and hsa-miR-296-5p in ANKH and ECHDC1 regulation; lncRNA C9orf163 functioned as a ceRNA of hsa-miR-424-5p in CCNT1 regulation. The expression trends of ANKH, CCNT1, and C9orf163 were successfully validated in independent dataset of GSE123568. CONCLUSION The ceRNAs of lncRNA H19- hsa-miR-519b-3p/hsa-miR-296-5p-ANKH and lncRNA c9orf163- hsa-miR-424-5p-CCNT1 might play important roles in ONFH development. Our research provided an understanding of the important role of lncRNA-related ceRNAs in ONFH.
Collapse
Affiliation(s)
- Ning Han
- Department of Emergency Trauma Surgery, Shanghai East Hospital of Tongji University, Shanghai, China
| | - Zengchun Li
- Department of Emergency Trauma Surgery, Shanghai East Hospital of Tongji University, Shanghai, China
| |
Collapse
|
21
|
ALKBH5 suppresses tumor progression via an m 6A-dependent epigenetic silencing of pre-miR-181b-1/YAP signaling axis in osteosarcoma. Cell Death Dis 2021; 12:60. [PMID: 33431791 PMCID: PMC7801648 DOI: 10.1038/s41419-020-03315-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/18/2023]
Abstract
ALKBH5 is the main enzyme for m6A-based demethylation of RNAs and it has been implicated in many biological and pathophysiological processes. Here, we aimed to explore the potential involvement of ALKBH5 in osteosarcoma and decipher the underlying cellular/molecular mechanisms. We discovered downregulated levels of demethylase ALKBH5 were correlated with increased m6A methylation in osteosarcoma cells/tissues compared with normal osteoblasts cells/tissues. ALKBH5 overexpression significantly suppressed osteosarcoma cell growth, migration, invasion, and trigged cell apoptosis. In contrast, inhibition of ALKBH5 produced the opposite effects. Whereas ALKBH5 silence enhanced m6A methylations of pre-miR-181b-1 and YAP-mRNA exerting oncogenic functions in osteosarcoma. Moreover, upregulation of YAP or downregulation of mature miR-181b-5p displayed a remarkable attenuation of anti-tumor activities caused by ALKBH5. Further results revealed that m6A methylated pre-miR-181b-1 was subsequently recognized by m6A-binding protein YTHDF2 to mediate RNA degradation. However, methylated YAP transcripts were recognized by YTHDF1 to promote its translation. Therefore, ALKBH5-based m6A demethylation suppressed osteosarcoma cancer progression through m6A-based direct/indirect regulation of YAP. Thus, ALKBH5 overexpression might be considered a new approach of replacement therapy for osteosarcoma treatment.
Collapse
|
22
|
Li Z, Li X, Xu D, Chen X, Li S, Zhang L, Chan MTV, Wu WKK. An update on the roles of circular RNAs in osteosarcoma. Cell Prolif 2020; 54:e12936. [PMID: 33103338 PMCID: PMC7791175 DOI: 10.1111/cpr.12936] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/23/2020] [Accepted: 10/04/2020] [Indexed: 01/17/2023] Open
Abstract
Osteosarcoma is the most common primary bone malignancy and is a neoplasm thought to be derived from the bone‐forming mesenchymal stem cells. Aberrant activation of oncogenes and inactivation of tumour suppressor genes by somatic mutations and epigenetic mechanisms play a pivotal pathogenic role in osteosarcoma. Aside from alterations in these protein‐coding genes, it has now been realized that dysregulation of non‐coding RNAs (ncRNAs), including microRNAs (miRNAs), long non‐coding RNAs (lncRNAs) and the recently discovered circular RNAs (circRNAs), is crucial to the initiation and progression of osteosarcoma. CircRNAs are single‐stranded RNAs that form covalently closed loops and function as an important regulatory element of the genome through multiple machineries. Recently, an increasing number of studies suggested that circRNAs also played critical roles in osteosarcoma. This review summarizes recent development and progression in circRNA transcriptome analysis and their functions in the modulation of osteosarcoma progression.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong City, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong City, Hong Kong
| |
Collapse
|
23
|
Xiao P, Zhu X, Sun J, Zhang Y, Qiu W, Li J, Wu X. MicroRNA-613 alleviates IL-1β-induced injury in chondrogenic CHON-001 cells by targeting fibronectin 1. Am J Transl Res 2020; 12:5308-5319. [PMID: 33042421 PMCID: PMC7540165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is an aging-related chronic degenerative joint disease. A number of miRNAs have been found to be involved in the development of OA, but the role of miR-613 in OA remains unclear. Thus, this study aimed to investigate the role of miR-613 during the progression of OA. METHODS CHON-001 cells were transfected with miR-613 agonist for 48 h, and then exposed to 10 ng/mL IL-1β for 24 h. Cell viability, cell proliferation and cell apoptosis in CHON-001 cells were assessed by CCK-8, immunofluorescence, and flow cytometry assays, respectively. In addition, the dual luciferase reporter system assay was used to determine the interaction of miR-613 and fibronectin 1 in CHON-001 cells. RESULTS The level of miR-613 was significantly decreased in IL-1β-treated CHON-001 cells. Overexpression of miR-613 markedly inhibited IL-1β-induced apoptosis in CHON-001 cells. In addition, upregulation of miR-613 obviously alleviated IL-1β-induced inflammatory response and cartilage matrix degradation in CHON-001 cells. Meanwhile, fibronectin 1 was identified as a direct binding target of miR-613 in CHON-001 cells. Overexpression of miR-613 alleviated IL-1β-induced injury in CHON-001 cells via downregulating the expression of fibronectin 1. Furthermore, overexpression of miR-613 alleviated cartilage degradation, and reduced OARSI scores and subchondral bone thickness in a mouse model of OA. CONCLUSION Our data indicated that overexpression of miR-613 could inhibit IL-1β-induced injury in CHON-001 cells via decreasing the level fibronectin 1 in vitro, and alleviate the symptoms of OA in vivo. Therefore, miR-613 might be a potential therapeutic option for the treatment of OA.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Xu Zhu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Jinpeng Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Yuhang Zhang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Weijian Qiu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Jianqiang Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| | - Xuejian Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450000, Henan, P. R. China
| |
Collapse
|
24
|
Li Z, Xu D, Chen X, Li S, Chan MTV, Wu WKK. LINC01133: an emerging tumor-associated long non-coding RNA in tumor and osteosarcoma. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32467-32473. [PMID: 32556990 DOI: 10.1007/s11356-020-09631-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggested that long non-coding RNAs (lncRNAs) play pivotal roles in tumorigenesis. LINC01133 is a newly identified lncRNA first discovered as an oncogene in lung squamous cell carcinoma. Subsequent studies further demonstrated this lncRNA was deregulated in a wide spectrum of tumors, including colorectal, gastric, lung, and pancreatic ductal adenocarcinoma as well as osteosarcoma and hepatocellular carcinoma. Intriguingly, this lncRNA exerted oncogenic or tumor-suppressive action in a tissue-dependent manner. This review sought to summarize our current understanding concerning the deregulation of LINC01133 in human tumors in relation to its molecular mechanisms and cellular functions. The clinical utilization of LINC01133 as a potential prognostic biomarker and a treatment target is also discussed.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Derong Xu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Xin Chen
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugang Li
- Department of Orthopaedic, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The University of Hong Kong, Pok Fu Lam, Hong Kong
- State Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
25
|
Hu XK, Rao SS, Tan YJ, Yin H, Luo MJ, Wang ZX, Zhou JH, Hong CG, Luo ZW, Du W, Wu B, Yan ZQ, He ZH, Liu ZZ, Cao J, Wang Y, Situ WY, Liu HM, Huang J, Wang YY, Xia K, Qian YX, Zhang Y, Yue T, Liu YW, Zhang HQ, Tang SY, Chen CY, Xie H. Fructose-coated Angstrom silver inhibits osteosarcoma growth and metastasis via promoting ROS-dependent apoptosis through the alteration of glucose metabolism by inhibiting PDK. Am J Cancer Res 2020; 10:7710-7729. [PMID: 32685015 PMCID: PMC7359101 DOI: 10.7150/thno.45858] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/30/2020] [Indexed: 12/28/2022] Open
Abstract
Osteosarcoma is a common malignant bone cancer easily to metastasize. Much safer and more efficient strategies are still needed to suppress osteosarcoma growth and lung metastasis. We recently presented a pure physical method to fabricate Ångstrom-scale silver particles (AgÅPs) and determined the anti-tumor efficacy of fructose-coated AgÅPs (F-AgÅPs) against lung and pancreatic cancer. Our study utilized an optimized method to obtain smaller F-AgÅPs and aimed to assess whether F-AgÅPs can be used as an efficient and safe agent for osteosarcoma therapy. We also investigated whether the induction of apoptosis by altering glucose metabolic phenotype contributes to the F-AgÅPs-induced anti-osteosarcoma effects. Methods: A modified method was developed to prepare smaller F-AgÅPs. The anti-tumor, anti-metastatic and pro-survival efficacy of F-AgÅPs and their toxicities on healthy tissues were compared with that of cisplatin (a first-line chemotherapeutic drug for osteosarcoma therapy) in subcutaneous or orthotopic osteosarcoma-bearing nude mice. The pharmacokinetics, biodistribution and excretion of F-AgÅPs were evaluated by testing the levels of silver in serum, tissues, urine and feces of mice. A series of assays in vitro were conducted to assess whether the induction of apoptosis mediates the killing effects of F-AgÅPs on osteosarcoma cells and whether the alteration of glucose metabolic phenotype contributes to F-AgÅPs-induced apoptosis. Results: The newly obtained F-AgÅPs (9.38 ± 4.11 nm) had good stability in different biological media or aqueous solutions and were more effective than cisplatin in inhibiting tumor growth, improving survival, attenuating osteolysis and preventing lung metastasis in osteosarcoma-bearing nude mice after intravenous injection, but were well tolerated in normal tissues. One week after injection, about 68% of F-AgÅPs were excreted through feces. F-AgÅPs induced reactive oxygen species (ROS)-dependent apoptosis of osteosarcoma cells but not normal cells, owing to their ability to selectively shift glucose metabolism of osteosarcoma cells from glycolysis to mitochondrial oxidation by inhibiting pyruvate dehydrogenase kinase (PDK). Conclusion: Our study suggests the promising prospect of F-AgÅPs as a powerful selective anticancer agent for osteosarcoma therapy.
Collapse
|
26
|
Sanson M, Vu Hong A, Massourides E, Bourg N, Suel L, Amor F, Corre G, Bénit P, Barthélémy I, Blot S, Bigot A, Pinset C, Rustin P, Servais L, Voit T, Richard I, Israeli D. miR-379 links glucocorticoid treatment with mitochondrial response in Duchenne muscular dystrophy. Sci Rep 2020; 10:9139. [PMID: 32499563 PMCID: PMC7272451 DOI: 10.1038/s41598-020-66016-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Duchenne Muscular Dystrophy (DMD) is a lethal muscle disorder, caused by mutations in the DMD gene and affects approximately 1:5000-6000 male births. In this report, we identified dysregulation of members of the Dlk1-Dio3 miRNA cluster in muscle biopsies of the GRMD dog model. Of these, we selected miR-379 for a detailed investigation because its expression is high in the muscle, and is known to be responsive to glucocorticoid, a class of anti-inflammatory drugs commonly used in DMD patients. Bioinformatics analysis predicts that miR-379 targets EIF4G2, a translational factor, which is involved in the control of mitochondrial metabolic maturation. We confirmed in myoblasts that EIF4G2 is a direct target of miR-379, and identified the DAPIT mitochondrial protein as a translational target of EIF4G2. Knocking down DAPIT in skeletal myotubes resulted in reduced ATP synthesis and myogenic differentiation. We also demonstrated that this pathway is GC-responsive since treating mice with dexamethasone resulted in reduced muscle expression of miR-379 and increased expression of EIF4G2 and DAPIT. Furthermore, miR-379 seric level, which is also elevated in the plasma of DMD patients in comparison with age-matched controls, is reduced by GC treatment. Thus, this newly identified pathway may link GC treatment to a mitochondrial response in DMD.
Collapse
Affiliation(s)
- Mathilde Sanson
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Ai Vu Hong
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | | | - Nathalie Bourg
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Laurence Suel
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Fatima Amor
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Guillaume Corre
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - Paule Bénit
- INSERM, UMR S1141, Hôpital Robert Debré, Paris, France
| | - Inès Barthélémy
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Stephane Blot
- Inserm U955-E10, IMRB, Université Paris Est, Ecole nationale vétérinaire d'Alfort, 94700, Maisons-Alfort, France
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute, Paris, France
| | | | - Pierre Rustin
- INSERM, UMR S1141, Hôpital Robert Debré, Paris, France
| | - Laurent Servais
- MDUK Oxford Neuromuscular Centre, Department of Paediatrics, University of Oxford, Oxford, UK
- Division of Child Neurology, Centre de Références des Maladies Neuromusculaires, Department of Pediatrics, University Hospital Liège & University of Liège, Liège, Belgium
| | - Thomas Voit
- NIHR Great Ormond Street Hospital Biomedical Research Centre and Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Isabelle Richard
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France
| | - David Israeli
- Généthon INSERM, UMR_S951, INTEGRARE research unit, Evry, 91000, France.
| |
Collapse
|
27
|
Zhang C, Zheng JH, Lin ZH, Lv HY, Ye ZM, Chen YP, Zhang XY. Profiles of immune cell infiltration and immune-related genes in the tumor microenvironment of osteosarcoma. Aging (Albany NY) 2020; 12:3486-3501. [PMID: 32039832 PMCID: PMC7066877 DOI: 10.18632/aging.102824] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/27/2020] [Indexed: 12/26/2022]
Abstract
This work aimed to investigate tumor-infiltrating immune cells (TIICs) and immune-associated genes in the tumor microenvironment of osteosarcoma. An algorithm known as ESTIMATE was applied for immune score assessment, and osteosarcoma cases were assigned to the high and low immune score groups. Immune-associated genes between these groups were compared, and an optimal immune-related risk model was built by Cox regression analyses. The deconvolution algorithm (referred to as CIBERSORT) was applied to assess 22 TIICs for their amounts in the osteosarcoma microenvironment. Osteosarcoma cases with high immune score had significantly improved outcome (P<0.01). The proportions of naive B cells and M0 macrophages were significantly lower in high immune score tissues compared with the low immune score group (P<0.05), while the amounts of M1 macrophages, M2 macrophages, and resting dendritic cells were significantly higher (P<0.05). Important immune-associated genes were determined to generate a prognostic model by Cox regression analysis. Interestingly, cases with high risk score had poor outcome (P<0.01). The areas under the curve (AUC) for the risk model in predicting 1, 3 and 5-year survival were 0.634, 0.781, and 0.809, respectively. Gene set enrichment analysis suggested immunosuppression in high-risk osteosarcoma patients, in association with poor outcome.
Collapse
Affiliation(s)
- Chi Zhang
- Graduate School, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Jing-Hui Zheng
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Zong-Han Lin
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Hao-Yuan Lv
- Department of Orthopedics, Hubei University of Chinese Medicine Huangjiahu Hospital, Wuhan 430065, China
| | - Zhuo-Miao Ye
- Ruikang School of Clinical Medicine, Guangxi University of Chinese Medicine, Nanning 530001, China
| | - Yue-Ping Chen
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| | - Xiao-Yun Zhang
- Department of Orthopedics, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning 530011, China
| |
Collapse
|
28
|
LINC00665 promotes breast cancer progression through regulation of the miR-379-5p/LIN28B axis. Cell Death Dis 2020; 11:16. [PMID: 31907362 PMCID: PMC6944690 DOI: 10.1038/s41419-019-2213-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
Abstract
Breast cancer is the most common malignant tumor among women worldwide. Although increasing evidence indicates that long noncoding RNAs (lncRNAs) play critical roles during breast tumorigenesis and progression, the involvement of most lncRNAs in breast cancer remains largely unknown. In the current study, we demonstrated that LINC00665 promotes breast cancer cell proliferation, migration, and invasion. Accumulating evidence indicates that many lncRNAs can function as endogenous miRNA sponges by competitively binding common miRNAs. In this study, we demonstrated that LINC00665 functions as a sponge for miR-379-5p, reducing the ability of miR-379-5p to repress LIN28B. LINC00665 promoted breast cancer progression and induced an epithelial-mesenchymal transition-like phenotype via the upregulation of LIN28B expression. Clinically, LINC00665 expression was increased but miR-379-5p expression was decreased in breast cancer tissues compared with that in normal breast tissues in the TCGA database. Furthermore, the expression of LINC00665 was negatively related with miR-379-5p expression. Collectively, our results reveal the LINC00665-miR-379-5p-LIN28B axis and shed light on breast cancer therapy.
Collapse
|
29
|
Wang X, Peng L, Gong X, Zhang X, Sun R. LncRNA HIF1A-AS2 promotes osteosarcoma progression by acting as a sponge of miR-129-5p. Aging (Albany NY) 2019; 11:11803-11813. [PMID: 31866584 PMCID: PMC6949059 DOI: 10.18632/aging.102448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/04/2019] [Indexed: 01/17/2023]
Abstract
Increasing studies have demonstrated that long noncoding RNAs (lncRNAs) play vital roles in tumor development and progression. However, the relationship between osteosarcoma and HIF1AAS2 remains unknown. The expression of HIF1AAS2 and miR-129-5p was detected in osteosarcoma cell lines and samples via qRT-PCR. Cell Counting Kit-8 (CCK-8) and invasion assays were performed to determine cell proliferation and invasion ability, and a dual luciferase reporter assay was performed to determine the interaction between HIF1AAS2 and miR-129-5p. We showed that the expression of HIF1A-AS2 was upregulated in the osteosarcoma samples compared with the expression in noncancerous samples. Moreover, patients with high HIF1A-AS2 expression had a shorter overall survival. Ectopic expression of HIF1A-AS2 enhanced osteosarcoma cell proliferation, cell cycle progression and invasion. We found that overexpression of miR-129-5p decreased the luciferase activity of wild-type (WT) HIF1A-AS2 but not mutant HIF1A-AS2. Ectopic expression of HIF1A-AS2 suppressed miR-129-5p expression in MG-63 cells. We demonstrated that miR-129-5p was downregulated in osteosarcoma and was negatively associated with HIF1A-AS2 expression. Furthermore, ectopic expression of miR-129-5p suppressed osteosarcoma cell proliferation, cell cycle progression and invasion. In addition, overexpression of HIF1A-AS2 promoted cell proliferation, cell cycle progression and invasion of osteosarcoma cells through the modulation of miR-129-5p. These results indicated that HIF1A-AS2 might be a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Xuesong Wang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Lei Peng
- Library of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiaojin Gong
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Xiugong Zhang
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| | - Ruifu Sun
- No.1 Spinal Department of No.2 Affiliated Hospital of Qingdao University, Qingdao Central Hospital, Shandong, China
| |
Collapse
|
30
|
Li Z, Li X, Shen J, Zhang L, Chan MTV, Wu WKK. Emerging roles of non-coding RNAs in scoliosis. Cell Prolif 2019; 53:e12736. [PMID: 31828859 PMCID: PMC7046479 DOI: 10.1111/cpr.12736] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 02/06/2023] Open
Abstract
Scoliosis, a complex three‐dimensional deformity of the spine with the Cobb angle (a measure of the spinal lateral curvature) >10 degree, encompasses a spectrum of pathologies, including congenital, idiopathic, syndromic and neuromuscular aetiologies. The pathogenesis is multifactorial involving both environmental and genetic factors but the exact cellular and molecular mechanisms of disease development remain largely unknown. Emerging evidence showed that non‐coding RNAs (ncRNAs), namely microRNAs, long ncRNAs and circular RNAs, are deregulated in many orthopaedic diseases, including scoliosis. Importantly, these deregulated ncRNAs functionally participate in the initiation and progression of scoliosis. Here, we review recent progress in ncRNA research on scoliosis.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Centre for Gut Microbiota Research, Institute of Digestive Diseases and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
31
|
Viera GM, Salomao KB, de Sousa GR, Baroni M, Delsin LEA, Pezuk JA, Brassesco MS. miRNA signatures in childhood sarcomas and their clinical implications. Clin Transl Oncol 2019; 21:1583-1623. [PMID: 30949930 DOI: 10.1007/s12094-019-02104-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
Progresses in multimodal treatments have significantly improved the outcomes for childhood cancer. Nonetheless, for about one-third of patients with Ewing sarcoma, rhabdomyosarcoma, or osteosarcoma steady remission has remained intangible. Thus, new biomarkers to improve early diagnosis and the development of precision-targeted medicine remain imperative. Over the last decade, remarkable progress has been made in the basic understanding of miRNAs function and in interpreting the contribution of their dysregulation to cancer development and progression. On this basis, this review focuses on what has been learned about the pivotal roles of miRNAs in the regulation of key genes implicated in childhood sarcomas.
Collapse
Affiliation(s)
- G M Viera
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - K B Salomao
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - G R de Sousa
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - M Baroni
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - L E A Delsin
- Ribeirao Preto School of Medicine, University of Sao Paulo, Ribeirao Preto, Brasil
| | - J A Pezuk
- Anhanguera University of Sao Paulo, UNIAN/SP, Sao Paulo, Brasil
| | - M S Brassesco
- Faculty of Philosophy, Sciences and Letters at Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brasil.
- Departamento de Biologia, FFCLRP-USP, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirao Preto, SP, CEP 14040-901, Brazil.
| |
Collapse
|
32
|
Zhang Y, Wang G, Ma L, Wang C, Wang L, Guo Y, Zhao X. miR-137 suppresses cell growth and extracellular matrixdegradation through regulating ADAMTS-5 in chondrocytes. Am J Transl Res 2019; 11:7027-7034. [PMID: 31814906 PMCID: PMC6895521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/19/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. microRNAs (miRNAs) have been showen to act critical roles in several diseases including OA. However, the involvement and underlying mechanism of miR-137 in development of OA remains unkown. In our study, we firstly showed that IL-1β decreased the expression of miR-137 in the chondrocytes and we demonstrated that the miR-37 expression level was lower in the OA cases than in the control patients. Dual-luciferase reporter analysis was performed to confirm that ADAMTS-5 was a direct target gene of miR-137. Furthermore, we indicated that elevated expression of miR-137 decreased the protein expression of ADAMTS-5 in the chondrocytes. In additional, we showed that IL-1β induces the ADAMTS-5 expression in the chondrocytes. The ADAMTS-5 expression level was higher in the OA cases than in the control patients. We showed that the expression of ADAMTS-5 was negatively correlated with the miR-137 expression level in OA tissues. Overexpression of miR-137 suppressed cell growth, extracellular matrix (ECM) degradation and inflammation in chondrocytes. These preliminary data elucidated that miR-137 suppressed OA progression via inhibiting cell growth, inflammation and ECM degradation.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Department of Orthopedics, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Guodong Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Longfei Ma
- Department of Orthopedics, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Chengqun Wang
- Department of Orthopedics, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| | - Lina Wang
- Department of Orthopedics, The Second Hospital of Shandong UniversityJinan 250000, Shandong, China
| | - Yanxia Guo
- Department of Orthopedics, The Second Hospital of Shandong UniversityJinan 250000, Shandong, China
| | - Xiaowei Zhao
- Department of Orthopedics, Affiliated Hospital of Jining Medical UniversityJining 272029, Shandong, China
| |
Collapse
|
33
|
Gu J, Shao R, Li M, Yan Q, Hu H. MiR-485-3p modulates neural stem cell differentiation and proliferation via regulating TRIP6 expression. J Cell Mol Med 2019; 24:398-404. [PMID: 31730275 PMCID: PMC6933395 DOI: 10.1111/jcmm.14743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/16/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Recent references have showed crucial roles of several miRNAs in neural stem cell differentiation and proliferation. However, the expression and role of miR‐485‐3p remains unknown. In our reference, we indicated that miR‐485‐3p expression was down‐regulated during NSCs differentiation to neural and astrocytes cell. In addition, the TRIP6 expression was up‐regulated during NSCs differentiation to neural and astrocytes cell. We carried out the dual‐luciferase reporter and found that overexpression of miR‐485‐3p decreased the luciferase activity of pmirGLO‐TRIP6‐wt but not the pmirGLO‐TRIP6‐mut. Ectopic expression of miR‐485‐3p decreased the expression of TRIP6 in NSC. Ectopic miR‐485‐3p expression suppressed the cell growth of NSCs and inhibited nestin expression of NSCs. Moreover, elevated expression of miR‐485‐3p decreased the ki‐67 and cyclin D1 expression in NSCs. Furthermore, we indicated that miR‐485‐3p reduced proliferation and induced differentiation of NSCs via targeting TRIP6 expression. These data suggested that a crucial role of miR‐485‐3p in self‐proliferation and differentiation of NSCs. Thus, altering miR‐485‐3p and TRIP6 modulation may be one promising therapy for treating with neurodegenerative and neurogenesis diseases.
Collapse
Affiliation(s)
- Juxian Gu
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Rusheng Shao
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Meng Li
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Qiuyue Yan
- Department of Neurology, Cangzhou Central Hospital, Cangzhou, China
| | - Hongwei Hu
- Department of Pain, Cangzhou Central Hospital, Cangzhou, China
| |
Collapse
|
34
|
Wei Y, Liao Y, Deng Y, Zu Y, Zhao B, Li F. MicroRNA-503 Inhibits Non-Small Cell Lung Cancer Progression By Targeting PDK1/PI3K/AKT Pathway. Onco Targets Ther 2019; 12:9005-9016. [PMID: 31802909 PMCID: PMC6827514 DOI: 10.2147/ott.s213059] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/18/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES The aim of the study was to study the role of dysregulated expression of a microRNA (miRNA), miR-503, in non-small-cell lung cancer (NSCLC) and investigate the underlying mechanism. METHODS Quantitative real-time PCR (qRT-PCR) and in situ hybridization staining (ISH) were used to evaluate the expression level of miR-503 in NSCLC tissues and paired adjacent tissues. CCK-8, colony formation and flow cytometry were performed to explore the effects of miR-503 overexpression on cell proliferation, colony formation and apoptosis. Cells with miR-503 overexpression were used to initiate xenograft models. Dual luciferase reporter assay, qRT-PCR, immunohistochemistry and Western blotting were conducted to investigate the interaction of miR-503 and its potential target. RESULTS Significantly downregulated miR-503 was found in NSCLC tumor tissues and cell lines. miR-503 overexpression significantly inhibited NSCLC cell proliferation, migration and invasion. PDK1 was predicted as the direct targets of miR-503. PDK1 overexpression reversed the inhibitory effects of miR-503 on biological functions, while PDK1 silencing significantly counteracted miR-503 inhibitor-induced pro-tumor effects in A549 cells. Mechanistically, upregulation of miR-503 inhibited PDK1 expression and subsequently caused the inactivation of PI3K/AKT pathway. CONCLUSION Our results suggest that miR-503 inhibits NSCLC progression by targeting PDK1/PI3K/AKT pathway, potentiating the use of miR-503 as a biomarker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yingying Wei
- Department of Pharmacy, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Yuanfan Liao
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Yukun Zu
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Bo Zhao
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| | - Fan Li
- Department of Thoracic Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, People’s Republic of China
| |
Collapse
|
35
|
Bonnet S, Boucherat O, Paulin R, Wu D, Hindmarch CCT, Archer SL, Song R, Moore JB, Provencher S, Zhang L, Uchida S. Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. Am J Physiol Cell Physiol 2019; 318:C1-C28. [PMID: 31483703 DOI: 10.1152/ajpcell.00078.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although a majority of the mammalian genome is transcribed to RNA, mounting evidence indicates that only a minor proportion of these transcriptional products are actually translated into proteins. Since the discovery of the first non-coding RNA (ncRNA) in the 1980s, the field has gone on to recognize ncRNAs as important molecular regulators of RNA activity and protein function, knowledge of which has stimulated the expansion of a scientific field that quests to understand the role of ncRNAs in cellular physiology, tissue homeostasis, and human disease. Although our knowledge of these molecules has significantly improved over the years, we have limited understanding of their precise functions, protein interacting partners, and tissue-specific activities. Adding to this complexity, it remains unknown exactly how many ncRNAs there are in existence. The increased use of high-throughput transcriptomics techniques has rapidly expanded the list of ncRNAs, which now includes classical ncRNAs (e.g., ribosomal RNAs and transfer RNAs), microRNAs, and long ncRNAs. In addition, splicing by-products of protein-coding genes and ncRNAs, so-called circular RNAs, are now being investigated. Because there is substantial heterogeneity in the functions of ncRNAs, we have summarized the present state of knowledge regarding the functions of ncRNAs in heart, lungs, and skeletal muscle. This review highlights the pathophysiologic relevance of these ncRNAs in the context of human cardiovascular, pulmonary, and muscle diseases.
Collapse
Affiliation(s)
- Sébastien Bonnet
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Olivier Boucherat
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Roxane Paulin
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit, Translational Institute of Medicine, Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Rui Song
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Joseph B Moore
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Steeve Provencher
- Pulmonary Hypertension and Vascular Biology Research Group, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Department of Medicine, Université Laval, Quebec City, Quebec, Canada.,Department of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Lubo Zhang
- Lawrence D. Longo, MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, California
| | - Shizuka Uchida
- Diabetes and Obesity Center, University of Louisville, Louisville, Kentucky.,The Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, Kentucky.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| |
Collapse
|
36
|
Somatic Mutations in miRNA Genes in Lung Cancer-Potential Functional Consequences of Non-Coding Sequence Variants. Cancers (Basel) 2019; 11:cancers11060793. [PMID: 31181801 PMCID: PMC6627760 DOI: 10.3390/cancers11060793] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023] Open
Abstract
A growing body of evidence indicates that miRNAs may either drive or suppress oncogenesis. However, little is known about somatic mutations in miRNA genes. To determine the frequency and potential consequences of miRNA gene mutations, we analyzed whole exome sequencing datasets of 569 lung adenocarcinoma (LUAD) and 597 lung squamous cell carcinoma (LUSC) samples generated in The Cancer Genome Atlas (TCGA) project. Altogether, we identified 1091 somatic sequence variants affecting 522 different miRNA genes and showed that half of all cancers had at least one such somatic variant/mutation. These sequence variants occurred in most crucial parts of miRNA precursors, including mature miRNA and seed sequences. Due to our findings, we hypothesize that seed mutations may affect miRNA:target interactions, drastically changing the pool of predicted targets. Mutations may also affect miRNA biogenesis by changing the structure of miRNA precursors, DROSHA and DICER cleavage sites, and regulatory sequence/structure motifs. We identified 10 significantly overmutated hotspot miRNA genes, including the miR-379 gene in LUAD enriched in mutations in the mature miRNA and regulatory sequences. The occurrence of mutations in the hotspot miRNA genes was also shown experimentally. We present a comprehensive analysis of somatic variants in miRNA genes and show that some of these genes are mutational hotspots, suggesting their potential role in cancer.
Collapse
|
37
|
Xie X, Wu H, Li M, Chen X, Xu X, Ni W, Lu C, Ni R, Bao B, Xiao M. Progress in the application of exosomes as therapeutic vectors in tumor-targeted therapy. Cytotherapy 2019; 21:509-524. [DOI: 10.1016/j.jcyt.2019.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/05/2019] [Accepted: 01/08/2019] [Indexed: 12/13/2022]
|
38
|
Yan L, Wu X, Liu Y, Xian W. LncRNA Linc00511 promotes osteosarcoma cell proliferation and migration through sponging miR-765. J Cell Biochem 2019; 120:7248-7256. [PMID: 30592325 DOI: 10.1002/jcb.27999] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 01/24/2023]
Abstract
Long noncoding RNA (lncRNA) Linc00511 is a novel lncRNA, and it was reported to play important roles in the progression and carcinogenesis of several tumors. However, the expression and biological roles of Linc00511 in osteosarcoma were still unknown. In this research, we showed that the expression of Linc00511 was upregulated in osteosarcoma samples and cell lines. Ectopic expression of Linc00511 promoted osteosarcoma cell growth, colony formation, and migration. Moreover, overexpression of Linc00511 enhanced the epithelial-mesenchymal transition progression in osteosarcoma cell. In addition, we showed that elevated expression of Linc00511 suppressed microRNA-765 (miR-765) expression and promoted apurinic/apyrimidinic endonuclease 1 (APE1) expression in osteosarcoma cell. The expression of miR-765 was downregulated in osteosarcoma cells and samples and was negatively related to Linc00511 expression in osteosarcoma tissues. Ectopic expression of miR-765 inhibited osteosarcoma cell growth and migration. Furthermore, we showed that Linc00511 overexpression promoted MG-63 cells proliferation, colony formation, and migration via downregulation of miR-765. These results suggested that Linc00511 played as an oncogene in the development of osteosarcoma.
Collapse
Affiliation(s)
- Lihua Yan
- Department of Medical Oncology, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Xiangkun Wu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Yongxi Liu
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| | - Wenfeng Xian
- Department of Orthopaedic Surgery, Nanyang Second People's Hospital, Nanyang, Henan, China
| |
Collapse
|
39
|
Li Z, Li X, Bi J, Chan MTV, Wu WKK, Shen J. Melatonin protected against the detrimental effects of microRNA-363 in a rat model of vitamin A-associated congenital spinal deformities: Involvement of Notch signaling. J Pineal Res 2019; 66:e12558. [PMID: 30653707 DOI: 10.1111/jpi.12558] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022]
Abstract
Congenital spinal deformities are a result of defective somitogenesis and are associated with vitamin A deficiency (VAD). However, the molecular mechanisms of VAD-associated congenital spinal deformities remain largely unknown. Increasing number of studies suggested that microRNAs and melatonin played important roles in the development of congenital spinal deformities. In this study, we showed that the whole-embryo expression of miR-363 was upregulated in VAD rats. Furthermore, we demonstrated that miR-363 inhibited the proliferation and neuronal differentiation of primary cultured NSCs, accompanied by downregulation of Notch1. To this end, melatonin suppressed miR-363 expression and rescued the effects of miR-363 on NSC proliferation and neuronal differentiation together with restoration of Notch signaling. The present study provided new insights into the mechanism of VAD-associated spinal deformities and the therapeutic effect of melatonin that may lead to novel understanding of the molecular mechanisms of congenital spinal deformities.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingye Li
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
40
|
Li Z, Ma J, Bi J, Guo H, Chan MTV, Wu WKK, Wu Z, Shen J. MicroRNA signature of air pollution exposure‐induced congenital defects. J Cell Physiol 2019; 234:17896-17904. [PMID: 30883755 DOI: 10.1002/jcp.28422] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 02/10/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jianqing Ma
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jiaqi Bi
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Haiwei Guo
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Matthew T. V. Chan
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
| | - William K. K. Wu
- Department of Anaesthesia and Intensive Care The Chinese University of Hong Kong Hong Kong China
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong China
| | - Zhanyong Wu
- Department of Orthopedic Surgery The General Hospital of Xingtai Mining Industry Bloc., Orthopaedic Hospital of Xingtai, Xingtai Hebei China
| | - Jianxiong Shen
- Department of Orthopaedic Surgery Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
41
|
Fang B, Wei L, Dong K, Niu X, Sui X, Zhang H. miR-202 modulates the progression of neuropathic pain through targeting RAP1A. J Cell Biochem 2018; 120:2973-2982. [PMID: 30520098 DOI: 10.1002/jcb.27025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 04/05/2018] [Indexed: 12/16/2022]
Abstract
Neuropathic pain is a somatosensory disorder which is caused by disease or nerve injury that affects the nervous system. microRNAs (miRNAs) are proved to play crucial roles in the development of neuropathic pain. However, the role of miR-202 in neuropathic pain is still unknown. Sprague-Dawley rats were used for constructing the neuropathic pain model. The expression of miR-202 was determined by quantitative real-time polymerase chain reaction. Potential target gene for miR-202 was measured using bioinformatics methods and Western blot analysis. In this study, we used rats to establish a neuropathic pain model and measured the effect of miR-202 in neuropathic pain. We demonstrated that miR-202 expression was downregulated in the spinal dorsal horn of bilateral sciatic nerve chronic constriction injury (bCCI) rat. However, miR-202 expression was not changed in the dorsal root ganglion, hippocampus, and anterior cingulated cortex of bCCI rat. We identified that RAP1A was a direct target gene of miR-202 in the PC12 cell. RAP1A expression was upregulated in the spinal dorsal horn of bCCI rat. Overexpression of miR-202 could improve the pain threshold for bCCI rats in both hindpaws, indicating that miR-202 overexpression could lighten the pain threshold for model rats. Moreover, RAP1A overexpression increased the pain threshold effect of miR-202 overexpression treated bCCI rats, indicating that miR-202 could lighten the pain threshold through inhibiting RAP1A expression. These data suggested that miR-202 acted pivotal roles in the development of neuropathic pain partly through targeting RAP1A gene.
Collapse
Affiliation(s)
- Baojun Fang
- Department of Anestheiology, Dongchangfu District Maternal and Child Health Hospital, Liaocheng, Shandong, China
| | - Limin Wei
- Department of Anestheiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Kejun Dong
- Department of Anestheiology, Rizhao People's Hospital, Rizhao, Shandong, China
| | - Xiaohui Niu
- Department of Anestheiology, Lingcheng People's Hospital, Dezhou, Shandong, China
| | - Xiuhui Sui
- Tranditional Chinese Medicine Hospital of Gaotang, Liaocheng, Shandong, China
| | - Hongquan Zhang
- Department of Anestheiology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
42
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
43
|
Chen T, Li Y, Cao W, Liu Y. miR-491-5p inhibits osteosarcoma cell proliferation by targeting PKM2. Oncol Lett 2018; 16:6472-6478. [PMID: 30405785 PMCID: PMC6202533 DOI: 10.3892/ol.2018.9451] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 07/10/2018] [Indexed: 01/10/2023] Open
Abstract
Increasing evidence has indicated that microRNAs (miRNAs/miRs) are associated with tumorigenesis and the development of numerous cancer types. Previous studies have suggested miRNA-491-5p is downregulated in osteosarcoma (OS) and functions as a tumor suppressor. However, the biological roles and underlying mechanisms associated with miR-491-5p function in OS require further exploration. In the present study, it was demonstrated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) that miR-491-5p was downregulated in 36 pairs of OS tissues, compared with in adjacent normal bone tissues. Furthermore, CCK-8 and colony formation assays indicated that miR-491-5p mimics suppressed OS cell proliferation. However, an miR-491-5p inhibitor enhanced cell proliferation. In addition, luciferase reporter assays, RT-qPCR and western blot analysis demonstrated that PKM2 was a direct target of miR-491-5p. The miR-491-5p mimic inhibited the mRNA and protein expression of PKM2, while the miR-491-5p inhibitor promoted PKM2 mRNA and protein expression. In addition, PKM2 overexpression reversed the proliferation-inhibiting effects of miR-491-5p in OS cells. Therefore, these results indicated that miR-491-5p serves as a tumor suppressor in OS cells, which may be important in OS treatment.
Collapse
Affiliation(s)
- Ting Chen
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yuyang Li
- Department of Hyperbaric Oxygen Therapy, The People's Hospital of China Medical University, Shenyang, Liaoning 110016, P.R. China
| | - Wenliang Cao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yadong Liu
- Department of Joint Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116001, P.R. China
| |
Collapse
|
44
|
Zhao X, Chu J. MicroRNA-379 suppresses cell proliferation, migration and invasion in nasopharyngeal carcinoma by targeting tumor protein D52. Exp Ther Med 2018; 16:1232-1240. [PMID: 30116374 PMCID: PMC6090252 DOI: 10.3892/etm.2018.6302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/13/2017] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRs) have been demonstrated to be important regulators of malignant behavior in nasopharyngeal carcinoma (NPC) tumorigenesis. The present study aimed to investigate the biological roles and underlying mechanisms of miR-379 in NPC. The study initially observed that miR-379 was significantly downregulated in NPC clinical tissues and cell lines using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Next, gain-of-function assays were performed on human the NPC cell lines, C666-1 and 5-8F, including MTT, colony formation and transwell migration assays. The results indicated that ectopic expression of miR-379 suppressed the NPC cell proliferation, colony formation, migration and invasion in vitro. In addition, tumor protein D52 (TPD52) was identified as a direct target of miR-379 by a dual-luciferase reporter assay, while overexpression of miR-379 markedly reduced TPD52 expression at the mRNA and protein levels, as determined by RT-qPCR and western blot analysis, respectively. Furthermore, silencing of TPD52 significantly inhibited the C666-1 cell proliferation, migration and invasion. These findings suggest that miR-379 negatively regulates the growth and migration of NPC cells by downregulating TPD52 expression, while modulation of miR-379 expression may be a therapeutic strategy for NPC.
Collapse
Affiliation(s)
- Xiaojun Zhao
- Department of Otolaryngology and Head Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| | - Jiusheng Chu
- Department of Otolaryngology and Head Surgery, Taizhou People's Hospital, Taizhou, Jiangsu 225300, P.R. China
| |
Collapse
|
45
|
Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene 2018; 37:2137-2149. [PMID: 29367765 DOI: 10.1038/s41388-017-0116-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/02/2017] [Accepted: 12/16/2017] [Indexed: 12/15/2022]
Abstract
Adult Mesenchymal Stem Cells (MSCs) have a well-established tumor-homing capacity, highlighting potential as tumor-targeted delivery vehicles. MSCs secrete extracellular vesicle (EV)-encapsulated microRNAs, which play a role in intercellular communication. The aim of this study was to characterize a potential tumor suppressor microRNA, miR-379, and engineer MSCs to secrete EVs enriched with miR-379 for in vivo therapy of breast cancer. miR-379 expression was significantly reduced in lymph node metastases compared to primary tumor tissue from the same patients. A significant reduction in the rate of tumor formation and growth in vivo was observed in T47D breast cancer cells stably expressing miR-379. In more aggressive HER2-amplified HCC-1954 cells, HCC-379 and HCC-NTC tumor growth rate in vivo was similar, but increased tumor necrosis was observed in HCC-379 tumors. In response to elevated miR-379, COX-2 mRNA and protein was also significantly reduced in vitro and in vivo. MSCs were successfully engineered to secrete EVs enriched with miR-379, with the majority found to be of the appropriate size and morphology of exosomal EVs. Administration of MSC-379 or MSC-NTC cells, or EVs derived from either cell population, resulted in no adverse effects in vivo. While MSC-379 cells did not impact tumor growth, systemic administration of cell-free EVs enriched with miR-379 was demonstrated to have a therapeutic effect. The data presented support miR-379 as a potent tumor suppressor in breast cancer, mediated in part through regulation of COX-2. Exploiting the tumor-homing capacity of MSCs while engineering the cells to secrete EVs enriched with miR-379 holds exciting potential as an innovative therapy for metastatic breast cancer.
Collapse
|
46
|
Shi X, Xiao X, Yuan N, Zhang S, Yuan F, Wang X. MicroRNA-379 Suppresses Cervical Cancer Cell Proliferation and Invasion by Directly Targeting V-crk Avian Sarcoma Virus CT10 Oncogene Homolog-Like (CRKL). Oncol Res 2018; 26:987-996. [PMID: 29295725 PMCID: PMC7844644 DOI: 10.3727/096504017x15140534417184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer is the fourth most common malignancy among females worldwide. MicroRNA-379 (miR-379) is aberrantly expressed in multiple human cancer types. However, the expression pattern, roles, and detailed regulatory mechanisms of miR-379 in cervical cancer remain unknown. In this study, we found that miR-379 expression was downregulated in cervical cancer tissues and cell lines. Low miR-379 expression was correlated with International Federation of Gynecology and Obstetrics (FIGO) stage, lymph node metastasis, and distant metastasis. Additionally, miR-379 overexpression suppressed the proliferation and invasion of cervical cancer cells. Furthermore, V-crk avian sarcoma virus CT10 oncogene homolog-like (CRKL) was identified as a direct target of miR-379 in cervical cancer. CRKL was upregulated in cancer tissues and negatively correlated with miR-379 expression. Moreover, restored CRKL expression rescued the inhibitory effects of miR-379 overexpression on cell proliferation and invasion. In conclusion, miR-379 may serve as a tumor suppressor in cervical cancer by directly targeting CRKL. Restoring miR-379 expression may be an effective strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Xiao Xiao
- Reproductive Center, Wuxi Maternal and Child Health-Care Hospital, Wuxi, P.R. China
| | - Na Yuan
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Shili Zhang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou, P.R. China
| | - Fukang Yuan
- Department of Vascular Surgery, XuZhou Central Hospital, Xuzhou, P.R. China
| | - Xiaohong Wang
- Department of Obstetrics and Gynecology, Chinese PLA 101 Hospital, Wuxi, P.R. China
| |
Collapse
|
47
|
Li L, Zhang H. MicroRNA-379 inhibits cell proliferation and invasion in glioma via targeting metadherin and regulating PTEN/AKT pathway. Mol Med Rep 2017; 17:4049-4056. [PMID: 29286115 DOI: 10.3892/mmr.2017.8361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/14/2017] [Indexed: 11/05/2022] Open
Abstract
Numerous microRNAs (miRNAs) are aberrantly expressed in glioma, and implicated in glioma occurrence and development. Therefore, the development of miRNAs as potential therapeutic targets for the treatment of patients with glioma has been proposed. miR‑379 has been shown to be aberrantly expressed in the progression of malignant tumours. However, the expression, biological functions and mechanism of miR‑379 in glioma are yet to be fully understood. Hence, the present study aimed to detect miR‑379 expression, investigate its functional relevance and explore its associated molecular mechanism in glioma. In this study, miR‑379 expression was significantly downregulated in glioma tissues and cell lines. Enforced miR‑379 expression markedly suppressed the cell proliferation and invasion of glioma. Metadherin (MTDH) was identified as a direct target of miR‑379 in glioma. The miR‑379 expression and MTDH mRNA levels exhibited an inverse association in glioma tissues. The restoration of the MTDH expression partially rescued the inhibitory effects of miR‑379 overexpression on glioma cell proliferation and invasion, and the upregulation of miR‑379 inhibited the activation of phosphatase and tensin homolog (PTEN)/AKT serine/threonine kinase (AKT) signaling pathway. Overall, these findings demonstrated that miR‑379 may play tumour‑suppressing roles in glioma through downregulation of MTDH and regulation of the PTEN/AKT signaling pathway, suggesting that miR‑379 might be a possible target for the treatment of patients with this malignancy.
Collapse
Affiliation(s)
- Li Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100032, P.R. China
| |
Collapse
|
48
|
Li Z, Jiang C, Li X, Wu WKK, Chen X, Zhu S, Ye C, Chan MTV, Qian W. Circulating microRNA signature of steroid-induced osteonecrosis of the femoral head. Cell Prolif 2017; 51. [PMID: 29205600 DOI: 10.1111/cpr.12418] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Steroid-induced osteonecrosis of the femoral head (ONFH) is a common orthopaedic disease of which early detection remains clinically challenging. Accumulating evidences indicated that circulating microRNAs (miRNAs) plays vital roles in the development of several bone diseases. However, the association between circulating miRNAs and steroid-induced ONFH remains elusive. MATERIALS AND METHODS miRNA microarray was performed to identify the differentially abundant miRNAs in the serums of systemic lupus erythematosus (SLE) patients with steroid-induced ONFH as compared with SLE control and healthy control group. We predicted the potential functions of these differentially abundant miRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and reconstructed the regulatory networks of miRNA-mRNA interactions. RESULTS Our data indicated that there were 11 differentially abundant miRNAs (2 upregulated and 9 downregulated) between SLE-ONFH group and healthy control group and 42 differentially abundant miRNAs (14 upregulated and 28 downregulated) between SLE-ONFH group and SLE control group. We also predicted the potential functions of these differentially abundant miRNAs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses and reconstructed the regulatory networks of miRNA-mRNA interactions. CONCLUSIONS These findings corroborated the idea that circulating miRNAs play significant roles in the development of ONFH and may serve as diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Jiang
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Xingye Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, Jishuitan Orthopaedic College of Tsinghua University, Beijing, China
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shibai Zhu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chanhua Ye
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Wenwei Qian
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Li Z, Yang B, Weng X, Tse G, Chan MTV, Wu WKK. Emerging roles of MicroRNAs in osteonecrosis of the femoral head. Cell Prolif 2017; 51. [PMID: 29131454 DOI: 10.1111/cpr.12405] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 12/14/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is one of the most common orthopaedic diseases. The exact pathogenic mechanism of ONFH is still unknown. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively modulate gene expression at post-transcriptional level. An increasing number of studies have shown that miRNAs play crucial roles in different physiological processes, including development, cell proliferation, differentiation and metabolism. Recently, multiple studies demonstrated that miRNAs are involved in the pathogenesis of ONFH. In this review, we summarize dysregulated miRNAs and their functions in ONFH. Furthermore, we discuss their potential clinical applications for diagnosis and treatment of ONFH.
Collapse
Affiliation(s)
- Zheng Li
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Yang
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xisheng Weng
- Department of Orthopedics Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gary Tse
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong.,State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
50
|
Zhou F, Nie L, Feng D, Guo S, Luo R. MicroRNA-379 acts as a tumor suppressor in non-small cell lung cancer by targeting the IGF‑1R-mediated AKT and ERK pathways. Oncol Rep 2017; 38:1857-1866. [PMID: 28731178 DOI: 10.3892/or.2017.5835] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most common types of malignancy in humans and is a leading cause of cancer-related deaths among men and women worldwide. Aberrantly expressed microRNAs in non-small cell lung cancer (NSCLC) contribute to tumor occurrence and development as either tumor suppressors or promoters. MicroRNA-379 (miR‑379) is dysregulated in several types of human cancer. However, its expression pattern, role and underlying mechanism in NSCLC progression and metastasis are poorly understood. In this study, assay of reverse transcription-quantitative polymerase chain reaction showed that miR‑379 was downregulated in both NSCLC tissue and cell lines. Low miR‑379 expression in NSCLC tissues was significantly correlated with TNM stage and lymph node metastasis. In addition, functional experiments revealed that restoring the expression of miR‑379 inhibited cell proliferation, migration and invasion of NSCLC. The insulin-like growth factor receptor-1 (IGF‑1R) was identified as a direct target of miR‑379 in NSCLC. IGF‑1R was highly expressed in NSCLC tissues and inversely correlated with miR‑379 expression. Downregulation of IGF‑1R had tumor suppressive roles similar to that of miR‑379 overexpression on NSCLC cell proliferation, migration and invasion. Moreover, the upregulation of IGF‑1R effectively rescued the tumor suppressive roles induced by miR‑379 overexpression in NSCLC. The resumption of the expression of miR‑379 inhibited the activation of AKT and ERK signaling pathways in NSCLC. These findings suggested that miR‑379 acts as a tumor suppressor in NSCLC by directly targeting IGF‑1R and indirectly regulating AKT and ERK signaling pathways. miR‑379 provides novel therapeutic targets for the treatment of patients with this disease.
Collapse
Affiliation(s)
- Fangzheng Zhou
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441399, P.R. China
| | - Long Nie
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441399, P.R. China
| | - Dali Feng
- Department of Radiotherapy and Chemotherapy, The Second People's Hospital of Yichang, Yichang, Hubei 43000, P.R. China
| | - Siyan Guo
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441399, P.R. China
| | - Ren'na Luo
- Department of Oncology, Suizhou Hospital, Hubei University of Medicine, Suizhou, Hubei 441399, P.R. China
| |
Collapse
|