1
|
Song N, Xu X, Liu P, Jiang Y, Tang X, Zuo D, Lai Z, Cheng J. Integrative analysis of microbiota and metabolomics in individuals exhibiting different TCM constitutions utilizing 16S rDNA sequencing and LC/MS metabolomics. Microb Pathog 2025; 205:107621. [PMID: 40258500 DOI: 10.1016/j.micpath.2025.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) theory posits a close relationship between an individual's constitutional types and the overall health. Variations in metabolic processes and microbial composition have been observed across different constitution types. This study aims to explore the relationship between TCM constitutions, intestinal flora, and metabolites to devise personalized TCM treatment strategies, enhancing evidence-based guidance for clinical practice. METHODS The research investigated differences in microbial diversity and composition among three TCM constitution types: yin-deficiency constitution (PA), balanced constitution (PH), and yang-deficiency constitution (PI). A significant elevation of the Chao1 metric was noted in the PH group compared to the PI group. RESULTS PCoA and CPCoA analyses demonstrated distinct group separation based on floral samples. Dominant phyla included Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria, with varying abundance at the genus level. Metabolic pathway analysis unveiled disparities in metabolites associated with different pathways among constitution groups. KEGG pathway enrichment analysis emphasized pathways such as steroid hormone biosynthesis, ovarian steroidogenesis, and tryptophan metabolism. Furthermore, correlation analysis revealed associations between specific bacterial taxa and metabolites. CONCLUSION This study delineated the variations in intestinal flora and metabolic profiles among individuals with PA, PH, and PI constitution types, providing valuable insights for the development of personalized TCM treatment approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Xinyi Xu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Hunan University of Chinese Medicine, 410208, Hunan, China
| | - Pingyu Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Hunan University of Chinese Medicine, 410208, Hunan, China
| | - Yutong Jiang
- Physical Examination Center, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Xiaohui Tang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China.
| | - Zonglang Lai
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China.
| | - Jun Cheng
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Shapingba District Hospital of TCM, Chongqing, 400030, China.
| |
Collapse
|
2
|
Gottumukkala SB, Palanisamy A. Non-small cell lung cancer map and analysis: exploring interconnected oncogenic signal integrators. Mamm Genome 2025:10.1007/s00335-025-10110-6. [PMID: 39939487 DOI: 10.1007/s00335-025-10110-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025]
Abstract
Non-Small Cell lung cancer (NSCLC) is known for its fast progression, metastatic potency, and a leading cause of mortality globally. At diagnosis, approximately 30-40% of NSCLC patients already present with metastasis. Epithelial to mesenchymal transition (EMT) is a developmental program implicated in cancer progression and metastasis. Transforming Growth Factor-β (TGFβ) and its signalling plays a prominent role in orchestrating the process of EMT and cancer metastasis. In present study, a comprehensive molecular interaction map of TGFβ induced EMT in NSCLC was developed through an extensive literature survey. The map encompasses 394 species interconnected through 554 reactions, representing the relationship and complex interplay between TGFβ induced SMAD dependent and independent signalling pathways (PI3K/Akt, Wnt, EGFR, JAK/STAT, p38 MAPK, NOTCH, Hypoxia). The map, built using Cell Designer and compliant with SBGN and SBML standards, was subsequently translated into a logical modelling framework using CaSQ and dynamically analysed with Cell Collective. These analyses illustrated the complex regulatory dynamics, capturing the known experimental outcomes of TGFβ induced EMT in NSCLC including the co-existence of hybrid EM phenotype during transition. Hybrid EM phenotype is known to contribute for the phenotypic plasticity during metastasis. Network-based analysis identified the crucial network level properties and hub regulators, while the transcriptome-based analysis cross validated the prognostic significance and clinical relevance of key regulators. Overall, the map developed and the subsequent analyses offer deeper understanding of the complex regulatory network governing the process of EMT in NSCLC.
Collapse
Affiliation(s)
- Sai Bhavani Gottumukkala
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India
| | - Anbumathi Palanisamy
- Department of Biotechnology, National Institute of Technology Warangal, Warangal, Telangana, India.
| |
Collapse
|
3
|
Jasim SA, Farhan SH, Ahmad I, Hjazi A, Kumar A, Jawad MA, Pramanik A, Altalbawy MAF, Alsaadi SB, Abosaoda MK. A cutting-edge investigation of the multifaceted role of SOX family genes in cancer pathogenesis through the modulation of various signaling pathways. Funct Integr Genomics 2025; 25:6. [PMID: 39753912 DOI: 10.1007/s10142-024-01517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/27/2024] [Indexed: 01/14/2025]
Abstract
This detailed study examines the complex role of the SOX family in various tumorigenic contexts, offering insights into how these transcription factors function in cancer. As the study progresses, it explores the specific contributions of each SOX family member. The significant roles of the SOX family in the oncogenic environment are well-recognized, highlighting a range of regulatory mechanisms that influence tumor progression. In brain, lung, and colorectal cancers, SOX types like SOX2, SOX3, and SOX4 promote the migration, proliferation, and angiogenesis of cancer cells. Conversely, in pancreatic, gastric, and breast cancers, SOX types, including SOX1, SOX9, and SOX17 inhibit various cancer cell activities such as proliferation and invasion. This thorough investigation enhances our understanding of the SOX family's complex role in cancer, establishing a foundation for future research and potential therapeutic strategies targeting these versatile transcription factors.
Collapse
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, College of Health and Medical Technology, University of Al-maarif, Anbar, Iraq.
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, 560069, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | | | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - M A Farag Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Salim B Alsaadi
- Department of Pharmaceutics, Al-Hadi University College, Baghdad, 10011, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
4
|
Wu S, Luo T, Lei X, Yang X. Emerging role of competing endogenous RNA in lung cancer drug resistance. J Chemother 2024; 36:546-565. [PMID: 38124356 DOI: 10.1080/1120009x.2023.2294582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Lung cancer remains one of the most common malignant cancers worldwide, and its survival rate is extremely low. Chemotherapy, the mainstay of lung cancer treatment, is not as effective as it could be due to the development of cellular resistance. The molecular mechanisms of drug resistance in lung cancer remain to be elucidated. Accumulating evidence suggests that ceRNAs are involved in various carcinogenesis and development. CeRNA is a transcript that regulates each other through competition with miRNA. However, the relationship between ceRNAs and chemoresistance in lung cancer remains unclear. In this narrative review, we provided a summary of treatment approaches that focus on ceRNA networks to overcome drug resistance.
Collapse
Affiliation(s)
- Shijie Wu
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Ting Luo
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
| | - Xiaoyong Lei
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| | - Xiaoyan Yang
- School of Pharmaceutical Science, Hengyang Medical College, University of South China, Hengyang, People's Republic of China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, Hengyang, People's Republic of China
| |
Collapse
|
5
|
Hassanin AAI, Ramos KS. Circulating Exosomal miRNA Profiles in Non-Small Cell Lung Cancers. Cells 2024; 13:1562. [PMID: 39329746 PMCID: PMC11430728 DOI: 10.3390/cells13181562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024] Open
Abstract
A growing number of studies have shown that microRNAs (miRNAs) can exert oncogenic or tumor suppressor activities in a variety of cancers, including lung cancer. Given their presence in exosome preparations, microRNA molecules may in fact participate in exosomal intercellular transfers and signaling. In the present study, we examined the profile of 25 circulating exosomal microRNAs in ostensibly healthy controls compared to patients with squamous cell lung cancers (SQCLC) or lung adenocarcinomas (LUAD). Eight miRNAs, namely, miR-21-5p, miR-126-3p, miR-210-3p, miR-221-3p, Let-7b-5p, miR-146a-5p, miR-222-3p, and miR-9-5p, were highly enriched in the cohort and selected for further analyses. All miRNAs were readily detected in non-small cell lung cancer (NSCLC) patients of both sexes at all cancer stages, and their levels in exosomes correlated with the clinicopathological characteristics of tumors. Thus, the presence of these miRNAs in circulating exosomes may contribute to the regulation of oncogenic activity in patients with NSCLC.
Collapse
Affiliation(s)
- Abeer A. I. Hassanin
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Kenneth S. Ramos
- Center for Genomic and Precision Medicine, Texas A&M Institute of Biosciences and Technology, Texas Medical Center, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Zhang Q, An N, Liu Y, Zhu Y, Pan W, Gu P, Zhao J, Pu Q, Zhu W. Alveolar type 2 cells marker gene SFTPC inhibits epithelial-to-mesenchymal transition by upregulating SOX7 and suppressing WNT/β-catenin pathway in non-small cell lung cancer. Front Oncol 2024; 14:1448379. [PMID: 39346732 PMCID: PMC11427448 DOI: 10.3389/fonc.2024.1448379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Surfactant Protein C gene (SFTPC) is a marker gene of alveolar type 2 cells (AT2), which are the key structures of alveoli. Mutations or deletions in SFTPC cause idiopathic pulmonary fibrosis (IPF). Importantly, IPF is an independent risk factor for non-small cell lung cancer (NSCLC). It suggests that abnormal expression of SFTPC may be relevant to development of NSCLC. However, the function and mechanism of SFTPC in NSCLC are still poor understood until now. Methods The expression of SFTPC and the relationship between SFTPC and prognosis of NSCLC were analyzed in TCGA database and our collected clinical NSCLC tissues. Subsequently, the function and mechanism of SFTPC in NSCLC were explored by RNA-sequence, qRT-PCR, Western blot, Immunohistochemical, Wound-healing, Millicell, Transwell assays and mouse tumor xenograft model. Results SFTPC was dramatically downregulated in NSCLC tissues from TCGA database and 40 out of 46 collected clinical LUAD tissues compared with adjacent non-tumor tissues. Low expression of SFTPC was associated with poor prognosis of LUAD by TCGA database. Importantly, we confirmed that overexpression of SFTPC significantly inhibited Epithelial-to-Mesenchymal Transition (EMT) process of NSCLC cells by upregulating SOX7 and then inactivating WNT/β-catenin pathway in vitro and in vivo. Particularly, we discovered that low expression of SFTPC was associated with EMT process and low expression of SOX7 in NSCLC tissues. Conclusion Our study revealed a novel mechanism of SFTPC in NSCLC development. Meanwhile, it also might provide a new clue for exploring the molecular mechanism about NSCLC development in patients with IPF in the future.
Collapse
Affiliation(s)
- Qiongyin Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning An
- Cancer Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wuliang Pan
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peiling Gu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jinzhu Zhao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Zhu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Zhang J, Zhang W, Liu J, Liu Y, Jiang Y, Ainiwaer A, Chen H, Gu Z, Chen H, Mao S, Guo Y, Xu T, Xu Y, Wu Y, Yao X, Yan Y. SOX7 inhibits the malignant progression of bladder cancer via the DNMT3B/CYGB axis. MOLECULAR BIOMEDICINE 2024; 5:36. [PMID: 39227479 PMCID: PMC11371982 DOI: 10.1186/s43556-024-00198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Bladder cancer (BCa) stands out as a highly prevalent malignant tumor affecting the urinary system. The Sex determining region Y-box protein family is recognized for its crucial role in BCa progression. However, the effect of Sex determining region Y-box 7 (SOX7) on BCa progression has not been fully elucidated. Herein, RNA-sequencing, western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF) and tissue microarray were utilized to assess SOX7 expression in vitro and in vivo. Additionally, SOX7 expression, prognosis, and SOX7 + cytoglobin (CYGB) score were analyzed using R software. In vitro and vivo experiments were performed with BCa cell lines to validate the effect of SOX7 knockdown and overexpression on the malignant progression of BCa. The results showed that SOX7 exhibits low expression in BCa. It functions in diverse capacities, inhibiting the proliferative, migratory, and invasive capabilities of BCa. In addition, the experimental database demonstrated that SOX7 binds to the promoter of DNA methyltransferase 3 beta (DNMT3B), leading to the transcriptional inhibition of DNMT3B. This subsequently results in a reduced methylation of CYGB promoter, ultimately inhibiting the tumor progression of BCa. SOX7 + CYGB scores were significantly linked to patient prognosis. In conclusion, SOX7 inhibits the malignant progression of BCa via the DNMT3B/CYGB axis. Additionally, the SOX7 + CYGB score is capable of predicting the prognostic outcomes of BCa patients. Therefore, SOX7 and CYGB may play an important role in the progression of bladder cancer, and they can be used as prognostic markers of bladder cancer patients.
Collapse
Affiliation(s)
- Jingcheng Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yuchao Liu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yufeng Jiang
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Chongming Branch, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Ailiyaer Ainiwaer
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
- Department of Urology, Xinjiang Uygur Autonomous Region, Kashgar Prefecture Second People's Hospital, Kashgar, China
| | - Hanyang Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Chen
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yadong Guo
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yunfei Xu
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yuan Wu
- Department of Urology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, China.
| | - Xudong Yao
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| | - Yang Yan
- Department of Urology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
8
|
Nucera F, Ruggeri P, Spagnolo CC, Santarpia M, Ieni A, Monaco F, Tuccari G, Pioggia G, Gangemi S. MiRNAs and Microbiota in Non-Small Cell Lung Cancer (NSCLC): Implications in Pathogenesis and Potential Role in Predicting Response to ICI Treatment. Int J Mol Sci 2024; 25:6685. [PMID: 38928392 PMCID: PMC11203619 DOI: 10.3390/ijms25126685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Lung cancer (LC) is one of the most prevalent cancers in both men and women and today is still characterized by high mortality and lethality. Several biomarkers have been identified for evaluating the prognosis of non-small cell lung cancer (NSCLC) patients and selecting the most effective therapeutic strategy for these patients. The introduction of innovative targeted therapies and immunotherapy with immune checkpoint inhibitors (ICIs) for the treatment of NSCLC both in advanced stages and, more recently, also in early stages, has revolutionized and significantly improved the therapeutic scenario for these patients. Promising evidence has also been shown by analyzing both micro-RNAs (miRNAs) and the lung/gut microbiota. MiRNAs belong to the large family of non-coding RNAs and play a role in the modulation of several key mechanisms in cells such as proliferation, differentiation, inflammation, and apoptosis. On the other hand, the microbiota (a group of several microorganisms found in human orgasms such as the gut and lungs and mainly composed by bacteria) plays a key role in the modulation of inflammation and, in particular, in the immune response. Some data have shown that the microbiota and the related microbiome can modulate miRNAs expression and vice versa by regulating several intracellular signaling pathways that are known to play a role in the pathogenesis of lung cancer. This evidence suggests that this axis is key to predicting the prognosis and effectiveness of ICIs in NSCLC treatment and could represent a new target in the treatment of NSCLC. In this review, we highlight the most recent evidence and data regarding the role of both miRNAs and the lung/gut microbiome in the prediction of prognosis and response to ICI treatment, focusing on the link between miRNAs and the microbiome. A new potential interaction based on the underlying modulated intracellular signaling pathways is also shown.
Collapse
Affiliation(s)
- Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Paolo Ruggeri
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Calogera Claudia Spagnolo
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (M.S.)
| | - Mariacarmela Santarpia
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (C.C.S.); (M.S.)
| | - Antonio Ieni
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, 98100 Messina, Italy; (A.I.); (G.T.)
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università degli Studi di Messina, 98166 Messina, Italy;
| | - Giovanni Tuccari
- Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, Section of Anatomic Pathology, University of Messina, 98100 Messina, Italy; (A.I.); (G.T.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Sebastiano Gangemi
- Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria 1, 98125 Messina, Italy;
| |
Collapse
|
9
|
Zhang TX, Duan XC, Cui Y, Zhang Y, Gu M, Wang ZY, Li WY. Clinical significance of miR-9-5p in NSCLC and its relationship with smoking. Front Oncol 2024; 14:1376502. [PMID: 38628672 PMCID: PMC11018953 DOI: 10.3389/fonc.2024.1376502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Dysregulated expression of microRNA (miRNAs) in lung cancer has been wildly reported. The clinicopathologic significance of miR-9-5p in non-small-cell lung cancer (NSCLC) patients and its effect on NSCLC progression were explored in this study. Patients and methods A total of 76 NSCLC patients were included. miR-9-5p expression was evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Then, in vitro experiments including cell growth curve assays, colony formation assays, and transwell migration assays were performed. Further clinicopathological and prognostic values were explored using bioinformatics analysis of the TCGA database. Results miR-9-5p expression was significantly increased in tumor tissues (both P < 0.0001). miR-9-5p expression was relatively higher in larger tumors (P = 0.0327) and in lung squamous carcinoma (LUSC) (P = 0. 0143). In addition, miR-9-5p was significantly upregulated in the normal lung tissues of cigarette smokers (P = 0.0099). In vitro, miR-9-5p was correlated with cell proliferation and migration. After that, bioinformatics analysis of the TCGA database indicated that miR-9-5p was correlated with tumor size (P = 0.0022), lymphatic metastasis (P = 0.0141), LUSC (P < 0.0001), and smoking history (P < 0.0001). Finally, a prognostic study indicated high miR-9-5p expression was correlated with poor prognosis in LUAD (P = 0.0121). Conclusion Upregulation of miR-9-5p may have an oncogenic effect in NSCLC and may be related to smoking. The conclusion of this study may help find new prognostic and therapeutic targets for NSCLC and the exploration of the relationship between smoking and lung cancer.
Collapse
Affiliation(s)
- Tian-Xiang Zhang
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xin-Chun Duan
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Infectious Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Meng Gu
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Zi-Yu Wang
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Wei-Ying Li
- Cancer Research Center, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| |
Collapse
|
10
|
Lan X, Wei D, Fang L, Wu X, Wu B. Tumor-Associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma. Technol Cancer Res Treat 2024; 23:15330338241274337. [PMID: 39166273 PMCID: PMC11339934 DOI: 10.1177/15330338241274337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Transforming growth factor-β1 (TGF-β1) is an immunosuppressive cytokine that is highly expressed in the tumor microenvironment (TME) of lung adenocarcinoma (LUAD). TGF-β1 plays important roles in regulating tumor metastasis and chemotherapy resistance. However, the specific molecular mechanisms by which TGF-β1 regulates cisplatin resistance in the TAM of LUAD remain unclear. MATERIALS AND METHODS THP-1 induced macrophages were co-cultured with A549 and H1975 cells, and subsequently transfected with silencing TGF-β1 (siTGF-β1), GLI2 (siGLI2), a GLI2 overexpression plasmid, and their negative controls. Cellular activity was measured by CCK-8 and colony formation assays. Cell apoptosis was evaluated by flow cytometry and TUNEL staining. Transwell assays were performed to assess cell migration and invasion capabilities. The levels of Smad2/3, GLI2, cyclin D, and cyclin E expression were evaluated by qPCR, western blotting, and immunofluorescence methods. TGF-β1 levels were determined by ELISA. RESULTS Macrophages suppressed the apoptosis and promoted the migration and invasion of LUAD cells. TAM siTGF-β1 downregulated the Smad2/3 signaling pathways and GLI2 expression, deceased cell proliferation, and promoted apoptosis. SiGLI2 increased apoptosis and decreased the proliferation of LUAD cell lines. GLI2 decreased cisplatin resistance in LUAD cells. CONCLUSION High expression of TGF-β1 in the TAM positively activates GLI2 expression via the Smad2/3 pathway, which subsequently regulates cyclin D and cyclin E expression, and promotes the cisplatin resistance of LUAD.
Collapse
Affiliation(s)
- Xiaoling Lan
- Medical School, Jinan University, Guangzhou, China
- Department of Oncology and Chemotherapy, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Dalong Wei
- Department of Burns, Plastic Surgery and Wound Repair, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Lini Fang
- Department of Endocrinology, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Xiangsheng Wu
- Graduate School, Youjiang Medical University for Nationalities, Baise, China
| | - Biaoliang Wu
- Medical School, Jinan University, Guangzhou, China
- Department of Endocrinology, Afiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| |
Collapse
|
11
|
Bahmad HF, Thiravialingam A, Sriganeshan K, Gonzalez J, Alvarez V, Ocejo S, Abreu AR, Avellan R, Arzola AH, Hachem S, Poppiti R. Clinical Significance of SOX10 Expression in Human Pathology. Curr Issues Mol Biol 2023; 45:10131-10158. [PMID: 38132479 PMCID: PMC10742133 DOI: 10.3390/cimb45120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The embryonic development of neural crest cells and subsequent tissue differentiation are intricately regulated by specific transcription factors. Among these, SOX10, a member of the SOX gene family, stands out. Located on chromosome 22q13, the SOX10 gene encodes a transcription factor crucial for the differentiation, migration, and maintenance of tissues derived from neural crest cells. It plays a pivotal role in developing various tissues, including the central and peripheral nervous systems, melanocytes, chondrocytes, and odontoblasts. Mutations in SOX10 have been associated with congenital disorders such as Waardenburg-Shah Syndrome, PCWH syndrome, and Kallman syndrome, underscoring its clinical significance. Furthermore, SOX10 is implicated in neural and neuroectodermal tumors, such as melanoma, malignant peripheral nerve sheath tumors (MPNSTs), and schwannomas, influencing processes like proliferation, migration, and differentiation. In mesenchymal tumors, SOX10 expression serves as a valuable marker for distinguishing between different tumor types. Additionally, SOX10 has been identified in various epithelial neoplasms, including breast, ovarian, salivary gland, nasopharyngeal, and bladder cancers, presenting itself as a potential diagnostic and prognostic marker. However, despite these associations, further research is imperative to elucidate its precise role in these malignancies.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Aran Thiravialingam
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Karthik Sriganeshan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Jeffrey Gonzalez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Veronica Alvarez
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Stephanie Ocejo
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alvaro R. Abreu
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Rima Avellan
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Alejandro H. Arzola
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (A.T.); (K.S.); (J.G.); (S.O.); (A.R.A.); (R.A.); (A.H.A.)
| | - Sana Hachem
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | - Robert Poppiti
- The Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
- Department of Pathology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
12
|
Huang S, Wang HL. Salvianolic acid A improves nerve regeneration and repairs nerve defects in rats with brain injury by downregulating miR-212-3p-mediated SOX7. Kaohsiung J Med Sci 2023; 39:1222-1232. [PMID: 37987200 DOI: 10.1002/kjm2.12779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/22/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023] Open
Abstract
This study was to probe the protective effects and mechanisms of salvianolic acid A (SAA) on cerebral ischemia-reperfusion injury (CIRI). The middle cerebral artery occlusion model (MCAO) was established in rats. Rats' behavior, neurological deficits, brain injury, inflammation, and apoptosis in the brain tissue were evaluated. The inflammatory response and apoptosis of PC12 cells induced by oxygen glucose deprivation/reperfusion (OGD/R) were detected. SAA-mediated changes in miR-212-3p, SOX7, and Wnt/β-catenin pathway were determined, and the targeting relationship between miR-212-3p and SOX7 was clarified. SAA alleviated the neurological deficits and brain injury of MCAO rats and inhibited the inflammatory response and apoptosis of OGD/R-conditioned PC-12 cells. SAA upregulated miR-212-3p, Wnt3a, and β-catenin, whereas inhibited SOX7 levels. Silencing miR-212-3p counteracted the protective effect of SAA in the context of CIRI. SOX7 was a target protein of miR-212-3p. Silencing SOX7 based on SAA and miR-212-3p knockdown suppressed OGD/R-induced inflammation and apoptosis and increased Wnt3a and β-catenin levels in PC12 cells. SAA can improve the brain and nervous system injury caused by cerebral ischemia-reperfusion by upregulating miR-212-3p, thereby inhibiting SOX7 and activating the Wnt/βcatenin signaling pathway.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Rehabilitation Medicine, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong City, Jiangsu Province, China
| | - Hong-Liang Wang
- Department of Neurology, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong City, Jiangsu Province, China
| |
Collapse
|
13
|
Hussen BM, Saleem SJ, Abdullah SR, Mohamadtahr S, Hidayat HJ, Rasul MF, Taheri M, Kiani A. Current landscape of miRNAs and TGF-β signaling in lung cancer progression and therapeutic targets. Mol Cell Probes 2023; 72:101929. [PMID: 37683829 DOI: 10.1016/j.mcp.2023.101929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Lung cancer (LC) is the primary reason for cancer-associated fatalities globally. Due to both tumor-suppressing and tumor-promoting activities, the TGF-β family of growth factors is extremely essential to tumorigenesis. A non-coding single-stranded short RNA called microRNA (miRNA), which is made up of about 22 nt and is encoded by endogenous genes, can control normal and pathological pathways in various kinds of cancer, including LC. Recent research demonstrated that the TGF-β signaling directly can affect the synthesis of miRNAs through suppressor of mothers against decapentaplegic (SMAD)-dependent activity or other unidentified pathways, which could generate allostatic feedback as a result of TGF-β signaling stimulation and ultimately affect the destiny of cancer tissues. In this review, we emphasize the critical functions of miRNAs in lung cancer progression and, more critically, how they affect the TGF-β signaling pathway, and explore the role of both the TGF-β signaling pathway and miRNAs as potential therapeutic targets for improving the treatments of LC patients.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq; Department of Biomedical Sciences, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
| | - Safeen Jasim Saleem
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Sayran Mohamadtahr
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Lung Research and Developmental Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Liu Y, Chen Y, Zhao Q, Xie T, Xiang C, Guo Q, Zhang W, Zhou Y, Yuan Y, Zhang Y, Xi T, Li X, Zheng L. A positive TGF-β/miR-9 regulatory loop promotes the expansion and activity of tumour-initiating cells in breast cancer. Br J Pharmacol 2023; 180:2280-2297. [PMID: 37060166 DOI: 10.1111/bph.16092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/19/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND AND PURPOSE MicroRNA-9 (miR-9) has previously been described as a dual-functional RNA during breast cancer progression and its roles need to be clarified thoroughly. EXPERIMENTAL APPROACH A miR-9 knockout mode of mouse breast cancer, the MMTV-PyMT model (PyMT-miR-9-/- ), combined with different human breast cancer cell lines were used to evaluate the effects of miR-9 on breast cancer initiation, progression and metastasis. Lin-NECs (Neoplastic mammary epithelial cells) and pNECs (Pre-neoplastic mammary epithelial cells) were isolated and subjected to tumour-initiation assay. Whole-mount staining of mammary gland and histology was performed to determine mammary gland growth. Tumour-initiating analysis combining a series of in vitro experiments were carried out to evaluate miR-9 roles in tumour-initiating ability. RNA-sequencing of human breast cancer cells, and mammary glands at hyperplastic stages and established tumours in PyMT and PyMT-miR-9-/- mice, ChIP and luciferase report assays were conducted to reveal the underlying mechanisms. KEY RESULTS MiR-9 is ectopically expressed in breast cancer and its level is negatively correlated with the prognosis, especially in basal-like breast cancer patients. Additionally, miR-9 is essential for breast cancer progression by promoting the expansion and activity of tumour-initiating cells (TICs) in preneoplastic glands, established tumours and xenograft modes. Mechanistically, the activity of TICs hinges on a positive TGF-β/miR-9 regulatory loop mediated by the STARD13/YAP axis. CONCLUSIONS AND IMPLICATIONS These findings demonstrate that miR-9 is an oncogenic miRNA rather than a tumour-suppressor in breast cancer, calling for rectification of the model for this conserved and highly abundant miRNA.
Collapse
Affiliation(s)
- Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Ying Chen
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tianyuan Xie
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Chenxi Xiang
- Department of Pathology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yi Zhou
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yin Yuan
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Yuxin Zhang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
15
|
Sanchez-Cabrero D, Garcia-Guede Á, Burdiel M, Pernía O, Colmenarejo-Fernandez J, Gutierrez L, Higuera O, Rodriguez IE, Rosas-Alonso R, Rodriguez-Antolín C, Losantos-García I, Vera O, De Castro-Carpeño J, Ibanez de Caceres I. miR-124 as a Liquid Biopsy Prognostic Biomarker in Small Extracellular Vesicles from NSCLC Patients. Int J Mol Sci 2023; 24:11464. [PMID: 37511221 PMCID: PMC10380700 DOI: 10.3390/ijms241411464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite advances in non-small cell lung cancer (NSCLC) research, this is still the most common cancer type that has been diagnosed up to date. microRNAs have emerged as useful clinical biomarkers in both tissue and liquid biopsy. However, there are no reliable predictive biomarkers for clinical use. We evaluated the preclinical use of seven candidate miRNAs previously identified by our group. We collected a total of 120 prospective samples from 88 NSCLC patients. miRNA levels were analyzed via qRT-PCR from tissue and blood samples. miR-124 gene target prediction was performed using RNA sequencing data from our group and interrogating data from 2952 NSCLC patients from two public databases. We found higher levels of all seven miRNAs in tissue compared to plasma samples, except for miR-124. Our findings indicate that levels of miR-124, both free-circulating and within exosomes, are increased throughout the progression of the disease, suggesting its potential as a marker of disease progression in both advanced and early stages. Our bioinformatics approach identified KPNA4 and SPOCK1 as potential miR-124 targets in NSCLC. miR-124 levels can be used to identify early-stage NSCLC patients at higher risk of relapse.
Collapse
Affiliation(s)
- Darío Sanchez-Cabrero
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Álvaro Garcia-Guede
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Miranda Burdiel
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Olga Pernía
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Julián Colmenarejo-Fernandez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Laura Gutierrez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Oliver Higuera
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Isabel Esteban Rodriguez
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Pathology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Rocío Rosas-Alonso
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Carlos Rodriguez-Antolín
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | | | - Olga Vera
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| | - Javier De Castro-Carpeño
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Medical Oncology Department, La Paz University Hospital, 28046 Madrid, Spain
| | - Inmaculada Ibanez de Caceres
- Biomarkers and Experimental Therapeutics in Cancer, IdiPAZ, 28046 Madrid, Spain
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, 28046 Madrid, Spain
| |
Collapse
|
16
|
Jiang Z, Zhou J, Deng J, Li L, Wang R, Han Y, Zhou J, Tao R, Peng L, Wang D, Huang T, Yu Y, Zhou Z, Li J, Ousmane D, Wang J. Emerging roles of ferroptosis-related miRNAs in tumor metastasis. Cell Death Discov 2023; 9:193. [PMID: 37369681 DOI: 10.1038/s41420-023-01486-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 06/02/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Ferroptosis, a novel mode of cell death dependent on iron and reactive oxygen species, has been extensively explored during malignant tumors metastasis. Ferroptosis can interact with multiple components of the tumor microenvironment to regulate metastasis. These interactions generally include the following aspects: (1) Epithelial-mesenchymal transformation, which can help cancer cells increase their sensitivity to ferroptosis while they have multiple mechanisms to fight against it; (2) Disorder of iron metabolism in cancer stem cells which maintains their stem characteristics; (3) Polarization of M0 macrophages to M2. (4) The paradoxical effects of iron metabolism and CD8 + T cells induced by ferroptosis (5) Regulation of angiogenesis. In addition, ferroptosis can be regulated by miRNAs through the reprogramming of various intracellular metabolism processes, including the regulation of the glutathione- glutathione peroxidase 4 pathway, glutamic acid/cystine transport, iron metabolism, lipid metabolism, and oxidative stress. Therefore, there are many potential interactions between ferroptosis-related miRNAs and tumor metastasis, including interaction with cancer cells and immune cells, regulating cytokines, and angiogenesis. This review focuses on the role of ferroptosis-related miRNA in tumor metastasis, aiming to help readers understand their relationship and provide a new perspective on the potential treatment strategies of malignant tumors.
Collapse
Affiliation(s)
- Zhongyi Jiang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Junqi Deng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Luohong Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Ruifeng Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yingying Han
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junyu Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Rui Tao
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Lushan Peng
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Dan Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Tao Huang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Yupei Yu
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Zongjiang Zhou
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Jinghe Li
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Diabate Ousmane
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China
| | - Junpu Wang
- Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Department of Pathology, School of Basic Medicine, Central South University, Changsha City, Hunan Province, China.
- Ultrapathology (Biomedical electron microscopy) Center, Department of Pathology, Xiang-ya Hospital, Central South University, Changsha City, Hunan Province, China.
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
17
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
18
|
Lee SH, Brianna B. Therapeutic Targeting of Overexpressed MiRNAs in Cancer Progression. Curr Drug Targets 2022; 23:1212-1218. [PMID: 35702768 DOI: 10.2174/1389450123666220613163906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/20/2022] [Accepted: 04/29/2022] [Indexed: 01/25/2023]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs involved in the modulation of various biological processes, and their dysregulation is greatly associated with cancer progression as miRNAs can act as either tumour suppressors or oncogenes, depending on their intended target, mechanism of actions, and expression levels. This review paper aims to shed light on the role of overexpressed miRNAs in cancer progression. Cancer cells are known to upregulate specific miRNAs to inhibit the expression of genes regulating the cell cycle, such as PTEN, FOXO1, SOX7, caspases, KLF4, TRIM8, and ZBTB4. Inhibition of these genes promotes cancer development and survival by inducing cell growth, migration, and invasion while evading apoptosis, which leads to poor cancer survival rates. Therefore, the potential of antisense miRNAs in treating cancer is also explored in this review. Antisense miRNAs are chemically modified oligonucleotides that can reverse the action of overexpressed miRNAs. Currently, the therapeutic potential of antisense miRNAs is being validated in both in vitro and in vivo models. Studies have shown that antisense miRNAs could slow down the progression of cancer while enhancing the action of conventional anticancer drugs. These findings provide hope for future oncologic care as this novel intervention is in the process of clinical translation.
Collapse
Affiliation(s)
- Sau Har Lee
- Faculty of Health and Medical Sciences, School of Biosciences, Taylor's University, Subang Jaya, Selangor, Malaysia.,Faculty of Health and Medical Sciences, Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Brianna Brianna
- School of Health Sciences, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Yin Q, Zhu B, Zhang J, Yu Y, Li P. A Likely Role for a Novel Cell Therapeutic Target of Transforming Growth Factor-β1 on Radiation Pneumonitis in Lung and Nasopharyngeal Cancer Patients. Cell Transplant 2021; 29:963689720914245. [PMID: 32252552 PMCID: PMC7586269 DOI: 10.1177/0963689720914245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The association between the polymorphism of transforming growth factor (TGF)-β1 and risk of radiation pneumonitis has been extensively investigated; however, conclusive results were unavailable. Eligible studies were identified from the database of Medline, Web of Science, EMBASE, and CNKI (China Knowledge Resource Integrated Database) up to September 2019. The odds ratio (OR) and 95% confidence interval (95% CI) were used to assess the strength of the relationship. The results showed that there were associations between TGF 869 T/C (rs1982073) and risks of radiation pneumonitis. Subgroup analyses showed that TGF 869 T/C was associated with risk of radiation pneumonitis in Caucasians (OR [95% CI]: 0.45 [0.31 to 0.67] for C carriers vs. TT). In addition, subgroup analyses also suggested that the C allele was associated with decreased risks of radiation pneumonitis among hospital-based case–control studies (0.56 [0.39 to 0.82] for C carriers vs. TT). Meanwhile, C allele was also suggested to be associated with decreased risk of radiation pneumonitis among PCC (0.60 [0.38 to 0.96] for C carriers vs. TT). Especially, C allele was also found to be associated with decreased risk of radiation pneumonitis from the participants with lung cancer (0.57 [0.37 to 0.90] for C carriers vs. TT). Our meta-analysis shows that T allele in TGF 869 T/C is significantly associated with the increased risk of radiation pneumonitis, especially for Caucasians, and for the participants with lung cancer.
Collapse
Affiliation(s)
- Qin Yin
- Department of Respiratory and Critical Care Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei Province, China
| | - Bing Zhu
- Department of Thoracic Surgery, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei Province, China.,Bing Zhu is the co-first author
| | - Jixian Zhang
- Department of Respiratory and Critical Care Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei Province, China
| | - Yihan Yu
- Department of Respiratory and Critical Care Medicine, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Wuhan, Hubei Province, China
| | - Pengcheng Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
20
|
Yang D, Ma X, Xu J, Jia K, Liu X, Zhang P. Zfx-induced upregulation of UBE2J1 facilitates endometrial cancer progression via PI3K/AKT pathway. Cancer Biol Ther 2021; 22:238-247. [PMID: 33632059 DOI: 10.1080/15384047.2021.1883186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Emerging documents revealed that E2 enzyme family has been implicated in regulating the progression of numerous human cancers. Ubiquitin-conjugating enzyme E2 J1 (UBE2J1), a member of E2 enzyme family, has been reported to participate in the biological process of medulloblastoma, while little is known about its functionality in endometrial cancer (EC). Gene expression at the mRNA and protein levels were identified using RT-qPCR and western blot analysis, separately. The alteration on cell proliferation, adhesion, migration, invasion, and epithelial-mesenchymal transition (EMT) process was determined through 5-Ethynyl-2'-deoxyuridine, cell adhesion, wound healing and transwell assays as well as western blot analysis. The role of UBE2J1 in xenograft tumor in mice was determined. Luciferase reporter and chromatin immunoprecipitation assays were conducted to reveal the undering mechanism of UBE2J1. Our results indicated that UBE2J1 displayed high level in EC tissues and cells and predicted poor prognosis of EC patients. In addition, UBE2J1 depletion inhibited cell proliferation, adhesion, motion, EMT process invitro, and repressed tumor growth invivo. Rescue assays manifested that ethyl 2-amino-6-chloro-4-(1-cyano-2-ethoxy-2-oxoethyl)-4H-chromene-3-carboxylate treatment reversed the effects of UBE2J1 on PI3K/AKT pathway activation and malignant phenotypes of EC cells. Finally, zinc finger X-chromosomal protein (zfx), with high expression in EC tissues, was verified to activate UBE2J1 transcription by binding to UBE2J1 promoter. In conclusion, all facts signified that zfx-induced upregulation of UBE2J1 accelerated the progression of EC via regulating the PI3K/AKT signaling pathway, which suggested that UBE2J1 might be of great significance in probing into the underlying therapeutic strategies of EC.
Collapse
Affiliation(s)
- Dexin Yang
- Institute of Science and Technology for Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Xin Ma
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Jie Xu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ke Jia
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Xiaoli Liu
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| | - Ping Zhang
- Department of Gynaecology and Obstetrics, Zhangjiagang First People's Hospital, Zhangjiagang, China
| |
Collapse
|
21
|
Dutkowska A, Szmyd B, Kaszkowiak M, Domańska-Senderowska D, Pastuszak-Lewandoska D, Brzeziańska-Lasota E, Kordiak J, Antczak A. Expression of inflammatory interleukins and selected miRNAs in non-small cell lung cancer. Sci Rep 2021; 11:5092. [PMID: 33658555 PMCID: PMC7930048 DOI: 10.1038/s41598-021-84408-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Tumours are characterised by an ability to avoid immune destruction and the presence of cancer-associated inflammation. Better understanding of the link between lung cancer and such inflammation is vital for early detection and personalized treatment. Thus, we examined the mRNA expression of interleukins IL-1β, IL-6, IL-17 and miR-9, miR-122 as potential useful biomarkers of NSCLC. Tumour tissues, non-cancerous tissue and blood samples were collected from 39 patients with primary NSCLC undergoing surgical treatment. The selected RNA was isolated from tissue samples and selected miRNAs from peripheral blood exosomes. This RNA was transcribed to cDNA and quantified using RT-qPCR. Significantly higher expression of the selected interleukins was observed in non-cancerous than tumour tissue, and IL-6 was significantly higher in the tumour tissue of patients with a history of ≤ 40 pack-years (PYs) (2.197, IQR: 0.821-4.415) than in those with > 40 PYs (0.461, IQR: 0.372-0.741; p = 0.037). It is clear that inflammatory processes play a role in NSCLC, as indicated by the upregulation of IL-1β and IL-6 in tumour and adjacent tissue, and that smoking has a strong influence on inflammation in tumourigenesis, demonstrated by the upregulation of IL-6 in tumour samples among patients with ≤ 40 PYs compared to > 40 PYs.
Collapse
Affiliation(s)
- Agata Dutkowska
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland.
| | - Bartosz Szmyd
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | - Marcin Kaszkowiak
- Department of Biomedicine and Genetics, Medical University of Lodz, Lodz, Poland
| | | | | | | | - Jacek Kordiak
- Department of Chest Surgery, General and Oncological Surgery, University Teaching Hospital No. 2, Medical University of Lodz, Lodz, Poland
| | - Adam Antczak
- Department of General and Oncological Pulmonology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
22
|
MicroRNAs: Emerging oncogenic and tumor-suppressive regulators, biomarkers and therapeutic targets in lung cancer. Cancer Lett 2021; 502:71-83. [PMID: 33453304 DOI: 10.1016/j.canlet.2020.12.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is one of the most common solid tumors worldwide and the leading cause of cancer-related deaths, causing a devastating impact on human health. The clinical prognosis of lung cancer is usually restricted by delayed diagnosis and resistance to anticancer therapies. MicroRNAs, a range of small endogenous noncoding RNAs 22 nucleotides in length, have emerged as one of the most important players in cancer initiation and progression in recent decades. Current evidence reveals pivotal roles of microRNAs in regulating cell proliferation, migration, invasion and metastasis in lung cancer. An increasing number of preclinical and clinical studies have also explored the potential of microRNAs as promising biomarkers and new therapeutic targets for lung cancer. The current review summarizes the most recent progress on the functional mechanisms of microRNAs involved in lung cancer development and progression and further discusses the clinical application of miRNAs as putative therapeutic targets for molecular diagnosis and prognostic prediction in lung cancer.
Collapse
|
23
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
24
|
Guerriero I, Monaco G, Coppola V, Orlacchio A. Serum and Glucocorticoid-Inducible Kinase 1 (SGK1) in NSCLC Therapy. Pharmaceuticals (Basel) 2020; 13:ph13110413. [PMID: 33266470 PMCID: PMC7700219 DOI: 10.3390/ph13110413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) remains the most prevalent and one of the deadliest cancers worldwide. Despite recent success, there is still an urgent need for new therapeutic strategies. It is also becoming increasingly evident that combinatorial approaches are more effective than single modality treatments. This review proposes that the serum and glucocorticoid-inducible kinase 1 (SGK1) may represent an attractive target for therapy of NSCLC. Although ubiquitously expressed, SGK1 deletion in mice causes only mild defects of ion physiology. The frequent overexpression of SGK1 in tumors is likely stress-induced and provides a therapeutic window to spare normal tissues. SGK1 appears to promote oncogenic signaling aimed at preserving the survival and fitness of cancer cells. Most importantly, recent investigations have revealed the ability of SGK1 to skew immune-cell differentiation toward pro-tumorigenic phenotypes. Future studies are needed to fully evaluate the potential of SGK1 as a therapeutic target in combinatorial treatments of NSCLC. However, based on what is currently known, SGK1 inactivation can result in anti-oncogenic effects both on tumor cells and on the immune microenvironment. A first generation of small molecules to inactivate SGK1 has already been already produced.
Collapse
Affiliation(s)
- Ilaria Guerriero
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Gianni Monaco
- Biogem Institute for Genetic Research Gaetano Salvatore, Ariano Irpino, 83031 Avellino, Italy; (I.G.); (G.M.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| | - Arturo Orlacchio
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Arthur G. James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: (V.C.); (A.O.); Tel.: +1-614-688-8038 (V.C.); +1-646-552-0641 (A.O.)
| |
Collapse
|
25
|
Olbromski M, Podhorska-Okołów M, Dzięgiel P. Role of SOX Protein Groups F and H in Lung Cancer Progression. Cancers (Basel) 2020; 12:cancers12113235. [PMID: 33152990 PMCID: PMC7692225 DOI: 10.3390/cancers12113235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary The expression of SOX proteins has been demonstrated in many tissues at various stages of embryogenesis, where they play the role of transcription factors. The SOX18 protein (along with SOX7 and SOX17) belongs to the SOXF group and is mainly involved in the development of the cardiovascular system, where its expression was found in the endothelium. SOX18 expression was also demonstrated in neoplastic lines of gastric, pancreatic and colon adenocarcinomas. The prognostic role of SOX30 expression has only been studied in lung adenocarcinomas, where a low expression of this factor in the stromal tumor was associated with a worse prognosis for patients. Because of the complexity of non-small-cell lung cancer (NSCLC) development, the role of the SOX proteins in this malignancy is still not fully understood. Many recently published papers show that SOX family protein members play a crucial role in the progression of NSCLC. Abstract The SOX family proteins are proved to play a crucial role in the development of the lymphatic ducts and the cardiovascular system. Moreover, an increased expression level of the SOX18 protein has been found in many malignances, such as melanoma, stomach, pancreatic breast and lung cancers. Another SOX family protein, the SOX30 transcription factor, is responsible for the development of male germ cells. Additionally, recent studies have shown its proapoptotic character in non-small cell lung cancer cells. Our preliminary studies showed a disparity in the amount of mRNA of the SOX18 gene relative to the amount of protein. This is why our attention has been focused on microRNA (miRNA) molecules, which could regulate the SOX18 gene transcript level. Recent data point to the fact that, in practically all types of cancer, hundreds of genes exhibit an abnormal methylation, covering around 5–10% of the thousands of CpG islands present in the promoter sequences, which in normal cells should not be methylated from the moment the embryo finishes its development. It has been demonstrated that in non-small-cell lung cancer (NSCLC) cases there is a large heterogeneity of the methylation process. The role of the SOX18 and SOX30 expression in non-small-cell lung cancers (NSCLCs) is not yet fully understood. However, if we take into account previous reports, these proteins may be important factors in the development and progression of these malignancies.
Collapse
Affiliation(s)
- Mateusz Olbromski
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Correspondence: ; Tel.: +48-717-841-354; Fax: +48-717-840-082
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Medical University, 50-368 Wroclaw, Poland;
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| |
Collapse
|
26
|
Ying K, Wang L, Long G, Lian C, Chen Z, Lin W. ACTA2-AS1 suppresses lung adenocarcinoma progression via sequestering miR-378a-3p and miR-4428 to elevate SOX7 expression. Cell Biol Int 2020; 44:2438-2449. [PMID: 32808728 DOI: 10.1002/cbin.11451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/15/2022]
Abstract
Lung adenocarcinoma (LUAD) is the most common histological subtype of lung cancer. The abnormal expression of long noncoding RNAs (lncRNAs) can facilitate or suppress the development of malignant tumors. lncRNA actin alpha 2, smooth muscle antisense RNA 1 (ACTA2-AS1) has been reported to function as a tumor suppressor in liver cancer, nevertheless, its influences on LUAD remain to be investigated. In this paper, ACTA2-AS1 was identified as a downregulated lncRNA in LUAD samples and cells. Functionally, ACTA2-AS1 overexpression restrained cell proliferation but accelerated cell apoptosis in LUAD. In addition, we determined the suppressive effect of ACTA2-AS1 on LUAD cell invasion, migration, and epithelial-mesenchymal transition progress. Mechanistically, ACTA2-AS1 exert functions as a competing endogenous RNA through serving as a sponge for microRNA-378a-3p (miR-378a-3p) and microRNA-4428 (miR-4428) to elevate SRY-related high-mobility group box 7 (SOX7) expression. Importantly, SOX7 silencing could recover the ACTA2-AS1-mediated cell functions. To summarize, ACTA2-AS1 suppresses the malignant processes of LUAD cells through sequestering miR-378a-3p and miR-4428 to augment SOX7 expression.
Collapse
Affiliation(s)
- Kangtai Ying
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Ling Wang
- Department of Pediatrics, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Guangyan Long
- Department of Infection, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Chan Lian
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Zhe Chen
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Wei Lin
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| |
Collapse
|
27
|
Zhen J, Zhang H, Dong H, Tong X. miR-9-3p inhibits glioma cell proliferation and apoptosis by directly targeting FOXG1. Oncol Lett 2020; 20:2007-2015. [PMID: 32724447 DOI: 10.3892/ol.2020.11725] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 02/11/2020] [Indexed: 01/30/2023] Open
Abstract
There is accumulating evidence indicating that microRNA (miR)-9-3p expression is abnormal in patients with glioma; however, the role of miR-9-3p in glioma remains unclear. In the present study, reverse transcription-quantitative PCR and immunohistochemical assays were conducted to assess miR-9-3p and forkhead box G1 (FOXG1) expression, respectively. A luciferase reporter assay was performed to confirm the target of miR-9-3p. Moreover, cell counting kit-8 and flow cytometry assays were used to assess proliferation and apoptosis, respectively. The present study demonstrated that miR-9-3p is significantly downregulated, and FOXG1 is significantly upregulated, in patients with glioma. miR-9-3p overexpression inhibited proliferation and increased the apoptosis of both U87MG and TG-905 cells. In addition, FOXG1 was identified as a direct target of miR-9-3p, and FOXG1 silencing enhanced the inhibitory effect of miR-9-3p on proliferation and apoptosis in U87 MG and TG-905 cells. In conclusion, the present results suggest that miR-9-3p may suppress malignant biological properties by targeting FOXG1. Thus, miR-9-3p may serve as a diagnostic target and novel prognostic marker in patients with glioma.
Collapse
Affiliation(s)
- Jianwen Zhen
- Department of Cardio-cerebrovascular Diseases, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Hengxun Zhang
- Department of Cardio-cerebrovascular Diseases, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Hongzhi Dong
- Department of Cardio-cerebrovascular Diseases, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiaopeng Tong
- Department of Cardio-cerebrovascular Diseases, The Affiliated Hospital of Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
28
|
Qin CX, Yang XQ, Zhan ZY. Connection between SOX7 Expression and Breast Cancer Prognosis. Med Sci Monit 2020; 26:e921510. [PMID: 32238796 PMCID: PMC7152737 DOI: 10.12659/msm.921510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background SOX7 exerts a repressing effect against tumors and imposes vital influences on malignancies. Our research discussed the importance of SOX7 in breast cancer prognoses. Material/Methods SOX7 mRNA expression in breast cancer tissues samples and matched adjacent normal controls of breast cancer patients was measured by quantitative real-time-polymerase chain reaction (qRT-PCR). The relationship of SOX7 with clinicopathological characteristics were analyzed via chi-square test. The association of SOX7 levels with clinical outcomes was evaluated adopting the Kaplan-Meier method and multivariate Cox proportional hazards regression model. Results SOX7 mRNA degree of expression exhibited a declining tendency in breast cancer tissue compared to paired bordering normal tissue specimens (P<0.001). In addition, the reduced SOX7 degree of expression had a strong correlation to larger cancer mass dimension (P=0.006) and lymph node metastasis (P=0.001). Survival analysis revealed that the overall survival (OS) time was much shorter among cases harboring low SOX7 degree of expression compared to high degree of expression (P=0.005). Moreover, SOX7 expression alone could predict OS among breast cancer patients (hazard ratio=3.956, 95% confidence interval=1.330–11.772, P=0.013). Conclusions SOX7 expression was downregulated in breast cancer tissues, and it could function as a useful prognostic marker in breast cancer.
Collapse
Affiliation(s)
- Chun-Xin Qin
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Xiao-Qing Yang
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| | - Zhi-Yong Zhan
- Department of Thyroid Breast Surgery, Weihai Municipal Hospital, Weihai, Shandong, China (mainland)
| |
Collapse
|
29
|
Yi M, Xu L, Jiao Y, Luo S, Li A, Wu K. The role of cancer-derived microRNAs in cancer immune escape. J Hematol Oncol 2020; 13:25. [PMID: 32222150 PMCID: PMC7103070 DOI: 10.1186/s13045-020-00848-8] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/14/2020] [Indexed: 12/18/2022] Open
Abstract
During malignant transformation, accumulated somatic mutations endow cancer cells with increased invasiveness and immunogenicity. Under selective pressure, these highly immunogenic cancer cells develop multiple strategies to evade immune attack. It has been well established that cancer cells could downregulate the expression of major histocompatibility complex, acquire alterations in interferon pathway, and upregulate the activities of immune checkpoint pathways. Besides, cancer cells secret numerous cytokines, exosomes, and microvesicles to regulate the functions and abundances of components in the tumor microenvironment including immune effector cells and professional antigen presentation cells. As the vital determinant of post-transcriptional regulation, microRNAs (miRNAs) not only participate in cancer initiation and progression but also regulate anti-cancer immune response. For instance, some miRNAs affect cancer immune surveillance and immune escape by interfering the expression of immune attack-associated molecules. A growing body of evidence indicated that cancer-derived immune modulatory miRNAs might be promising targets to counteract cancer immune escape. In this review, we summarized the role of some miRNAs in cancer immune escape and discussed their potential clinical application as treatment targets.
Collapse
Affiliation(s)
- Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Ying Jiao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Anping Li
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008 China
| |
Collapse
|
30
|
miR-9 Does Not Regulate Lamin A Expression in Metastatic Cells from Lung Adenocarcinoma. Int J Mol Sci 2020; 21:ijms21051599. [PMID: 32111074 PMCID: PMC7084260 DOI: 10.3390/ijms21051599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/20/2020] [Accepted: 02/22/2020] [Indexed: 11/17/2022] Open
Abstract
In lung adenocarcinoma, low lamin A expression in pleural metastatic cells has been proposed as a pejorative factor. miR-9 physiologically inhibits the expression of lamin A in neural cells and seems to be a central actor in the carcinogenesis and the metastatic process in lung cancer. Thus, it could be a good candidate to explain the reduction of lamin A expression in lung adenocarcinoma cells. miR-9 expression was analyzed in 16 pleural effusions containing metastatic cells from lung adenocarcinoma and was significantly reduced in patients from the 'Low lamin A expression' group compared to patients from the 'High lamin A expression' group. Then, carcinoma cells selection by fluorescence-activated cell sorting (FACS) was performed according to epithelial membrane antigen (EMA) expression, reflecting lamin A expression. miR-9 was underexpressed in lamin A- carcinoma cells compared to lamin A+ carcinoma cells in patients from the 'Low lamin A expression' group, whereas there was no difference of miR-9 expression between lamin A+ and lamin A- carcinoma cells in patients from the 'High lamin A expression' group. These results suggest that miR-9 does not regulate lamin A expression in metastatic cells from lung adenocarcinoma. On the contrary, miR-9 expression was shown to be reduced in lamin A-negative carcinoma cells.
Collapse
|
31
|
MiRNAs and LncRNAs: Dual Roles in TGF-β Signaling-Regulated Metastasis in Lung Cancer. Int J Mol Sci 2020; 21:ijms21041193. [PMID: 32054031 PMCID: PMC7072809 DOI: 10.3390/ijms21041193] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/26/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the most malignant cancers around the world, with high morbidity and mortality. Metastasis is the leading cause of lung cancer deaths and treatment failure. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs), two groups of small non-coding RNAs (nc-RNAs), are confirmed to be lung cancer oncogenes or suppressors. Transforming growth factor-β (TGF-β) critically regulates lung cancer metastasis. In this review, we summarize the dual roles of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer epithelial-mesenchymal transition (EMT), invasion, migration, stemness, and metastasis. In addition, lncRNAs, competing endogenous RNAs (ceRNAs), and circular RNAs (circRNAs) can act as miRNA sponges to suppress miRNAs, thereby mediating TGF-β signaling-regulated lung cancer invasion, migration, and metastasis. Through this review, we hope to cast light on the regulatory mechanisms of miRNAs and lncRNAs in TGF-β signaling-regulated lung cancer metastasis and provide new insights for lung cancer treatment.
Collapse
|
32
|
Ullah MA, Sarkar B, Akter F. Prediction of biomarker signatures and therapeutic agents from blood sample against Pancreatic Ductal Adenocarcinoma (PDAC): A network-based study. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
33
|
Zhang L, Peng R, Sun Y, Wang J, Chong X, Zhang Z. Identification of key genes in non-small cell lung cancer by bioinformatics analysis. PeerJ 2019; 7:e8215. [PMID: 31844590 PMCID: PMC6911687 DOI: 10.7717/peerj.8215] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 11/14/2019] [Indexed: 12/17/2022] Open
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the most common malignant tumors in the world, and it has become the leading cause of death of malignant tumors. However, its mechanisms are not fully clear. The aim of this study is to investigate the key genes and explore their potential mechanisms involving in NSCLC. Methods We downloaded gene expression profiles GSE33532, GSE30219 and GSE19804 from the Gene Expression Omnibus (GEO) database and analyzed them by using GEO2R. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were used for the functional and pathway enrichment analysis. We constructed the protein-protein interaction (PPI) network by STRING and visualized it by Cytoscape. Further, we performed module analysis and centrality analysis to find the potential key genes. Finally, we carried on survival analysis of key genes by GEPIA. Results In total, we obtained 685 DEGs. Moreover, GO analysis showed that they were mainly enriched in cell adhesion, proteinaceous extracellular region, heparin binding. KEGG pathway analysis revealed that transcriptional misregulation in cancer, ECM-receptor interaction, cell cycle and p53 signaling pathway were involved in. Furthermore, PPI network was constructed including 249 nodes and 1,027 edges. Additionally, a significant module was found, which included eight candidate genes with high centrality features. Further, among the eight candidate genes, the survival of NSCLC patients with the seven high expression genes were significantly worse, including CDK1, CCNB1, CCNA2, BIRC5, CCNB2, KIAA0101 and MELK. In summary, these identified genes should play an important role in NSCLC, which can provide new insight for NSCLC research.
Collapse
Affiliation(s)
- Li Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Rui Peng
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Yan Sun
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Jia Wang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Xinyu Chong
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Zheng Zhang
- Department of Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| |
Collapse
|
34
|
Evaluation of the relationship between the IL-17A gene expression level and regulatory miRNA-9 in relation to tumor progression in patients with non-small cell lung cancer: a pilot study. Mol Biol Rep 2019; 47:583-592. [PMID: 31707599 DOI: 10.1007/s11033-019-05164-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
A pro-inflammatory cytokine, IL-17A, is associated with increased risk of developing numerous cancers, including non-small cell lung cancer (NSCLC). IL-17A is a target gene for miR-9. This encouraged us to analyze these two genes in terms of their usefulness as prognostic markers in NSCLC. The expression levels of IL-17A gene and miR-9 was assessed in 26 NSCLC tissue samples and 26 unchanged lung tissue adjacent to lung tumors (control tissue), using qPCR. In both tissue groups, a decreased expression of IL-17A was observed in 100% of samples. Increased expression of miRNA-9 was observed in 92% of tumor samples, and in 100% of control samples. Neither statistical differences in the level of expression IL-17A depending on the patient's age, gender, smoking status, nor histopathology of the cancer was found. Regarding the presence of nodule metastasis ('N' value in TNM classification), significantly lower expression level of IL-17A was observed in cN2 as compared with cN1 group. Additionally, statistically lower IL-17A expression was found in III versus II tumor stage (cAJCC classification). Significant negative correlation between both studied genes was revealed in SCC subgroup. This leads to the conclusion that miRNA-9 can regulate the expression of IL-17A as an IL-17A mRNA antagonistic mediator. Inhibition of proinflammatory action of IL-17A in correlation with tumor progression can be related to various activity of Th17 cells on cancer development according to its immunogenicity, and also may suggest suppressive role of IL-17A in tumor progression. However, because of low number of analyzed samples, further studies on the functional role of IL-17A in development and/or progression NSCLC seem warranted.
Collapse
|
35
|
Fan Y, Shi Y, Lin Z, Huang X, Li J, Huang W, Shen D, Zhuang G, Liu W. miR-9-5p Suppresses Malignant Biological Behaviors of Human Gastric Cancer Cells by Negative Regulation of TNFAIP8L3. Dig Dis Sci 2019; 64:2823-2829. [PMID: 31140050 DOI: 10.1007/s10620-019-05626-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND MicroRNA is essential for the malignant progression of human gastric cancer (GC), which is a leading cause of cancer deaths. However, the mechanism is still not so clear. AIMS In our present research, we investigated the effect of miR-9-5p in GC. METHODS We detected miR-9-5p expression in human gastric epithelial cell (GES-1) and GC cells (AGS, BGC-823, MKN-45, and MGC-803), plasma of normal or GC patients, as well as orthotopic xenograft mouse models by real-time PCR. The migration ability was detected by Transwell assays after miR-9-5p mimic or inhibitor transfection in GC cells. RESULTS Our results showed that miR-9-5p expression in GC cells and plasma was significantly decreased. miR-9-5p inhibited migration of GC cells by regulating TNFAIP8L3 directly. Low expression of miR-9-5p in GC patients hardly suppressed the migration mediated by TNFAIP8L3. CONCLUSIONS miR-9-5p, as a potential tumor suppressor gene, is closely related to the malignant progression of GC. Exploring the regulation between miR-9-5p and TNFAIP8L3 may provide a novel strategy for GC treatment.
Collapse
Affiliation(s)
- Yanyun Fan
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian Province, China
| | - Ying Shi
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong Province, China
- The First Clinical Medical College, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Zhenhe Lin
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian Province, China
| | - Xiaoxiao Huang
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian Province, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong Province, China
- The First Clinical Medical College, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Wei Huang
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, Guangdong Province, China
- The First Clinical Medical College, Jinan University, Guangzhou, 510632, Guangdong Province, China
| | - Dongyan Shen
- Biobank, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, Fujian Province, China.
| | - Guohong Zhuang
- Organ Transplantation Institute, Medical College of Xiamen University, Xiamen, 361005, Fujian Province, China.
| | - Wenming Liu
- Department of Gastroenterology, Zhongshan Hospital, Xiamen University, Xiamen, 361004, Fujian Province, China.
| |
Collapse
|
36
|
Novel role of sex-determining region Y-box 7 (SOX7) in tumor biology and cardiovascular developmental biology. Semin Cancer Biol 2019; 67:49-56. [PMID: 31473269 DOI: 10.1016/j.semcancer.2019.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 02/06/2023]
Abstract
The sex-determining region Y-box 7 (Sox7) is an important member of the SOX F family, which is characterized by a high-mobility-group DNA-binding domain. Previous studies have demonstrated the role of SOX7 in cardiovascular development. SOX7 expression could be detected in normal adult tissues. Furthermore, the expression levels of SOX7 were different in different tumors. Most studies showed the downregulation of SOX7 in tumors, while some studies reported its upregulation in tumors. In this review, we first summarized the upstream regulators (including transcription factors, microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and some exogenous regulators) and downstream molecules (including factors in the Wnt/β-catenin signaling pathway and some other signaling pathways) of SOX7. Then, the roles of SOX7 in multiple tumors were presented. Finally, the significance of divergent SOX7 expression during cardiovascular development was briefly discussed. The information compiled in this study characterized SOX7 during tumorigenesis and cardiovascular development, which should facilitate the design of future research and promote SOX7 as a therapeutic target.
Collapse
|
37
|
Qin X, Chen R, Xiong R, Tan Z, Gao S, Lin C, Huo T. Comprehensive analysis of non-small-cell lung cancer microarray datasets identifies several prognostic biomarkers. Future Oncol 2019; 15:3135-3148. [PMID: 31426680 DOI: 10.2217/fon-2018-0824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To find accurate and effective biomarkers for diagnosis of non-small-cell lung cancer (NSCLC) patients. Materials & methods: We downloaded microarray datasets GSE19188, GSE33532, GSE101929 and GSE102286 from the database of Gene Expression Omnibus. We screened out differentially expressed genes (DEGs) and miRNAs (DEMs) with GEO2R. We also performed analyses for the enrichment of DEGs' and DEMs' function and pathway by several tools including database for annotation, visualization and integrated discovery, protein-protein interaction and Kaplan-Meier-plotter. Results: Total 913 DEGs were screened out, among which ten hub genes were discovered. All the hub genes were linked to the worsening overall survival of the NSCLC patients. Besides, 98 DEMs were screened out. MiR-9 and miR-520e were the most significantly regulated miRNAs. Conclusion: Our results could provide potential targets for the diagnosis and treatment of NSCLC.
Collapse
Affiliation(s)
- Xiuxiu Qin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Ruoshi Chen
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Rui Xiong
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Zimiao Tan
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Shanshan Gao
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Chunshui Lin
- Department of Anesthesia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong Province, PR China
| | - Tianming Huo
- Department of Cardiovascular Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| |
Collapse
|
38
|
Sun QY, Ding LW, Johnson K, Zhou S, Tyner JW, Yang H, Doan NB, Said JW, Xiao JF, Loh XY, Ran XB, Venkatachalam N, Lao Z, Chen Y, Xu L, Fan LF, Chien W, Lin DC, Koeffler HP. SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells. Oncogene 2019; 38:6196-6210. [DOI: 10.1038/s41388-019-0865-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022]
|
39
|
Kumar P, Mistri TK. Transcription factors in SOX family: Potent regulators for cancer initiation and development in the human body. Semin Cancer Biol 2019; 67:105-113. [PMID: 31288067 DOI: 10.1016/j.semcancer.2019.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022]
Abstract
Transcription factors (TFs) have a key role in controlling the gene regulatory network that sustains explicit cell states in humans. However, an uncontrolled regulation of these genes potentially results in a wide range of diseases, including cancer. Genes of the SOX family are indeed crucial as deregulation of SOX family TFs can potentially lead to changes in cell fate as well as irregular cell growth. SOX TFs are a conserved group of transcriptional regulators that mediate DNA binding through a highly conserved high-mobility group (HMG) domain. Accumulating evidence demonstrates that cell fate and differentiation in major developmental processes are controlled by SOX TFs. Besides; numerous reports indicate that both up- and down-regulation of SOX TFs may induce cancer progression. In this review, we discuss the involvement of key TFs of SOX family in human cancers.
Collapse
Affiliation(s)
- Prasann Kumar
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Agronomy, Lovely Professional University, Jalandhar, Punjab, 144411, India
| | - Tapan Kumar Mistri
- The Division of Research and Development, Lovely Professional University, Jalandhar, Punjab, 144411, India; The Department of Chemistry, Lovely Professional University, Jalandhar, Punjab, 144411, India.
| |
Collapse
|
40
|
Zhang R, Liu D, Xie Q, Hu Q, Wang Q, Shan C, Yang J. Inhibition of miR-9 attenuates fibroblast proliferation in human hyperplastic scar by regulating TGF-β1. Am J Transl Res 2019; 11:3645-3650. [PMID: 31312375 PMCID: PMC6614613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/06/2019] [Indexed: 06/10/2023]
Abstract
Healing of damaged tissue results in scar development, which can be difficult to manage. The present study was performed to determine the effects of inhibition of the microRNA (miR), miR-9, on the proliferation of fibroblasts in human hyperplastic scar (HS) formation. Samples of HS tissue and normal tissue were isolated from 20 patients, and the fibroblasts were transfected with small-interfering RNA (siRNA) for transforming growth factor beta 1 (TGF-β1), miR-9 mimic, and miR-9 inhibition. TGF-β1 protein and mRNA expression were examined in the fibroblasts and HS tissue samples by Western blotting and RT-PCR, respectively. Moreover, the effects of miR-9 inhibitor and mimic on cell proliferation and apoptosis were also examined in the HS tissue. Protein and mRNA expression levels of TGF-β1 were increased in the HS tissue compared to adjacent normal tissues. The levels of TGF-β1 mRNA and protein expression were reduced in siRNA-transfected cells. The miR-9 and TGF-β1 mRNA expression levels were reduced in the miR-9 inhibitor treatment group compared to both the negative control (NC) and control groups. Reduced levels of miR-9 and TGF-β1 mRNA expression were observed in the miR-9 inhibitor treatment group compared to the NC and control groups. Moreover, miR-9 inhibitor increased the percentage of apoptotic cells and decreased cell proliferation compared to the NC and control groups. In conclusion, this study showed that miR-9 plays an important role in the proliferation of fibroblasts by regulating TGF-β1 expression in HS tissue.
Collapse
Affiliation(s)
- Ruirui Zhang
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Dandan Liu
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Qun Xie
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Qiang Hu
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Qiong Wang
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Chao Shan
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| | - Jing Yang
- Department of Plastic Surgery, Xiangyang Central Hospital of Hubei University of Arts and Science Xiangyang 441021, Hubei, P. R. China
| |
Collapse
|
41
|
Xu XZ, Li XA, Luo Y, Liu JF, Wu HW, Huang G. MiR-9 promotes synovial sarcoma cell migration and invasion by directly targeting CDH1. Int J Biochem Cell Biol 2019; 112:61-71. [PMID: 30959202 DOI: 10.1016/j.biocel.2019.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/18/2019] [Accepted: 04/04/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Invasion and metastasis of synovial sarcoma is the leading cause of death in patients. Epithelial mesenchymal transition (EMT) accelerates tumor cell invasion and metastasis. MiR-9 promotes tumor metastasis by inducing EMT. However, the role of miR-9 in synovial sarcoma is still not clear. METHODS Overexpression or knockdown of miR-9 in human synovial sarcoma (HSS) cell lines was carried out by miR-9 mimics or miR-9 inhibitors transfection. Cell proliferation, apoptosis, migration and invasion were detected using MTS and colony formation assays, flow cytometry, wound healing and transwell assays, respectively. Luciferase reporter assay was applied to study the interaction between miR-9 and CDH1. Nude mice xenograft model was established, and immunohistochemistry staining assessed Ki-67 level. The related mRNA and protein expression levels were evaluated by qRT-PCR and Western blotting. RESULTS The bioinformatics analyses and luciferase reporter assay showed that miR-9 can target CDH1 3'-UTR. Moreover, miR-9 could induce EMT of HSS cells via targeting CDH1. The negative regulation of miR-9 on CDH1 expression was also confirmed in a mouse xenograft model of synovial sarcoma. Furthermore, miR-9 was observed to induce HSS cell proliferation, migration and invasion and inhibit apoptosis. MAPK/ERK and Wnt/β-catenin signal pathways were activated by the miR-9 overexpression in HSS cells, and then further enhancing tumorigenesis of HSS, which was further confirmed in the mouse model. CONCLUSION MiR-9 induces EMT by targeting CDH1, and activates MAPK/ERK and Wnt/β-catenin signal pathways, thus promoting HSS tumorigenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Cadherins/genetics
- Cadherins/metabolism
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement
- Epithelial-Mesenchymal Transition/genetics
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasm Invasiveness/genetics
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sarcoma, Synovial/genetics
- Sarcoma, Synovial/metabolism
- Sarcoma, Synovial/pathology
Collapse
Affiliation(s)
- Xue-Zheng Xu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Xian-An Li
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Yi Luo
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Jian-Fan Liu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Hong-Wei Wu
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China
| | - Gang Huang
- Department of Orthopedics, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, PR China.
| |
Collapse
|
42
|
The role of SOX family members in solid tumours and metastasis. Semin Cancer Biol 2019; 67:122-153. [PMID: 30914279 DOI: 10.1016/j.semcancer.2019.03.004] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a heavy burden for humans across the world with high morbidity and mortality. Transcription factors including sex determining region Y (SRY)-related high-mobility group (HMG) box (SOX) proteins are thought to be involved in the regulation of specific biological processes. The deregulation of gene expression programs can lead to cancer development. Here, we review the role of the SOX family in breast cancer, prostate cancer, renal cell carcinoma, thyroid cancer, brain tumours, gastrointestinal and lung tumours as well as the entailing therapeutic implications. The SOX family consists of more than 20 members that mediate DNA binding by the HMG domain and have regulatory functions in development, cell-fate decision, and differentiation. SOX2, SOX4, SOX5, SOX8, SOX9, and SOX18 are up-regulated in different cancer types and have been found to be associated with poor prognosis, while the up-regulation of SOX11 and SOX30 appears to be favourable for the outcome in other cancer types. SOX2, SOX4, SOX5 and other SOX members are involved in tumorigenesis, e.g. SOX2 is markedly up-regulated in chemotherapy resistant cells. The SoxF family (SOX7, SOX17, SOX18) plays an important role in angio- and lymphangiogenesis, with SOX18 seemingly being an attractive target for anti-angiogenic therapy and the treatment of metastatic disease in cancer. In summary, SOX transcription factors play an important role in cancer progression, including tumorigenesis, changes in the tumour microenvironment, and metastasis. Certain SOX proteins are potential molecular markers for cancer prognosis and putative potential therapeutic targets, but further investigations are required to understand their physiological functions.
Collapse
|
43
|
He H, Liao X, Yang Q, Liu Y, Peng Y, Zhong H, Yang J, Zhang H, Yu Z, Zuo Y, Guan C, Xu Z. MicroRNA-494-3p Promotes Cell Growth, Migration, and Invasion of Nasopharyngeal Carcinoma by Targeting Sox7. Technol Cancer Res Treat 2019; 17:1533033818809993. [PMID: 30381030 PMCID: PMC6259066 DOI: 10.1177/1533033818809993] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background: There is mounting evidence that microRNAs play an important role in nasopharyngeal carcinoma, which is widely prevalent in South China and is the most prevalent metastatic cancer among head and neck cancers. Recently, it has been shown that miR-494 is involved in the progression and prognosis of nasopharyngeal carcinoma. However, little is known about the function and mechanism of miR-494-3p in nasopharyngeal carcinoma. In the present study, we aimed to investigate the effects of miR-494-3p on the migration and invasion of nasopharyngeal carcinoma and to further explore the underlying mechanisms of these processes. Methods: The expression levels of miR-494-3p and Sox7 in nasopharyngeal carcinoma specimens and nasopharyngeal carcinoma cell lines were measured using quantitative reverse transcription polymerase chain reaction. Luciferase reporter assay, quantitative reverse transcription polymerase chain reaction, and Western blotting were used to confirm whether Sox7 was a direct target of miR-494-3p. Additionally, the roles of miR-494-3p and Sox7 on cell proliferation, migration, and invasion of nasopharyngeal carcinoma were analyzed by Cell Counting Kit-8 (CCK-8) assay, wound healing assay, and Boyden chamber assay, respectively. Results: Our study demonstrated that miR-494-3p was commonly upregulated in nasopharyngeal carcinoma specimens and nasopharyngeal carcinoma cell lines compared with nontumor nasopharyngeal epithelial tissue or nasopharyngeal cells (NP69). Moreover, miR-494-3p negatively regulated Sox7 at the posttranscriptional level by binding to a specific site in the Sox7 3′-untranslated region. In addition, synthetic miR-494-3p mimics significantly promoted proliferation, migration, and invasion of S18 and S26 nasopharyngeal carcinoma cells, while a synthetic miR-494-3p inhibitor resulted in suppressed nasopharyngeal carcinoma cell migration and invasion. Conclusion: miR-494-3p promotes nasopharyngeal carcinoma cell growth, migration, and invasion by directly targeting Sox7. Our results suggest that miR-494-3p might be a potential therapeutic target for nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Huiping He
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Xianghui Liao
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Qingmei Yang
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yuan Liu
- 2 Cancer Center of Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yan Peng
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Hongzhen Zhong
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Jun Yang
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Huiqing Zhang
- 3 The Third Department of Medical Oncology, Jiangxi Cancer Hospital, Nanchang, Jiangxi Province, China
| | - Zhonghua Yu
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Yufang Zuo
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Chengnong Guan
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Zumin Xu
- 1 Cancer Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| |
Collapse
|
44
|
Ren ZP, Hou XB, Tian XD, Guo JT, Zhang LB, Xue ZQ, Deng JQ, Zhang SW, Pan JY, Chu XY. Identification of nine microRNAs as potential biomarkers for lung adenocarcinoma. FEBS Open Bio 2019; 9:315-327. [PMID: 30761256 PMCID: PMC6356168 DOI: 10.1002/2211-5463.12572] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is a leading global cause of cancer‐related death, and lung adenocarcinoma (LUAD) accounts for ~ 50% of lung cancer. Here, we screened for novel and specific biomarkers of LUAD by searching for differentially expressed mRNAs (DEmRNAs) and microRNAs (DEmiRNAs) in LUAD patient expression data within The Cancer Genome Atlas (TCGA). The identified optimal diagnostic miRNA biomarkers were used to establish classification models (including support vector machine, decision tree, and random forest) to distinguish between LUAD and adjacent tissues. We then predicted the targets of identified optimal diagnostic miRNA biomarkers, functionally annotated these target genes, and performed receiver operating characteristic curve analysis of the respective DEmiRNA biomarkers, their target DEmRNAs, and combinations of DEmiRNA biomarkers. We validated the expression of selected DEmiRNA biomarkers by quantitative real‐time PCR (qRT‐PCR). In all, we identified a total of 13 DEmiRNAs, 2301 DEmRNAs and 232 DEmiRNA–target DEmRNA pairs between LUAD and adjacent tissues and selected nine DEmiRNAs (hsa‐mir‐486‐1, hsa‐mir‐486‐2, hsa‐mir‐153, hsa‐mir‐210, hsa‐mir‐9‐1, hsa‐mir‐9‐2, hsa‐mir‐9‐3, hsa‐mir‐577, and hsa‐mir‐4732) as optimal LUAD‐specific biomarkers with great diagnostic value. The predicted targets of these nine DEmiRNAs were significantly enriched in transcriptional misregulation in cancer and central carbon metabolism. Our qRT‐PCR results were generally consistent with our integrated analysis. In summary, our study identified nine DEmiRNAs that may serve as potential diagnostic biomarkers of LUAD. Functional annotation of their target DEmRNAs may provide information on their roles in LUAD.
Collapse
Affiliation(s)
- Zhi-Peng Ren
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Xiao-Bin Hou
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Xiao-Dong Tian
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Jun-Tang Guo
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Lian-Bin Zhang
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Zhi-Qiang Xue
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Jian-Qing Deng
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Shao-Wei Zhang
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Jun-Yi Pan
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| | - Xiang-Yang Chu
- Department of Thoracic Surgery Chinese PLA General Hospital Beijing China
| |
Collapse
|
45
|
Dai WJ, Qiu J, Sun J, Ma CL, Huang N, Jiang Y, Zeng J, Ren BC, Li WC, Li YH. Downregulation of microRNA-9 reduces inflammatory response and fibroblast proliferation in mice with idiopathic pulmonary fibrosis through the ANO1-mediated TGF-β-Smad3 pathway. J Cell Physiol 2018; 234:2552-2565. [PMID: 30144053 DOI: 10.1002/jcp.26961] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/13/2018] [Indexed: 12/23/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease with increasing occurrence, high death rates and unfavorable treatment regimens. In the current study, we identified the expression of microRNA-9 (miR-9) and anoctamin-1 (ANO1) in IPF mouse models induced by bleomycin, and their effects on inflammation and fibroblast proliferation through the transforming growth factor-β (TGF-β)-Smad3 pathway. To verify the targeting relationship between miR-9 and ANO1, we used bioinformatics prediction and conducted a dual-luciferase reporter gene assay. The underlying regulatory mechanisms of miR-9 and the target gene ANO1 were investigated mainly with the treatment of miR-9 mimic, miR-9 inhibitor, or siRNA against ANO1 in fibroblasts isolated from IPF mice. Enzyme-linked immunosorbent assay was performed to investigate the effect of miR-9 or ANO1 on inflammatory factors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect fibroblast proliferation and apoptosis. Reverse transcription quantitative polymerase chain reaction and western blot analysis were applied to measure the expression of the TGF-β-Smad3 pathway-related genes. The determination of luciferase activity suggested that miR-9 targets ANO1. Upregulation of miR-9 or silencing of ANO1 intensified inflammation in IPF, promoted proliferation and inhibited apoptotic ability of lung fibroblasts. MiR-9 negatively modulated ANO1, and thus activated the TGF-β-Smad3 pathway. These findings suggest that miR-9 can indirectly activate the TGF-β-Smad3 pathway by inhibiting the expression of ANO1, thereby aggravating inflammation, promotes proliferation and suppressing apoptosis of lung fibroblasts in mice models of IPF.
Collapse
Affiliation(s)
- Wen-Jing Dai
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jing Qiu
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jian Sun
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Chun-Lan Ma
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Na Huang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yi Jiang
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Jun Zeng
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Bo-Chen Ren
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Wan-Cheng Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yun-Hui Li
- Department of Respiratory, The First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
46
|
Lissa D, Ishigame T, Noro R, Tucker MJ, Bliskovsky V, Shema S, Beck JA, Bowman ED, Harris CC, Robles AI. HOXA9 methylation and blood vessel invasion in FFPE tissues for prognostic stratification of stage I lung adenocarcinoma patients. Lung Cancer 2018; 122:151-159. [PMID: 30032824 PMCID: PMC6662588 DOI: 10.1016/j.lungcan.2018.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/15/2018] [Accepted: 05/21/2018] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Surgery with curative intent is the standard treatment for stage I lung adenocarcinoma. However, disease recurrence occurs in a third of patients. Prognostic biomarkers are needed to improve postoperative management. Here, we evaluate the utility of Homeobox A9 (HOXA9) promoter methylation, alone or in combination with Blood Vessel Invasion (BVI) assessment, for prognostic stratification of stage I lung adenocarcinoma patients. MATERIALS AND METHODS We developed a Droplet Digital PCR (ddPCR) assay to measure HOXA9 promoter methylation in formalin-fixed paraffin-embedded (FFPE) biospecimens generated during routine pathology. The prognostic value of HOXA9 promoter methylation and BVI, alone and in combination, was evaluated by Kaplan-Meier survival and Cox regression analyses in a cohort of 177 stage I lung adenocarcinoma patients from the NCI-MD study. RESULTS The ddPCR assay showed linearity, sensitivity and specificity for measuring HOXA9 promoter methylation down to 0.1% methylated DNA input. The HOXA9 promoter was methylated de novo in FFPE tumors (P < 0.0001). High methylation was independently associated with worse cancer-specific survival (Hazard Ratio [HR], 3.37; P = 0.0002) and identified high-risk stage IA and IB patients. Addition of this molecular marker improved a risk model comprised of clinical and pathologic parameters (age, gender, race, stage, and smoking history; nested likelihood ratio test; P = 0.0004) and increased the C-index from 0.60 (95% CI 0.51-0.69) to 0.68 (0.60-0.76). High methylation tumors displayed high frequency of TP53 mutations and other molecular characteristics associated with aggressiveness. BVI was independently associated with poor outcome (HR, 2.62; P = 0.054). A score that combined BVI with HOXA9 promoter methylation further stratified high-risk patients (trend P = 0.0001 comparing 0, 1 or 2 positive markers). CONCLUSIONS ddPCR can be used to quantify HOXA9 promoter methylation in FFPE samples. Alone or combined with BVI in a prognostic classifier, HOXA9 promoter methylation could potentially inform the clinical management of patients with early-stage lung adenocarcinoma.
Collapse
Affiliation(s)
- Delphine Lissa
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Teruhide Ishigame
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rintaro Noro
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Marguerite J Tucker
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Valery Bliskovsky
- CCR Genomics Core, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Steven Shema
- CCR Genomics Core, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jessica A Beck
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Elise D Bowman
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
SOX7 Target Genes and Their Contribution to Its Tumor Suppressive Function. Int J Mol Sci 2018; 19:ijms19051451. [PMID: 29757932 PMCID: PMC5983648 DOI: 10.3390/ijms19051451] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/07/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
SOX7 is a transcription factor and acts as a tumor suppressor, but its target genes in cancers are poorly explored. We revealed SOX7-mediated gene expression profile in breast cancer cells using microarray chips and discovered multiple altered signaling pathways. When combinatorially analyzing the microarray data with a gene array dataset from 759 breast cancer patients, we identified four genes as potential targets of SOX7 and validated them by quantitative PCR and chromatin immunoprecipitation assays. Among these four genes, we determined that SOX7-activated SPRY1 and SLIT2, and SOX7-repressed TRIB3 and MTHFD2 could all differentially contribute to SOX7-mediated tumor suppression. Overall, we identified multiple cancer-related pathways mediated by SOX7 and for the first time revealed SOX7-regulated target genes in a cancer-relevant context.
Collapse
|
48
|
Jia X, Zhou M, Zou Z, Lin P, Wang Y, Zhang Z. Identification and comparative analysis of the ovary and testis microRNAome of mud crab Scylla paramamosain. Mol Reprod Dev 2018; 85:519-531. [DOI: 10.1002/mrd.22989] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/19/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Xiwei Jia
- Fisheries College; Jimei University; Xiamen China
| | - Mingcan Zhou
- Fisheries College; Jimei University; Xiamen China
| | - Zhihua Zou
- Fisheries College; Jimei University; Xiamen China
| | - Peng Lin
- Fisheries College; Jimei University; Xiamen China
| | - Yilei Wang
- Fisheries College; Jimei University; Xiamen China
| | - Ziping Zhang
- College of Animal Science; Fujian Agriculture and Forestry University; Fuzhou China
| |
Collapse
|
49
|
Zang Y, Dong M, Zhang K, Tian W, Wang Y, Xue F. Bioinformatics analysis of key differentially expressed genes in well and poorly differentiated endometrial carcinoma. Mol Med Rep 2018; 18:467-476. [PMID: 29749513 DOI: 10.3892/mmr.2018.8969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/26/2018] [Indexed: 11/06/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignancies. The malignant degree increases between grade (G)1 and G3, and EC of G3 usually presents a high recurrence rate and poor prognosis. Therefore, the present study aimed to examine the principal genes associated with the degree of differentiation in EC. The microarrays GSE17025, GSE24537 and GSE35784, representing data of Type I EC samples of G1 and G3, were downloaded from the Gene Expression Omnibus. The differentially expressed genes (DEGs) and differentially expressed micro (mi)RNAs (DEMs) were identified, followed by functional enrichment analyses and interaction network construction. In total, 83 upregulated and 130 downregulated DEGs with the same expression trends in two mRNA datasets were screened. The upregulated DEGs were primarily enriched in 'mitotic cell cycle process', 'cell cycle process' and 'mitotic cell cycle'; while the downregulated DEGs were enriched in 'cellular component assembly involved in morphogenesis', 'cell projection organization' and 'microtubule‑based movement'. From the protein‑protein interaction network, DNA topoisomerase IIα, kinesin family member 11, cyclin B1 and BUB1 mitotic checkpoint serine/threonine were identified as foremost hub genes. One module was extracted and involved in 'mitotic cell cycle process' and 'cell cycle process'. Based on the analysis of DEMs and the miRNA‑target regulatory network, miRNA‑9 may be the most important upregulated DEM, and the DEGs forkhead box P1 and cyclin E1 may serve vital roles in the differentiation of EC. In conclusion, principal genes were identified that may be determinants of the carcinogenesis of poorly differentiated EC, which may facilitate the examination of potential molecular mechanisms. These genes may additionally help identify candidate biomarkers and novel therapeutic targets for poorly differentiated EC.
Collapse
Affiliation(s)
- Yuqin Zang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Mengting Dong
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Zhang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wenyan Tian
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Fengxia Xue
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
50
|
Gao L, Cheng D, Yang J, Wu R, Li W, Kong AN. Sulforaphane epigenetically demethylates the CpG sites of the miR-9-3 promoter and reactivates miR-9-3 expression in human lung cancer A549 cells. J Nutr Biochem 2018. [PMID: 29525530 DOI: 10.1016/j.jnutbio.2018.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increasing evidence suggests that epigenetic aberrations contribute to the development and progression of cancers such as lung cancer. The promoter region of miR-9-3 was recently found to be hypermethylated in lung cancer, resulting in down-regulation of miR-9-3 and poor patient prognosis. Sulforaphane (SFN), a natural compound that is obtained from cruciferous vegetables, has potent anticancer activities. In this study, we aimed to investigate the effect of SFN on restoring the miR-9-3 level in lung cancer A549 cells through epigenetic regulation. DNA methylation of the miR-9-3 promoter was examined using bisulfite genomic sequencing and methylated DNA immunoprecipitation analysis. The expression levels of miR-9-3 and several epigenetic modifying enzymes were measured using quantitative real-time polymerase chain reaction and Western blotting, respectively. The transcriptional activity of the miR-9-3 promoter was evaluated by patch methylation, and histone modifications were analyzed using chromatin immunoprecipitation (ChIP) assays. We found that CpG methylation was reduced in the miR-9-3 promoter and that miR-9-3 expression was increased after 5 days of treatment with SFN. In vitro methylation analysis showed that the methylated recombinant construct exhibited lower luciferase reporter activity than the unmethylated counterpart. ChIP assays revealed that SFN treatment increased H3K4me1 enrichment at the miR-9-3 promoter. Furthermore, SFN treatment attenuated enzymatic DNMT activity and DNMT3a, HDAC1, HDAC3, HDAC6 and CDH1 protein expression. Taken together, these findings indicate that SFN may exert its chemopreventive effects partly through epigenetic demethylation and restoration of miR-9-3.
Collapse
Affiliation(s)
- Linbo Gao
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David Cheng
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Graduate Program in Pharmaceutical Sciences, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jie Yang
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Renyi Wu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wenji Li
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ah-Ng Kong
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|