1
|
Cerrato CP, Langel Ü. An update on cell-penetrating peptides with intracellular organelle targeting. Expert Opin Drug Deliv 2022; 19:133-146. [PMID: 35086398 DOI: 10.1080/17425247.2022.2034784] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Cell-penetrating peptide (CPP) technologies represent an important strategy to address drug delivery to specific intracellular compartments by covalent conjugation to targeting sequences, potentially enabling strategies to combat most diseases. AREAS COVERED This updated review article provides an overview of current intracellular organelle targeting by CPP. The targeting strategies of CPP and CPP/cargo complexes to specific cells or intracellular organelles are summarized, and the review provides an update on the current data for their pharmacological and therapeutical applications. EXPERT OPINION Targeted drug delivery is moving from the level of tissue or specific pathogenic cell to the level of specific organelle that is the target of the drug, an important aspect in drug design and development. Organelle-targeted drug delivery results in improved efficacy, ability to control mode of action, reduction of undesired toxicities and side effects, and possibility to overcome drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ülo Langel
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Laboratory of Molecular Biotechnology, Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
TAT for Enzyme/Protein Delivery to Restore or Destroy Cell Activity in Human Diseases. Life (Basel) 2021; 11:life11090924. [PMID: 34575072 PMCID: PMC8466028 DOI: 10.3390/life11090924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/28/2022] Open
Abstract
Much effort has been dedicated in the recent decades to find novel protein/enzyme-based therapies for human diseases, the major challenge of such therapies being the intracellular delivery and reaching sub-cellular organelles. One promising approach is the use of cell-penetrating peptides (CPPs) for delivering enzymes/proteins into cells. In this review, we describe the potential therapeutic usages of CPPs (mainly trans-activator of transcription protein, TAT) in enabling the uptake of biologically active proteins/enzymes needed in cases of protein/enzyme deficiency, concentrating on mitochondrial diseases and on the import of enzymes or peptides in order to destroy pathogenic cells, focusing on cancer cells.
Collapse
|
3
|
Bazhin AA, Sinisi R, De Marchi U, Hermant A, Sambiagio N, Maric T, Budin G, Goun EA. A bioluminescent probe for longitudinal monitoring of mitochondrial membrane potential. Nat Chem Biol 2020; 16:1385-1393. [PMID: 32778841 DOI: 10.1038/s41589-020-0602-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/29/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial membrane potential (ΔΨm) is a universal selective indicator of mitochondrial function and is known to play a central role in many human pathologies, such as diabetes mellitus, cancer and Alzheimer's and Parkinson's diseases. Here, we report the design, synthesis and several applications of mitochondria-activatable luciferin (MAL), a bioluminescent probe sensitive to ΔΨm, and partially to plasma membrane potential (ΔΨp), for non-invasive, longitudinal monitoring of ΔΨm in vitro and in vivo. We applied this new technology to evaluate the aging-related change of ΔΨm in mice and showed that nicotinamide riboside (NR) reverts aging-related mitochondrial depolarization, revealing another important aspect of the mechanism of action of this potent biomolecule. In addition, we demonstrated application of the MAL probe for studies of brown adipose tissue (BAT) activation and non-invasive in vivo assessment of ΔΨm in animal cancer models, opening exciting opportunities for understanding the underlying mechanisms and for discovery of effective treatments for many human pathologies.
Collapse
Affiliation(s)
- Arkadiy A Bazhin
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Riccardo Sinisi
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | | | - Nicolas Sambiagio
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Tamara Maric
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Ghyslain Budin
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Elena A Goun
- Institute of Chemical Sciences and Engineering, School of Basic Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Polytarchou K, Dimitroglou Y, Varvarousis D, Christodoulis N, Psachoulia C, Pantziou C, Mourouzis I, Pantos C, Manolis AS. Methylmalonic acid and vitamin B12 in patients with heart failure. Hellenic J Cardiol 2019; 61:330-337. [PMID: 31740360 DOI: 10.1016/j.hjc.2019.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 09/01/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Vitamin B12 deficiency among patients with heart failure (HF) may have been underestimated. High serum levels of methylmalonic acid (MMA) have been identified in several studies as an early indicator of vitamin B12 deficiency. Furthermore, MMA seems to constitute a biomarker of oxidative stress and mitochondrial dysfunction. There are scarce data regarding vitamin B12 and MMA in patients with HF. The aim of this study was to investigate vitamin B12 and MMA serum levels in patients with HF. METHODS One hundred five consecutive patients admitted to our hospital with symptoms and signs of acute decompensated HF were included in the study. Demographic and clinical characteristics as well as comorbidities and medical treatment before hospital admission were recorded. Transthoracic echocardiography was performed in all patients. Blood samples were collected during the first 24 hours of hospitalization and measured for complete blood count, biochemical profile, vitamin B12, N-terminal prohormone of brain natriuretic peptide, and MMA levels. Finally, 51 healthy individuals constituted the control group. RESULTS A total of 43.8% of patients with HF had elevated MMA levels, but only 10.5% had overt vitamin B12 deficiency, defined as serum cobalamin levels below 189 pg/ml. Mean MMA level was higher in patients with HF than in controls (33.0 ± 9.6 vs. 19.3 ± 6.3 ng/ml; p < 0.001). This difference remained significant when adjusted for age, sex, vitamin B12, and folate serum levels and kidney function (B = 14.7 (9.6-19.7); p < 0.001). MMA levels were higher in patients with acutely decompensated chronic HF than in those with newly diagnosed acute HF (34.7 ± 10.5 vs. 30.7 ± 7.8 ng/ml; p = 0.036). Correlation analysis revealed significantly negative correlation between MMA and vitamin B12 levels only in patients without comorbidities. CONCLUSION Patients with HF have elevated MMA levels, independent of age, gender, HF category, or comorbidities, possibly indicating subclinical vitamin B12 deficiency. Further research is needed to investigate subclinical vitamin B12 deficiency in patients with HF and/or to clarify whether MMA constitutes a biomarker of oxidative stress.
Collapse
Affiliation(s)
- Kali Polytarchou
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece; First Department of Cardiology, Evagelismos Hospital, Athens, Greece
| | - Yannis Dimitroglou
- First Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | | | | | | | | | - Iordanis Mourouzis
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | - Costas Pantos
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece
| | - Antonis S Manolis
- Third Department of Cardiology, Athens University School of Medicine, Athens, Greece; First Department of Cardiology, Athens University School of Medicine, Athens, Greece.
| |
Collapse
|
5
|
Haijes HA, van Hasselt PM, Jans JJM, Verhoeven-Duif NM. Pathophysiology of propionic and methylmalonic acidemias. Part 2: Treatment strategies. J Inherit Metab Dis 2019; 42:745-761. [PMID: 31119742 DOI: 10.1002/jimd.12128] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/31/2022]
Abstract
Despite realizing increased survival rates for propionic acidemia (PA) and methylmalonic acidemia (MMA) patients, the current therapeutic regimen is inadequate for preventing or treating the devastating complications that still can occur. The elucidation of pathophysiology of these complications allows us to evaluate and rethink treatment strategies. In this review we display and discuss potential therapy targets and we give a systematic overview on current, experimental and unexplored treatment strategies in order to provide insight in what we have to offer PA and MMA patients, now and in the future. Evidence on the effectiveness of treatment strategies is often scarce, since none were tested in randomized clinical trials. This raises concerns, since even the current consensus on best practice treatment for PA and MMA is not without controversy. To attain substantial improvements in overall outcome, gene, mRNA or enzyme replacement therapy is most promising since permanent reduction of toxic metabolites allows for a less strict therapeutic regime. Hereby, both mitochondrial-associated and therapy induced complications can theoretically be prevented. However, the road from bench to bedside is long, as it is challenging to design a drug that is delivered to the mitochondria of all tissues that require enzymatic activity, including the brain, without inducing any off-target effects. To improve survival rate and quality of life of PA and MMA patients, there is a need for systematic (re-)evaluation of accepted and potential treatment strategies, so that we can better determine who will benefit when and how from which treatment strategy.
Collapse
Affiliation(s)
- Hanneke A Haijes
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Peter M van Hasselt
- Section Metabolic Diseases, Department of Child Health, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Judith J M Jans
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nanda M Verhoeven-Duif
- Section Metabolic Diagnostics, Department of Biomedical Genetics, Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
6
|
Molema F, Jacobs EH, Onkenhout W, Schoonderwoerd GC, Langendonk JG, Williams M. Fibroblast growth factor 21 as a biomarker for long-term complications in organic acidemias. J Inherit Metab Dis 2018; 41:1179-1187. [PMID: 30159853 PMCID: PMC6327009 DOI: 10.1007/s10545-018-0244-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND There is increasing evidence that long-term complications in organic acidemias are caused by impaired mitochondrial metabolism. Currently, there is no specific biomarker to monitor mitochondrial dysfunction in organic acidemias. Serum fibroblast growth factor 21 (FGF-21) is a biomarker for mitochondrial disease and could be a candidate to monitor mitochondrial function in the deleterious course of disease. METHODS Data of 17 patients with classical organic acidemias (11 propionic acidemia (PA), four methylmalonic acidemia (MMA) and two isovaleric acidemia (IVA) patients) were included. The clinical course was evaluated; metabolic decompensations and long-term complications were correlated with plasma FGF-21 levels. Cardiomyopathy, prolonged QT interval, renal failure, and optic neuropathy were defined as long-term complications. RESULTS Patients ages ranged from 16 months up to 32 years. Serious long-term complications occurred in eight patients (five PA and three MMA patients). In MMA and PA patients plasma FGF-21 levels during stable metabolic periods were significantly higher in patients with long-term complications (Mdn = 2556.0 pg/ml) compared to patients without (Mdn = 287.0 pg/ml). A median plasma FGF-21 level above 1500 pg/ml during a stable metabolic period, measured before the occurrence of long-term complications, had a positive predictive value of 0.83 and a negative predictive value of 1.00 on long-term complications in MMA and PA patients. CONCLUSION This study demonstrates the potential role of FGF-21 as a biomarker for long-term complications in classical organic acidemias, attributed to mitochondrial dysfunction.
Collapse
Affiliation(s)
- F Molema
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
| | - E H Jacobs
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - W Onkenhout
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - G C Schoonderwoerd
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J G Langendonk
- Center of Lysosomal and Metabolic Disorders, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Monique Williams
- Department of Pediatrics Sophia Children's Hospital, Center of Lysosomal and Metabolic Disorders, Erasmus University Medical Center Rotterdam, Postbus 2060, 3000, CB, Rotterdam, The Netherlands.
| |
Collapse
|