1
|
Liu Y, Ren L, Sun Y, Yan J, Gong G. Quercetin attenuated ropivacaine-induced neurotoxicity in SH-SY5Y cells through upregulating Pim1 and enhancing autophagy. Heliyon 2024; 10:e33829. [PMID: 39816371 PMCID: PMC11734030 DOI: 10.1016/j.heliyon.2024.e33829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 01/18/2025] Open
Abstract
Background Ropivacaine (Rop) is a local anesthetic that is widely used but is also potentially harmful. Quercetin (Quer) is a flavonoid component found in many plants and traditional Chinese medicines. It possesses anti-oxidant, anti-inflammatory, antitumor, and neuroprotective properties as a pharmaceutical. In Rop-induced neurotoxicity, the functions and molecular basis of Quer remain unclear. Methods Cell viability and proliferation were assessed using CCK-8 and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assays, respectively. Apoptosis and autophagy were defined by both morphological criteria and markers such as caspase3 cleavage and monodansylcadaverine (MDC) staining. Western blot and immunofluorescence staining were evaluated. The target proteins were then predicted using molecular docking and validated at the cellular and protein levels. Results Quer was shown to significantly reduce Rop-induced viability inhibition and apoptosis in SH-SY5Y cells in a dose-dependent manner. Moreover, Quer reduced Rop-induced cytotoxicity by stimulating autophagy in SH-SY5Y cells by targeting the Pim1 protein, which was accomplished via the AMPK/mTOR pathway. Conclusion Quer relieved Rop-induced neurotoxicity in SH-SY5Y cells through upregulating Pim1 and enhancing autophagy, indicating that Quer may have potential therapeutic applications in the treatment of Rop-induced neurotoxicities.
Collapse
Affiliation(s)
| | | | - Yangyang Sun
- Department of Anesthesia, People's Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Jing Yan
- Department of Anesthesia, People's Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Gu Gong
- Department of Anesthesia, People's Liberation Army the General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| |
Collapse
|
2
|
Zhang H, Wang Y, Wu Y, Luo Z, Zhong M, Hong Z, Wang D. Intrathecal Anesthesia Prevents Ventricular Arrhythmias in Rats with Myocardial Ischemia/Reperfusion. Pharmacology 2024; 109:253-265. [PMID: 38648737 DOI: 10.1159/000538997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
INTRODUCTION Ventricular arrhythmia is commonly provoked by acute cardiac ischemia through sympathetic exaggeration and is often resistant to anti-arrhythmic therapies. Thoracic epidural anesthesia has been reported to terminate fatal ventricular arrhythmia; however, its underlying mechanism is unknown. METHODS Rats were randomly divided into four groups: sham, sham plus bupivacaine, ischemia/reperfusion (IR), and IR plus bupivacaine groups. Bupivacaine (1 mg/mL, 0.05 mL/100 g body weight) was injected intrathecally into the L5-L6 intervertebral space prior to establishing a myocardial IR rat model. Thereafter, cardiac arrhythmia, cardiac function, myocardial injury, and electrical activities of the heart and spinal cord were evaluated. RESULTS Intrathecal bupivacaine inhibited spinal neural activity, improved heart rate variability, reduced ventricular arrhythmia score, and ameliorated cardiac dysfunction in IR rats. Furthermore, intrathecal bupivacaine attenuated cardiac injury and myocardial apoptosis and regulated cardiomyocyte autophagy and connexin-43 distribution during myocardial IR. CONCLUSION Our results indicate that intrathecal bupivacaine blunts spinal neural activity to prevent cardiac arrhythmia and dysfunction induced by IR and that this anti-arrhythmic activity may be associated with regulation of autonomic balance, myocardial apoptosis and autophagy, and cardiac gap junction function.
Collapse
MESH Headings
- Animals
- Bupivacaine/administration & dosage
- Myocardial Reperfusion Injury/prevention & control
- Male
- Rats, Sprague-Dawley
- Arrhythmias, Cardiac/prevention & control
- Arrhythmias, Cardiac/etiology
- Rats
- Injections, Spinal
- Anesthetics, Local/pharmacology
- Anesthetics, Local/administration & dosage
- Anesthesia, Spinal
- Connexin 43/metabolism
- Apoptosis/drug effects
- Heart Rate/drug effects
- Autophagy/drug effects
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Anti-Arrhythmia Agents/administration & dosage
- Anti-Arrhythmia Agents/pharmacology
- Disease Models, Animal
Collapse
Affiliation(s)
- Huabin Zhang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yue Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yong Wu
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
- Department of Geriatrics, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| | - Zhongxu Luo
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ming Zhong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| | - Zongyuan Hong
- School of Pharmacy, Wannan Medical College, Wuhu, China
| | - Deguo Wang
- Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu, China
| |
Collapse
|
3
|
Zhang X, Duan X, Liu X. The role of kinases in peripheral nerve regeneration: mechanisms and implications. Front Neurol 2024; 15:1340845. [PMID: 38689881 PMCID: PMC11058862 DOI: 10.3389/fneur.2024.1340845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Peripheral nerve injury disease is a prevalent traumatic condition in current medical practice. Despite the present treatment approaches, encompassing surgical sutures, autologous nerve or allograft nerve transplantation, tissue engineering techniques, and others, an effective clinical treatment method still needs to be discovered. Exploring novel treatment methods to improve peripheral nerve regeneration requires more effort in investigating the cellular and molecular mechanisms involved. Many factors are associated with the regeneration of injured peripheral nerves, including the cross-sectional area of the injured nerve, the length of the nerve gap defect, and various cellular and molecular factors such as Schwann cells, inflammation factors, kinases, and growth factors. As crucial mediators of cellular communication, kinases exert regulatory control over numerous signaling cascades, thereby participating in various vital biological processes, including peripheral nerve regeneration after nerve injury. In this review, we examined diverse kinase classifications, distinct nerve injury types, and the intricate mechanisms involved in peripheral nerve regeneration. Then we stressed the significance of kinases in regulating autophagy, inflammatory response, apoptosis, cell cycle, oxidative processes, and other aspects in establishing conductive microenvironments for nerve tissue regeneration. Finally, we briefly discussed the functional roles of kinases in different types of cells involved in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
- Clinical Medical Research Center, Wuxi No. 2 People's Hospital, Jiangnan University Medical Center, Wuxi, China
| | - Xuchu Duan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, School of Life Science, Nantong Laboratory of Development and Diseases, Medical College, Clinical Medical Research Center, Affiliated Wuxi Clinical College of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
4
|
Fan K, Liao Q, Yuan P, Xu R, Liu Z. Defective autophagy contributes to bupivacaine-induced aggravation of painful diabetic neuropathy in db/db mice. Neuropharmacology 2024; 245:109814. [PMID: 38104768 DOI: 10.1016/j.neuropharm.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.
Collapse
Affiliation(s)
- Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China.
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, South China Hospital of Shenzhen University, Fuxin Road 1, ShenZhen, 518116, Guangdong Province, China.
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
5
|
Mahemuti Y, Kadeer K, Su R, Abula A, Aili Y, Maimaiti A, Abulaiti S, Maimaitituerxun M, Miao T, Jiang S, Axier A, Aisha M, Wang Y, Cheng X. TSPO exacerbates acute cerebral ischemia/reperfusion injury by inducing autophagy dysfunction. Exp Neurol 2023; 369:114542. [PMID: 37717810 DOI: 10.1016/j.expneurol.2023.114542] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/19/2023]
Abstract
Autophagy is considered a double-edged sword, with a role in the regulation of the pathophysiological processes of the central nervous system (CNS) after cerebral ischemia-reperfusion injury (CIRI). The 18-kDa translocator protein (TSPO) is a highly conserved protein, with its expression level in the nervous system closely associated with the regulation of pathophysiological processes. In addition, the ligand of TSPO reduces neuroinflammation in brain diseases, but the potential role of TSPO in CIRI is largely undiscovered. On this basis, we investigated whether TSPO regulates neuroinflammatory response by affecting autophagy in microglia. In our study, increased expression of TSPO was detected in rat brain tissues with transient middle cerebral artery occlusion (tMCAO) and in BV2 microglial cells exposed to oxygen-glucose deprivation or reoxygenation (OGD/R) treatment, respectively. In addition, we confirmed that autophagy was over-activated during CIRI by increased expression of autophagy activation related proteins with Beclin-1 and LC3B, while the expression of p62 was decreased. The degradation process of autophagy was inhibited, while the expression levels of LAMP-1 and Cathepsin-D were significantly reduced. Results of confocal laser microscopy and transmission electron microscopy (TEM) indicated that autophagy flux was disordered. In contrast, inhibition of TSPO prevented autophagy over-activation both in vivo and in vitro. Interestingly, suppression of TSPO alleviated nerve cell damage by reducing reactive oxygen species (ROS) and pro-inflammatory factors, including TNF-α and IL-6 in microglia cells. In summary, these results indicated that TSPO might affect CIRI by mediating autophagy dysfunction and thus might serve as a potential target for ischemic stroke treatment.
Collapse
Affiliation(s)
- Yusufu Mahemuti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China; School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, PR China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science & Brain-Machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou 311121, Zhejiang, PR China; NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Kaheerman Kadeer
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Riqing Su
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Abudureheman Abula
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Yirizhati Aili
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Aierpati Maimaiti
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Subinuer Abulaiti
- Department of Epidemiology and Biostatistics, Institute of Public Health, Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | | | - Tong Miao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Shihao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Aximujiang Axier
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Maimaitili Aisha
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Yongxin Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China
| | - Xiaojiang Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, PR China.
| |
Collapse
|
6
|
Lu Q, Xu S, Hao Z, Li Y, Huang Y, Ying S, Jing W, Zou S, Xu Y, Wang H. Dinotefuran exposure induces autophagy and apoptosis through oxidative stress in Bombyx mori. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131997. [PMID: 37423129 DOI: 10.1016/j.jhazmat.2023.131997] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
As a third-generation neonicotinoid insecticide, dinotefuran is extensively used in agriculture, and its residue in the environment has potential effects on nontarget organisms. However, the toxic effects of dinotefuran exposure on nontarget organism remain largely unknown. This study explored the toxic effects of sublethal dose of dinotefuran on Bombyx mori. Dinotefuran upregulated reactive oxygen species (ROS) and malondialdehyde (MDA) levels in the midgut and fat body of B. mori. Transcriptional analysis revealed that the expression levels of many autophagy and apoptosis-associated genes were significantly altered after dinotefuran exposure, consistent with ultrastructural changes. Moreover, the expression levels of autophagy-related proteins (ATG8-PE and ATG6) and apoptosis-related proteins (BmDredd and BmICE) were increased, whereas the expression level of an autophagic key protein (sequestosome 1) was decreased in the dinotefuran-exposed group. These results indicate that dinotefuran exposure leads to oxidative stress, autophagy, and apoptosis in B. mori. In addition, its effect on the fat body was apparently greater than that on the midgut. In contrast, pretreatment with an autophagy inhibitor effectively downregulated the expression levels of ATG6 and BmDredd, but induced the expression of sequestosome 1, suggesting that dinotefuran-induced autophagy may promote apoptosis. This study reveals that ROS generation regulates the impact of dinotefuran on the crosstalk between autophagy and apoptosis, laying the foundation for studying cell death processes such as autophagy and apoptosis induced by pesticides. Furthermore, this study provides a comprehensive insight into the toxicity of dinotefuran on silkworm and contributes to the ecological risk assessment of dinotefuran in nontarget organisms.
Collapse
Affiliation(s)
- Qingyu Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiliang Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhihua Hao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yinghui Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxin Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shuye Ying
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wenhui Jing
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Zou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yusong Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huabing Wang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
7
|
Luo J, Zeng L, Li J, Xu S, Zhao W. Oxidative DNA Damage-induced PARP-1-mediated Autophagic Flux Disruption Contributes to Bupivacaine-induced Neurotoxicity During Pregnancy. Curr Neuropharmacol 2023; 21:2134-2150. [PMID: 37021417 PMCID: PMC10556365 DOI: 10.2174/1570159x21666230404102122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 04/07/2023] Open
Abstract
OBJECTIVE Severe neurologic complications after spinal anesthesia are rare but highly distressing, especially in pregnant women. Bupivacaine is widely used in spinal anesthesia, but its neurotoxic effects have gained attention. METHODS Furthermore, the etiology of bupivacaine-mediated neurotoxicity in obstetric patients remains unclear. Female C57BL/6 mice were intrathecally injected with 0.75% bupivacaine on the 18th day of pregnancy. We used immunohistochemistry to examine DNA damage after bupivacaine treatment in pregnant mice and measured γ-H2AX (Ser139) and 8-OHdG in the spinal cord. A PARP-1 inhibitor (PJ34) and autophagy inhibitor (3-MA) were administered with bupivacaine in pregnant mice. Parp-1flox/flox mice were crossed with Nes-Cre transgenic mice to obtain neuronal conditional knockdown mice. Then, LC3B and P62 staining were performed to evaluate autophagic flux in the spinal cords of pregnant wild-type (WT) and Parp-1-/- mice. We performed transmission electron microscopy (TEM) to evaluate autophagosomes. RESULTS The present study showed that oxidative stress-mediated DNA damage and neuronal injury were increased after bupivacaine treatment in the spinal cords of pregnant mice. Moreover, PARP-1 was significantly activated, and autophagic flux was disrupted. Further studies revealed that PARP-1 knockdown and autophagy inhibitors could alleviate bupivacaine-mediated neurotoxicity in pregnant mice. CONCLUSION Bupivacaine may cause neuronal DNA damage and PARP-1 activation in pregnant mice. PARP-1 further obstructed autophagic flux and ultimately led to neurotoxicity.
Collapse
Affiliation(s)
- Jiaming Luo
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Lei Zeng
- Division of Laboratory Science, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Ji Li
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Shiyuan Xu
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| | - Wei Zhao
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province, China
| |
Collapse
|
8
|
Apoptosis, Proliferation, and Autophagy Are Involved in Local Anesthetic-Induced Cytotoxicity of Human Breast Cancer Cells. Int J Mol Sci 2022; 23:ijms232415455. [PMID: 36555096 PMCID: PMC9779437 DOI: 10.3390/ijms232415455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer accounts for almost one quarter of all female cancers worldwide, and more than 90% of those who are diagnosed with breast cancer undergo mastectomy or breast conservation surgery. Local anesthetics effectively inhibit the invasion of cancer cells at concentrations that are used in surgical procedures. The limited treatment options for triple-negative breast cancer (TNBC) demonstrate unmet clinical needs. In this study, four local anesthetics, lidocaine, levobupivacaine, bupivacaine, and ropivacaine, were applied to two breast tumor cell types, TNBC MDA-MB-231 cells and triple-positive breast cancer BT-474 cells. In addition to the induction of apoptosis and the suppression of the cellular proliferation rate, the four local anesthetics decreased the levels of reactive oxygen species and increased the autophagy elongation indicator in both cell types. Our combination index analysis with doxorubicin showed that ropivacaine had a synergistic effect on the two cell types, and lidocaine had a synergistic effect only in MDA-MB-231 cells; the others had no synergistic effects on doxorubicin. Lidocaine contributed significantly to the formation of autophagolysosomes in a dose-dependent manner in MDA-MB-231 cells but not in BT-474 cells. Our study demonstrated that the four local anesthetics can reduce tumor growth and proliferation and promote apoptosis and autophagy.
Collapse
|
9
|
Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK. PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166428. [PMID: 35533906 DOI: 10.1016/j.bbadis.2022.166428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023]
Abstract
Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sunil Kumar Sahu
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India.
| |
Collapse
|
10
|
Wang W, Zhou H, Sun L, Li M, Gao F, Sun A, Zou X. Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway. Dose Response 2022; 20:15593258221088092. [PMID: 35392264 PMCID: PMC8980408 DOI: 10.1177/15593258221088092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Background Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The aim of this present study is to explore the precise molecular mechanism of osthole-mediated inhibition of neurotoxicity induced by ropivacaine. Methods: SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated. Results The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. Conclusions This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.
Collapse
Affiliation(s)
- WeiBing Wang
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - Hui Zhou
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - LaiBao Sun
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - MeiNa Li
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - FengJiao Gao
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - AiJiao Sun
- Department of Cardiovascularology, The Affiliated AnQing Municipal Hospital of Anhui Medical University, AnQing, China
| | - XueNong Zou
- Department of Orthopedics, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| |
Collapse
|
11
|
Melatonin Attenuates Ropivacaine-Induced Apoptosis by Inhibiting Excessive Mitophagy Through the Parkin/PINK1 Pathway in PC12 and HT22 Cells. Inflammation 2022; 45:725-738. [PMID: 34994877 DOI: 10.1007/s10753-021-01579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/07/2021] [Indexed: 11/05/2022]
Abstract
Melatonin, as an endogenous circadian indoleamine secreted by the pineal gland, executes extensive biological functions, including antioxidant, anti-inflammatory, anti-tumor, and neuroprotective effects. Although melatonin has been reported to serve as a potential therapeutic against many nerve injury diseases, its effect on ropivacaine-induced neurotoxicity remains obscure. Our research aimed to explore the impact and mechanism of melatonin on ropivacaine-induced neurotoxicity. Our results showed that melatonin pretreatment protected the cell viability, morphology, and apoptosis of PC12 and HT22 cells, and it also improved ropivacaine-induced mitochondrial dysfunction and the activation of mitophagy. In addition, we found that autophagy activation with rapamycin significantly weakened the protective effect of melatonin against ropivacaine-induced apoptosis, whereas autophagy inhibition with 3-MA enhanced the effect of melatonin. We also detected the activation of Parkin and PINK1, a canonical mechanism for mitophagy regulation, and results shown that melatonin downregulated the expression of Parkin and PINK1, and upregulated Tomm20 and COXIV proteins, so that those results indicated that melatonin protected ropivacaine-induced apoptosis through suppressing excessive mitophagy by inhibiting the Parkin/PINK1 pathway. Melatonin may be a useful potential therapeutic agent against ropivacaine-induced neurotoxicity.
Collapse
|
12
|
Yuan N, Wang X, Zhang Y, Kong L, Yuan L, Ge Y. Intervention of NF-Κb Signaling Pathway and Preventing Post-Operative Cognitive Dysfunction as Well as Neuronal Apoptosis. IRANIAN JOURNAL OF PUBLIC HEALTH 2022; 51:124-132. [PMID: 35223633 PMCID: PMC8837897 DOI: 10.18502/ijph.v51i1.8303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/04/2021] [Indexed: 11/25/2022]
Abstract
Background: The Postoperative cognitive dysfunction (POCD) model was constructed by resection of the left hepatic lobe in aged mice to determine the behavioral effects of the POCD model in aged mice and the relationship between NF-κB and POCD in apoptosis and autophagy. Provide a theoretical basis for POCD prevention and treatment. Methods: This study was carried out in Ningbo No. 6 Hospital, Zhejiang, China, from Jun 2019 to Dec 2020. The POCD model was constructed after resection of the left extrahepatic lobe in aged mice and randomly divided into 6 groups: sham operation group, operation group (normal saline control group, solvent group, YC-1 group, PDTC group and 3-MA group). Related indicators of behavioral changes, neuronal inflammatory responses, apoptosis, and autophagy were examined. Results: The escape latency of the aged mice in the surgical group was significantly prolonged at three time points compared with the control group, and the number of insertions decreased significantly. Microglia are activated and the inflammatory response is increased, whereas PDTC has an inhibitory effect. It was demonstrated that apoptosis and necrosis of neurons can be induced by the NF-κb pathway, and autophagy can be promoted, whereas autophagy occurs before apoptosis. Conclusion: Activation of NF-κb pathway in neurons after POCD causes neuronal apoptosis and autophagy, and cognitive impairment occurs. PDTC, a NF-κb pathway inhibitor, can effectively reduce neuronal apoptosis induced by secondary brain injury after POCD. Necrosis, to protect the brain tissue.
Collapse
Affiliation(s)
- Na Yuan
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| | - Xiuzhen Wang
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| | - Yu Zhang
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| | - Lingsi Kong
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| | - Liyong Yuan
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| | - Yeying Ge
- Department of Anaesthesia, Ningbo NO.6 Hospital, Zhejiang 315040, China
| |
Collapse
|
13
|
Lu X, Chen L, Li Y, Huang R, Meng X, Sun F. Long non-coding RNA LINC01207 promotes cell proliferation and migration but suppresses apoptosis and autophagy in oral squamous cell carcinoma by the microRNA-1301-3p/lactate dehydrogenase isoform A axis. Bioengineered 2021; 12:7780-7793. [PMID: 34463208 PMCID: PMC8806684 DOI: 10.1080/21655979.2021.1972784] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have been reported to participate in the progression of various cancers, including oral squamous cell carcinoma (OSCC). This study aims to find out whether lncRNA LINC01207 regulates the progression of OSCC. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was conducted to evaluate gene expression in OSCC cells and tissues. Cell viability, proliferation, migration, apoptosis, and autophagy were detected using Cell Counting Kit-8 (CCK-8), colony formation, Transwell assays, flow cytometry, and western blot analysis. Luciferase reporter and RNA immunoprecipitation (RIP) assays were conducted to assess the interactions among genes. We found that LINC01207 was overexpressed in OSCC cells and tissues. LINC01207 silencing inhibited OSCC cell proliferation and migration but promoted apoptosis and autophagy, and LINC01207 overexpression had an opposite result. LINC01207 interacted with microRNA-1301-3p (miR-1301-3p) while lactate dehydrogenase isoform A (LHDA) was targeted by miR1301-3p. Effects caused by LINC01207 downregulation on OSCC cells were reversed by overexpression of LDHA. Overall, LINC01207 promotes OSCC progression via the miR-1301-3p/LDHA axis
Collapse
Affiliation(s)
- Xiaolin Lu
- Department of Maxillofacial Surgery, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Liling Chen
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China.,Department of Prosthodontics, Pudong New District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yang Li
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Rong Huang
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Xiangfeng Meng
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| | - Fangfang Sun
- Department of Prosthodontics, Nanjing Stomatological Hospital Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Mystery of methamphetamine-induced autophagosome accumulation in hippocampal neurons: loss of syntaxin 17 in defects of dynein-dynactin driving and autophagosome-late endosome/lysosome fusion. Arch Toxicol 2021; 95:3263-3284. [PMID: 34374793 DOI: 10.1007/s00204-021-03131-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/04/2021] [Indexed: 01/07/2023]
Abstract
Methamphetamine (METH), a psychoactive-stimulant facilitates massive accumulation of autophagosomes and causes autophagy-associated neuronal death. However, the underlying mechanisms involving METH-induced auto-phagosome accumulation remain poorly understood. In the current study, autophagic flux was tracked by mRFP-GFP-LC3 adenovirus, 900 μM METH treatment was found to significantly disrupt autophagic flux, which was further validated by remarkable increase of co-localized of LC3 and SQSTM1/p62, enhancement of LC3-II and SQSTM1/p62 protein levels, and massive autophagosome puncta aggregation. With the cycloheximide (CHX) treatment, METH treatment was displayed a significant inhibition of SQSTM1/p62 degradation. Therefore, the mRNAs associated with vesicle degradation were screened, and syntaxin 17 (Stx17) and dynein-dynactin mRNA levels significantly decreased, an effect was proved in protein level as well. Intriguingly, METH induced autophagosome accumulation and autophagic flux disturbance was incredibly retarded by overexpression of Stx17, which was validated by the restoration of the fusion autophagosome-late endosome/lysosome fusion. Moreover, Stx17 overexpression obviously impeded the METH-induced decrease of co-localization of the retrograded motor protein dynein/dynactin and autophagosome-late endosome, though the dynein/dynactin proteins were not involved in autophagosome-late endosome/lysosome fusion. Collectively, our findings unravel the mechanism of METH-induced autophagosome accumulation involving autophagosome-late endosome/lysosome fusion deficiency and that autophagy-enhancing mechanisms such as the overexpression of Stx17 may be therapeutic strategies for the treatment of METH-induced neuronal damage.
Collapse
|
15
|
Wang L, Guo W, Guan H, Yan N, Cai X, Zhu L. Local anesthetic bupivacaine inhibits proliferation and metastasis of hepatocellular carcinoma cells via suppressing PI3K/Akt and MAPK signaling. J Biochem Mol Toxicol 2021; 35:e22871. [PMID: 34338398 DOI: 10.1002/jbt.22871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Retrospective studies suggest that using local/regional anesthetic (LA/RA) is associated with better outcomes in primary HCC patients. In this study, we evaluated the effects of LA/RA bupivacaine in HCC cells and the underlying molecular mechanisms. The biological functions of bupivacaine in HCC cells were evaluated by transcriptome RNA sequencing, cell viability assay, bromodeoxyuridine incorporation assay, colony formation assay, flow cytometry, western blot, wound healing assay, transwell cell migration assay, tumor xenograft formation, and lung metastasis assay. Bupivacaine suppressed proliferation and induced apoptosis of HepG2 and SNU-449 cells in a time- and dose-dependent manner. Bupivacaine treatment also decreased colony formation, migration, and invasion of HepG2 and SNU-449 cells. In mouse models, bupivacaine repressed tumor xenograft growth and lung metastasis of HepG2 cells. Transcriptome sequencing of HepG2 cells suggested that PI3K/Akt and MAPK signaling pathways were suppressed by bupivacaine treatment. In western blot analysis, bupivacaine reduced the expression of total and phosphorylated Akt, mTOR, and MAPK. Furthermore, reactivated PI3K/Akt and MAPK signaling by EGF or NRG1 partially reversed the effects of bupivacaine on cell growth, colony formation, and invasion of HCC cells. Local anesthetic bupivacaine suppressed proliferation, migration and invasion, and induced apoptosis of HCC cells. Our results provided novel insights into the local anesthetic bupivacaine in the therapy of HCC patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weijia Guo
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongman Guan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ni Yan
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaolan Cai
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Lili Zhu
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
16
|
Lan N, Liu Y, Juan Z, Zhang R, Ma B, Xie K, Sun L, Feng H, Sun M, Liu J. The TSPO-specific Ligand PK11195 Protects Against LPS-Induced Cognitive Dysfunction by Inhibiting Cellular Autophagy. Front Pharmacol 2021; 11:615543. [PMID: 33708121 PMCID: PMC7941270 DOI: 10.3389/fphar.2020.615543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Perioperative neurocognitive disorders (PND) is a common postoperative neurological complication. Neuroinflammation is a major cause that leads to PND. Autophagy, an intracellular process of lysosomal degradation, plays an important role in the development and maintenance of nervous system. PK11195 is a classic translocator protein (TSPO) ligand, which can improve the cognitive function of rats. In this study, we evaluate the protective effect of PK11195 on the learning and memory of rats. A rat model of lipopolysaccharide (LPS)-induced cognitive dysfunction was established by intraperitoneal injection of LPS. Morris Water Maze (MWM), Western blot, qRT-PCR, confocal microscopy and transmission electron microscopy (TEM) were used to study the role of TSPO-specific ligand PK11195 in LPS-activated mitochondrial autophagy in rat hippocampus. We found that PK11195 ameliorated LPS-induced learning and memory impairment, as indicated by decreased escape latencies, swimming distances and increased target quadrant platform crossing times and swimming times during MWM tests. TSPO, ATG7, ATG5, LC3B and p62 protein and mRNA expression increased in the hippocampus of PND model rats. The hippocampal microglia of PND model rats also have severe mitochondrial damage, and a large number of autophagosomes and phagocytic vesicles can be seen. PK11195 pretreatment significantly decreased the expression of TSPO, ATG7, ATG5, LC3B and p62 protein and mRNA, as well as mitochondrial damage. These findings suggested that PK11195 may alleviate the damage of LPS-induced cognitive dysfunction of rats by inhibiting microglia activation and autophagy.
Collapse
Affiliation(s)
- Nannan Lan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Yongxin Liu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Zhaodong Juan
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Rui Zhang
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Baoyu Ma
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Keliang Xie
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Lina Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Hao Feng
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Meng Sun
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| | - Jianfeng Liu
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Wang YY, Yan Q, Huang ZT, Zou Q, Li J, Yuan MH, Wu LQ, Cai ZY. Ameliorating Ribosylation-Induced Amyloid-β Pathology by Berberine via Inhibiting mTOR/p70S6K Signaling. J Alzheimers Dis 2021; 79:833-844. [PMID: 33361598 DOI: 10.3233/jad-200995] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Berberine (BBR) plays a neuroprotective role in the pathogenesis of Alzheimer's disease (AD), inhibiting amyloid-β (Aβ) production and promoting Aβ clearance. Advanced glycation end products (AGEs) promote Aβ aggregation and tau hyperphosphorylation. The activation of mTOR signaling occurring at the early stage of AD has a prominent impact on the Aβ production. This work focused on whether BBR regulates the production and clearance of ribosylation-induced Aβ pathology via inhibiting mTOR signaling. OBJECTIVE To explore whether BBR ameliorates ribosylation-induced Aβ pathology in APP/PS1 mice. METHODS Western blot and immunofluorescence staining were used to detect the related proteins of the mammalian target of Rapamycin (mTOR) signaling pathway and autophagy, as well as the related kinases of Aβ generation and clearance. Tissue sections and Immunofluorescence staining were used to observe Aβ42 in APP/PS1 mice hippocampal. Morris water maze test was used to measure the spatial learning and memory of APP/PS1 mice. RESULTS BBR improves spatial learning and memory of APP/PS1 mice. BBR limits the activation of mTOR/p70S6K signaling pathway and enhances autophagy process. BBR reduces the activity of BACE1 and γ-secretase induced by D-ribose, and enhances Aβ-degrading enzymes and Neprilysin, and inhibits the expression of Aβ in APP/PS1 mice. CONCLUSION BBR ameliorates ribosylation-induced Aβ pathology via inhibiting mTOR/p70S6K signaling and improves spatial learning and memory of the APP/PS1 mice.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Zhen-Ting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Jing Li
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Ming-Hao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Liang-Qi Wu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-You Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
18
|
Xue X, Lv Y, Leng Y, Zhang Y. [Autophagy activation attenuates the neurotoxicity of local anaesthetics by decreasing caspase-3 activity in rats]. Rev Bras Anestesiol 2020; 70:627-634. [PMID: 33280811 DOI: 10.1016/j.bjan.2020.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The mechanisms by which local anaesthetics cause neurotoxicity are very complicated. Apoptosis and autophagy are highly coordinated mechanisms that maintain cellular homeostasis against stress. Studies have shown that autophagy activation serves as a protective mechanism in vitro. However, whether it also plays the same role in vivo is unclear. The aim of this study was to explore the role of autophagy in local anaesthetic-induced neurotoxicity and to elucidate the mechanism of neurotoxicity in an intrathecally injected rat model. METHODS Eighteen healthy adult male Sprague-Dawley rats were randomly divided into three groups. Before receiving an intrathecal injection of 1% bupivacaine, each rat received an intraperitoneal injection of vehicle or rapamycin (1 mg.kg-1) once a day for 3 days. The pathological changes were examined by Haematoxylin and Eosin (HE) staining. Apoptosis was analysed by TdT-mediated dUTP Nick-End Labelling (TUNEL) staining. Caspase-3, Beclin1 and LC3 expression was examined by Immunohistochemical (IHC) staining. Beclin1 and LC3 expression and the LC3-II/LC3-I ratio were detected by western blot analysis. RESULTS After bupivacaine was injected intrathecally, pathological damage occurred in spinal cord neurons, and the levels of apoptosis and caspase-3 increased. Enhancement of autophagy with rapamycin markedly alleviated the pathological changes and decreased the levels of apoptosis and caspase-3 while increasing the expression of LC3 and Beclin1 and the ratio of LC3-II to LC3-I. CONCLUSIONS Enhancement of autophagy decreases caspase-3-dependent apoptosis and improves neuronal survival in vivo. Activation of autophagy may be a potential therapeutic strategy for local anaesthetic-induced neurotoxicity.
Collapse
Affiliation(s)
- Xing Xue
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China
| | - Ying Lv
- Gansu Agricultural University, College of Resources and Environmental Sciences, Lanzhou, China
| | - Yufang Leng
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China.
| | - Yan Zhang
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China
| |
Collapse
|
19
|
Zhang H, Chen X, Zheng T, Lin M, Chen P, Liao Y, Gong C, Gao F, Zheng X. Amitriptyline Protects Against Lidocaine-induced Neurotoxicity in SH-SY5Y Cells via Inhibition of BDNF-mediated Autophagy. Neurotox Res 2020; 39:133-145. [PMID: 33156513 DOI: 10.1007/s12640-020-00299-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/27/2020] [Accepted: 10/18/2020] [Indexed: 12/12/2022]
Abstract
Amitriptyline (AMI) is a traditional tricyclic antidepressant that has been proven to exhibit neuroprotective effects in various neurological disorders. However, the underlying mechanism by which AMI attenuates lidocaine-induced neurotoxicity remains poorly understood. Brain-derived neurotrophic factor (BDNF) is an essential neurotrophin to neuronal development and survival in the brain, and recent studies have suggested that BDNF plays an important role in mediating lidocaine-induced neurotoxicity. The present study was performed to evaluate the protective effect of AMI against the neurotoxicity induced by lidocaine and to explore the role of BDNF-dependent autophagy in this process. The data showed that AMI pretreatment alleviated lidocaine-induced neurotoxicity, as evidenced by the restoration of cell viability, normalization of cell morphology, and reduction in the cell apoptosis index. In addition, autophagy inhibitor 3-methyladenine (3-MA) had a protective effect similar to that of AMI, but autophagy activator rapamycin eliminated the protective effect of AMI by suppressing mTOR activation. Moreover, at the molecular level, we found that AMI-mediated autophagy was involved in the expression of BDNF. The overexpression of BDNF or application of exogenous recombinant BDNF significantly suppressed autophagy and protected SH-SY5Y cells from apoptosis induced by Lido, whereas the neuroprotection of AMI was abolished by either knockdown of BDNF or use of a tropomyosin-related kinase B (TrkB) inhibitor ANA-12 in SH-SY5Y cells. Overall, our findings demonstrated that the protective effect of AMI against lidocaine-induced neurotoxicity correlated with inhibition of autophagy activity through upregulation of BDNF expression.
Collapse
Affiliation(s)
- Honghong Zhang
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaohui Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Ting Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Mingxue Lin
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Pinzhong Chen
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Yanling Liao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Cansheng Gong
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Fei Gao
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China
| | - Xiaochun Zheng
- Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People's Republic of China. .,Fujian Provincial Institute of Emergency Medicine, Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, People's Republic of China.
| |
Collapse
|
20
|
Xue X, Lv Y, Leng Y, Zhang Y. [Autophagy activation attenuates the neurotoxicity of local anaesthetics by decreasing caspase-3 activity in rats]. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ELSEVIER) 2020; 70:627-634. [PMID: 33280811 PMCID: PMC9373661 DOI: 10.1016/j.bjane.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES The mechanisms by which local anesthetics cause neurotoxicity are very complicated. Apoptosis and autophagy are highly coordinated mechanisms that maintain cellular homeostasis against stress. Studies have shown that autophagy activation serves as a protective mechanism in vitro. However, whether it also plays the same role in vivo is unclear. The aim of this study was to explore the role of autophagy in local anesthetic-induced neurotoxicity and to elucidate the mechanism of neurotoxicity in an intrathecally injected rat model. METHODS Eighteen healthy adult male Sprague-Dawley rats were randomly divided into three groups. Before receiving an intrathecal injection of 1% bupivacaine, each rat received an intraperitoneal injection of vehicle or rapamycin (1 mg.kg-1) once a day for 3 days. The pathological changes were examined by Haematoxylin and Eosin (HE) staining. Apoptosis was analysed by TdT-mediated dUTP Nick-End Labelling (TUNEL) staining. Caspase-3, Beclin1 and LC3 expression was examined by Immunohistochemical (IHC) staining. Beclin1 and LC3 expression and the LC3-II/LC3-I ratio were detected by western blot analysis. RESULTS After bupivacaine was injected intrathecally, pathological damage occurred in spinal cord neurons, and the levels of apoptosis and caspase-3 increased. Enhancement of autophagy with rapamycin markedly alleviated the pathological changes and decreased the levels of apoptosis and caspase-3 while increasing the expression of LC3 and Beclin1 and the ratio of LC3-II to LC3-I. CONCLUSIONS Enhancement of autophagy decreases caspase-3-dependent apoptosis and improves neuronal survivalin vivo. Activation of autophagy may be a potential therapeutic strategy for local anaesthetic-induced neurotoxicity.
Collapse
Affiliation(s)
- Xing Xue
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China
| | - Ying Lv
- Gansu Agricultural University, College of Resources and Environmental Sciences, Lanzhou, China
| | - Yufang Leng
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China.
| | - Yan Zhang
- The First Hospital of Lanzhou University, Department of Anaesthesiology, Lanzho, China
| |
Collapse
|
21
|
Wang Z, Liu Q, Lu J, Cao J, Wang XY, Chen Y. Lidocaine promotes autophagy of SH-SY5Y cells through inhibiting PI3K/AKT/mTOR pathway by upregulating miR-145. Toxicol Res (Camb) 2020; 9:467-473. [PMID: 32905277 DOI: 10.1093/toxres/tfaa049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 05/16/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Lidocaine is one of the most common local anesthetics (LA) used in clinical practice and it is neurotoxic. Recent studies suggested that LA, including lidocaine, could exert protective effect over neurotoxicity by promoting autophagy. However, the underlying mechanism was not sufficiently elucidated. This study aimed to explore the mechanism behind. Human neuroblastoma cell line SH-SY5Y was used throughout the whole study. The effect of lidocaine on viability, toxicity of SH-SY5Y cells were analyzed by MTT and lactate dehydrogenase (LDH) assays, respectively. The relative expression of miR-145 was assessed by quantitative reverse transcription-polymerase chain reaction. The impact which lidocaine brought on PI3K/AKT/mTOR pathway and autophagy-related proteins were examined by the western blot assay. LC3B was assessed by immunofluorescence staining. The interaction between miR-145 and AKT3 was conducted by the dual-luciferase reporting assay. Lidocaine inhibited viability of SH-SY5Y cells in a time and dose dependent manner and enhanced the release of LDH in SH-SY5Y cells. Furthermore, the expression of miR-145 and autophagy were enhanced by lidocaine. Transfection with miR-145 inhibitor inhibited the release of LDH and autophagy. miR-145 targeted AKT3 to inhibit PI3K/AKT/mTOR pathway. Finally, lidocaine inactivated PI3K/AKT/mTOR pathways via upregulation of miR-145, and it subsequently promoted autophagy of SH-SY5Y cells. However, silence of miR-145 could reverse the promotion of the autophagy of SH-SY5Y cells. Our results showed that lidocaine promoted autophagy of nerve cells via regulating miR-145 expression and further inactivation of PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhong Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| | - Qin Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| | - Jun Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| | - Jian Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| | - Xiao-Yan Wang
- Department of Medical Administration , The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| | - Yong Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province P. R. China
| |
Collapse
|
22
|
Wang S, Xia B, Qiao Z, Duan L, Wang G, Meng W, Liu Z, Wang Y, Zhang M. Tetramethylpyrazine attenuated bupivacaine-induced neurotoxicity in SH-SY5Y cells through regulating apoptosis, autophagy and oxidative damage. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:1187-1196. [PMID: 31114159 PMCID: PMC6489565 DOI: 10.2147/dddt.s196172] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022]
Abstract
Background: Bupivacaine (BUP) acts as a local anesthetic, which is extensively used for clinical patients but could generate neurotoxicity in neurons. Tetramethylpyrazine (TET) exhibits strong neuron protective effects against neurotoxicity. Hence, we investigate the effect of TET on BUP-induced neurotoxicity in SH-SY5Y cells. Methods: CCK-8 assay was used to detect cell proliferation in SH-SY5Y cells. In addition, Western blotting was used to examine Bax, Bcl-2, active caspase 3, LC3II, Beclin 1 and p-62 protein levels in cells. Moreover, ELISA assay was used to detect the levels of total glutathione (GS), superoxide dismutase (SOD) and malondialdehyde (MDA) in cells. Results: In this study, we found that TET attenuated the neurotoxicity of BUP on SH-SY5Y cells. Meanwhile, TET alleviated BUP-induced apoptosis in SH-SY5Y cell via decreasing the expressions of active caspase-3 and Bax and increasing the expression of Bcl-2. In addition, monodansylcadaverine staining assay and Western blotting results confirmed that TET induced autophagy in SH-SY5Y cells via increasing the LC3II/I and Beclin 1 levels. Furthermore, TET attenuated BUP-induced oxidative damage in SH-SY5Y cells via upregulation of the levels of total GS and SOD and downregulation of the level of MDA. Interesting, the protective effects of TET against BUP-induced neurotoxicity in SH-SY5Y cells were reversed by autophagy inhibitor 3-methyladenine (3MA). Conclusion: These data indicated that TET may play a neuroprotective role via inhibiting apoptosis and inducing autophagy in SH-SY5Y cells. Therefore, TET may be a potential agent for the treatment of human neurotoxicity induced by BUP.
Collapse
Affiliation(s)
- Shouliang Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Bin Xia
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Zonglei Qiao
- Department of Anesthesiology, Qingyun County People's Hospital, Dezhou 253700, Shandong Province, People's Republic of China
| | - Lian Duan
- Department of Ophthalmology, Qianfoshan Hospital Affiliated to Medical School of Shandong University, Jinan 250014, Shandong Province, People's Republic of China
| | - Gongming Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Wenjun Meng
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Zhifei Liu
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Yu Wang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| | - Mengyuan Zhang
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, People's Republic of China
| |
Collapse
|
23
|
Luo Z, Zhang Z, Zhang F, Liu Y, Zhang Y, Sun X, Sang M, Luo H. Ropivacaine mesylate exerts neurotoxicity via up-regulation of Fas/FasL expression in rat pheochromocytoma PC12 cells. Am J Transl Res 2019; 11:1626-1634. [PMID: 30972188 PMCID: PMC6456514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
It has been shown that local anesthetics have potential neurotoxicity, but the exact mechanism remains unclear. In this study, PC12 cells were treated with different concentrations of ropivacaine mesylate (0.1, 0.5, 1, 2 and 4 mmol/L) for 24 h, the cell viability was assessed by CCK-8 assay. Then, cells in 0.5 mmol/L ropivacaine group, 2 mmol/L ropivacaine group and control group were subjected to morphological observation under a light microscope, assessment of cell necrosis by Hoechst33342/PI staining and apoptosis by Annexin V-FITC/PI staining, and the detection of Fas and FasL expression by qPCR, immunofluorescence and Western blot. Results showed that the cell viability decreased significantly (P<0.05), necrosis and apoptosis rate increased markedly (P<0.05), and the expression of Fas, FasL, caspase-3 and caspase-8 increased dramatically (P<0.05) with the increase in the concentration of ropivacaine mesylate. Therefore, ropivacaine mesylate may induce the apoptosis of PC12 cells, which may be related to the up-regulation of Fas/FasL.
Collapse
Affiliation(s)
- Zhao Luo
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Zhen Zhang
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Fuyu Zhang
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Ying Liu
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Yang Zhang
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Xiaodong Sun
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Ming Sang
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| | - Huiyu Luo
- Department of Anesthesiology, The First People's Hospital of Xiangyang, Hubei University of Medicine Xiangyang 441000, Hubei Province, China
| |
Collapse
|
24
|
Effect of miR-132 on bupivacaine-induced neurotoxicity in human neuroblastoma cell line. J Pharmacol Sci 2019; 139:186-192. [DOI: 10.1016/j.jphs.2019.01.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/04/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
|
25
|
Liu RZ, Li T, Zhao GQ. Cytosolic HMGB1 Mediates Autophagy Activation in an Emulsified Isoflurane Anesthesia Cell Model. Neurochem Res 2019; 44:1090-1100. [PMID: 30712242 DOI: 10.1007/s11064-019-02740-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Inhalation anesthetic isoflurane may cause an increased risk of cognitive impairment. Previous studies have indicated that this cognitive decline is associated with neuroinflammation mediated by high mobility group box 1 (HMGB1). HMGB1 is released from cells and acts as a damage-associated molecule in neurodegenerative diseases. However, the effect of intracellular HMGB1 during emulsified isoflurane (EI) exposure is poorly understood. The purpose of this study was to investigate the effect of autophagy on neuroprotection, evaluate variation of HMGB1, and determine its role in autophagic flux after EI exposure in vitro. We observed that EI decreased cell viability in a concentration-dependent manner, accompanied by an increase in autophagic flux. EI exposure also elevates the HMGB1 level in cytoplasm. Further, cytosolic HMGB1 was necessary for autophagy by perturbing the beclin1-Bcl-2 interaction. Most importantly, autophagy induction by rapamycin alleviated EI-provoked cell injury, and HMGB1 knockdown induced autophagy inhibition, which exacerbated cell damage. Based on these findings, we propose that autophagic flux is sustained and upregulated in response to EI exposure by increased cytosolic HMGB1, and that autophagy activation serves as a protective mechanism against EI-induced cytotoxicity. Thus, the complex roles of HMGB1 make it pivotal in reducing EI-induced neuronal damage.
Collapse
Affiliation(s)
- Rui-Zhu Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Rd, Changchun, 130000, China
| | - Tao Li
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Rd, Changchun, 130000, China
| | - Guo-Qing Zhao
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, No.126, Xiantai Rd, Changchun, 130000, China.
| |
Collapse
|
26
|
Izdebska M, Hałas-Wiśniewska M, Zielińska W, Klimaszewska-Wiśniewska A, Grzanka D, Gagat M. Lidocaine induces protective autophagy in rat C6 glioma cell line. Int J Oncol 2018; 54:1099-1111. [PMID: 30569147 PMCID: PMC6365045 DOI: 10.3892/ijo.2018.4668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/16/2018] [Indexed: 02/06/2023] Open
Abstract
Malignant glioma is the most common type of brain cancer with poor prognosis. Surgical resection, chemotherapy and radiotherapy are the main therapeutic options; however, in addition to their insufficient efficacy, they are associated with the pain experienced by patients. To relieve pain, local anesthetics, such as lidocaine can be used. In the present study, the effects of lidocaine on the C6 rat glioma cell line were investigated. An MTT assay and Annexin V/propidium iodide analysis indicated the increase in the percentage of apoptotic and necrotic cells in response to lidocaine. Furthermore, light microscopy analysis on the ultrastructural level presented the occurrence of vacuole-like structures associated with autophagy, which was supported by the analysis of autophagy markers (microtubule-associated protein 1A/1B-light chain 3, acridine orange and Beclin-1). Additionally, reorganization of the cytoskeleton was observed following treatment with lidocaine, which serves an important role in the course of autophagy. To determine the nature of autophagy, an inhibitor, bafilomycin A1 was applied. This compound suppressed the fusion of autophagosomes with lysosomes and increased the percentage of apoptotic cells. These results demonstrated that lidocaine may induce cytoprotective autophagy and that manipulation of this process could be an alternative therapeutic strategy in the treatment of cancer.
Collapse
Affiliation(s)
- Magdalena Izdebska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Marta Hałas-Wiśniewska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Wioletta Zielińska
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Anna Klimaszewska-Wiśniewska
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| | - Maciej Gagat
- Department of Histology and Embryology, Faculty of Medicine, Nicolaus Copernicus University in Toruń, Collegium Medicum in Bydgoszcz, 85-092 Bydgoszcz, Poland
| |
Collapse
|
27
|
Li Y, Li X, Zhao J, Li L, Wang Y, Zhang Y, Chen Y, Liu W, Gao L. Midazolam Attenuates Autophagy and Apoptosis Caused by Ketamine by Decreasing Reactive Oxygen Species in the Hippocampus of Fetal Rats. Neuroscience 2018; 388:460-471. [DOI: 10.1016/j.neuroscience.2018.03.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/22/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022]
|
28
|
Xue X, Lv Y, Leng Y, Zhang Y. Protective effects of extracellular polymeric substances from Aphanizomenon flos-aquae on neurotoxicity induced by local anesthetics. Exp Ther Med 2018; 16:3011-3019. [PMID: 30214519 PMCID: PMC6125984 DOI: 10.3892/etm.2018.6540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/22/2018] [Indexed: 11/05/2022] Open
Abstract
The neurotoxicity of local anesthetics has received an increasing amount of attention and more effective therapeutic agents are required. Extracellular polymeric substances from Aphanizomenon flos-aquae (EPS-A) are high molecular weight polysaccharides. The present study aimed to elucidate the protective effects of EPS-A on neurotoxicity induced by local anesthetics in an intraperitoneal injection bupivacaine rat model. The results of immunohistochemical staining inicated that following intraperitoneal injection of EPS-A the levels of apoptosis and caspase-3 decreased, and the expression levels of microtubule-associated protein 1A light chain 3 (LC3) and beclin1 increased. In order to further clarify the mechanism of the EPS-A-mediated protection, the expression of key proteins associated with autophagy was investigated by western blotting. The results suggested that the ratio of LC3-II/LC3-I and the expression level of beclin1 increased. Taken together, the results indicated that EPS-A induced neuroprotective effects on bupivacaine-induced neurotoxicity. The underlying mechanism may be associated with the inhibition of apoptosis, upregulation of autophagy and improvement of cell survival. The results suggested that EPS-A may be a candidate neuroprotective agent against neurotoxicity caused by local anesthetics.
Collapse
Affiliation(s)
- Xing Xue
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ying Lv
- Department of Resource and Environmental Engineering, Gansu Agricultural University, Lanzhou, Gansu 730070, P.R. China
| | - Yufang Leng
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yan Zhang
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
29
|
Ropivacaine regulates the expression and function of heme oxygenase-1. Biomed Pharmacother 2018; 103:284-289. [PMID: 29656184 DOI: 10.1016/j.biopha.2018.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/03/2023] Open
Abstract
As a new generation of amide-type local anesthetics (LAs), ropivacaine has been widely used for pain management in clinical settings. Increasing evidence has shown that administration of ropivacaine causes cytotoxic effects and apoptosis. However, the underlying molecular mechanisms still need to be elucidated. In the current study, our results indicated that ropivacaine treatment caused a significant induction of heme oxygenase-1 (HO-1) at both the mRNA and protein levels in human SHSY5Y cells. Levels of HO-1 mRNA and protein peaked at 1 h and 18 h, respectively, in response to ropivacaine treatment. Additionally, ropivacaine treatment enhanced HO-1 activity in a dose-dependent manner. Interestingly, we found that ropivacaine treatment induced phosphorylation of p38. Blockage of p38 phosphorylation with its specific inhibitor SB203580 or by transfection with p38 siRNA restrained ropivacaine-stimulated HO-1 expression. Additionally, we found that ropivacaine treatment promoted nuclear translocation of Nrf2 and amplified ARE promoter activity. Silencing of Nrf2 abolished ropivacaine-induced HO-1 expression. Notably, we found that inhibition of HO-1 activity promoted ropivacaine-induced production of reactive oxygen species (ROS), deletion of reduced glutathione (GSH), and release of lactate dehydrogenase (LDH), suggesting that induction of HO-1 by ropivacaine acted as a compensatory survival response against ropivacaine.
Collapse
|
30
|
Salama M, Elhussiny M, Magdy A, Omran AG, Alsayed A, Ashry R, Mohamed W. Dual mTORC1/mTORC2 blocker as a possible therapy for tauopathy in cellular model. Metab Brain Dis 2018; 33:583-587. [PMID: 29080085 DOI: 10.1007/s11011-017-0137-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/20/2017] [Indexed: 01/23/2023]
Abstract
Tauopathy comprises a group of disorders caused by abnormal aggregates of tau protein. In these disorders phosphorylated tau protein tends to accumulate inside neuronal cells (soma) instead of the normal axonal distribution of tau. A suggested therapeutic strategy for tauopathy is to induce autophagy to increase the ability to get rid of the unwanted tau aggregates. One of the key controllers of autophagy is mTOR. Blocking mTOR leads to stimulation of autophagy. Recently, unravelling molecular structure of mTOR showed that it is formed of two subunits: mTORC1/C2. So, blocking both subunits of mTOR seems more attractive as it will explore all abilities of mTOR molecule. In the present study, we report using pp242 which is a dual mTORC1/C2 blocker in cellular model of tauopathy using LUHMES cell line. Adding fenazaquin to LUHMES cells induced tauopathy in the form of increased phospho tau aggregates. Moreover, fenazaquin treated cells showed the characteristic somatic redistribution of tau. PP242 use in the present tauopathy model reversed the pathology significantly without observable cellular toxicity for the used dosage of 1000 nM. The present study suggests the possible use of pp242 as a dual mTOR blocker to treat tauopathy.
Collapse
Affiliation(s)
- Mohamed Salama
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, El-Gomhourya Street, Mansoura, 36551, Egypt.
- Department of Toxicology, Mansoura University, Mansoura, Egypt.
| | - Mahmoud Elhussiny
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, El-Gomhourya Street, Mansoura, 36551, Egypt
| | - Alshimaa Magdy
- Department of Medical Biochemistry- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed G Omran
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, El-Gomhourya Street, Mansoura, 36551, Egypt
| | - Aziza Alsayed
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, El-Gomhourya Street, Mansoura, 36551, Egypt
| | - Ramy Ashry
- Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Wael Mohamed
- Department of Pharmacology, Faculty of Medicine, Menoufia University, Mansoura, Egypt
- Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| |
Collapse
|
31
|
Abstract
Anesthetic agents provide patient comfort and optimize conditions for surgical and procedural interventions. These agents have been shown to modulate autophagy, which is a cellular mechanism that maintains tissue homeostasis by degrading and recycling excess, aged, or dysfunctional proteins. However, it is not always clear if upregulated autophagy is beneficial or harmful. This review assesses the anesthetic effects on autophagy. In the vast majority of studies, anesthetic modulation of autophagy is beneficial for cell survival.
Collapse
Affiliation(s)
- Fan Ye
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | - Zhi-Yi Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|