1
|
Yan H, Feng J, Jin X, Zhang Y, Bao C, Zhu C, Feng G. Causal association of plasma lipidome with lung carcinoma and mediating role of inflammatory proteins: evidence from Mendelian randomization analysis. J Cancer 2024; 15:5643-5654. [PMID: 39308668 PMCID: PMC11414616 DOI: 10.7150/jca.99990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
The evidence from clinical studies suggests that lung carcinoma (LC) patients exhibit dysregulation in lipid metabolism. However, the causal relationship between plasma lipidome and LC, and whether inflammatory proteins mediate, remains to be determined. Genetic data for 179 plasma lipids and 91 inflammatory proteins were obtained from the latest published genome-wide association studies. Genetic data on LC and subtypes were from the largest available meta-analysis. The causal relationship between plasma lipidome and LC was determined by the two-sample Mendelian randomization (MR) method. Mediation MR analysis was employed to ascertain whether inflammatory proteins mediate the impact of plasma lipidome on LC. We identified 39 causal relationships between genetically predicted plasma lipidome and LC and subtypes. These relationships involve the influence of phosphatidylcholines, phosphatidylethanolamines, diacylglycerols, triacylglycerols, sphingomyelins, and Sterol esters. Additionally, the mediating role of 5 inflammatory proteins in the causal relationship between plasma lipidome and LC and subtypes was determined. Our results highlight the complex network of plasma lipidome and inflammatory proteins regulating LC. Integrating plasma lipidome and inflammatory proteins into clinical practice may open new avenues for the prevention and treatment of LC.
Collapse
Affiliation(s)
- Haihao Yan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Jiao Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yuanyuan Zhang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Cui Bao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Chenghua Zhu
- Department of Respiratory Medicine, Nanjing Pukou Hospital of TCM, Pukou Hospital of Chinese Medicine affiliated to China Pharmaceutical University, Nanjing 210000, China
| | - Ganzhu Feng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
2
|
Jiang H, Li XS, Yang Y, Qi RX. Plasma lipidomics profiling in predicting the chemo-immunotherapy response in advanced non-small cell lung cancer. Front Oncol 2024; 14:1348164. [PMID: 39040440 PMCID: PMC11260645 DOI: 10.3389/fonc.2024.1348164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background Advanced non-small cell lung cancer (NSCLC) presents significant treatment challenges, with chemo-immunotherapy emerging as a promising approach. This study explores the potential of lipidomic biomarkers to predict responses to chemo-immunotherapy in advanced non-small cell lung cancer (NSCLC) patients. Methods A prospective analysis was conducted on 68 NSCLC patients undergoing chemo-immunotherapy, divided into disease control (DC) and progressive disease (PD) groups based on treatment response. Pre-treatment serum samples were subjected to lipidomic profiling using liquid chromatography-mass spectrometry (LC-MS). Key predictive lipids (biomarkers) were identified through projection to latent structures discriminant analysis. A biomarker combined model and a clinical combined model were developed to enhance the prediction accuracy. The predictive performances of the clinical combined model in different histological subtypes were also performed. Results Six lipids were identified as the key lipids. The expression levels of PC(16:0/18:2), PC(16:0/18:1), PC(16:0/18:0), CE(20:1), and PC(14:0/18:1) were significantly up-regulated. While the expression level of TAG56:7-FA18:2 was significantly down-regulated. The biomarker combined model demonstrated a receiver operating characteristic (ROC) curve of 0.85 (95% CI: 0.75-0.95) in differentiating the PD from the DC. The clinical combined model exhibited an AUC of 0.87 (95% CI: 0.79-0.96) in differentiating the PD from the DC. The clinical combined model demonstrated good discriminability in DC and PD patients in different histological subtypes with the AUC of 0.78 (95% CI: 0.62-0.96), 0.79 (95% CI: 0.64-0.94), and 0.86 (95% CI: 0.52-1.00) in squamous cell carcinoma, large cell carcinoma, and adenocarcinoma subtype, respectively. Pathway analysis revealed the metabolisms of linoleic acid, alpha-linolenic acid, glycerolipid, arachidonic acid, glycerophospholipid, and steroid were implicated in the chemo-immunotherapy response in advanced NSCLC. Conclusion Lipidomic profiling presents a highly accurate method for predicting responses to chemo-immunotherapy in patients with advanced NSCLC, offering a potential avenue for personalized treatment strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Ultrasound, Jinshan Hospital, Fudan University, Shanghai, China
| | - Xu-Shuo Li
- Department of Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Ying Yang
- Department of Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| | - Rui-Xue Qi
- Department of Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Yan F, Zhang L, Duan L, Li L, Liu X, Liu Y, Qiao T, Zeng Y, Fang H, Wu D, Wang X. Roles of glutamic pyruvate transaminase 2 in reprogramming of airway epithelial lipidomic and metabolomic profiles after smoking. Clin Transl Med 2024; 14:e1679. [PMID: 38706045 PMCID: PMC11070440 DOI: 10.1002/ctm2.1679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Metabolic abnormalities represent one of the pathological features of chronic obstructive pulmonary disease (COPD). Glutamic pyruvate transaminase 2 (GPT2) is involved in glutamate metabolism and lipid synthesis pathways, whilst the exact roles of GPT2 in the occurrence and development of COPD remains uncertain. This study aims at investigating how GPT2 and the associated genes modulate smoking-induced airway epithelial metabolism and damage by reprogramming lipid synthesis. The circulating or human airway epithelial metabolomic and lipidomic profiles of COPD patients or cell-lines explored with smoking were assessed to elucidate the pivotal roles of GPT2 in reprogramming processes. We found that GPT2 regulate the reprogramming of lipid metabolisms caused by smoking, especially phosphatidylcholine (PC) and triacylglycerol (TAG), along with changes in the expression of lipid metabolism-associated genes. GPT2 modulated cell sensitivities and survival in response to smoking by enhancing mitochondrial functions and maintaining lipid and energy homeostasis. Our findings provide evidence for the involvement of GPT2 in the reprogramming of airway epithelial lipids following smoking, as well as the molecular mechanisms underlying GPT2-mediated regulation, which may offer an alternative of therapeutic strategies for chronic lung diseases.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Linlin Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Lian Duan
- Department of Pediatric SurgeryFaculty of Pediatricsthe Seventh Medical Center of PLA General HospitalBeijingChina
| | - Liyang Li
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Xuanqi Liu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Tiankui Qiao
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Yiming Zeng
- Center of Molecular Diagnosis and TherapyThe Second Affiliated Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Hao Fang
- Department of AnesthesiologyShanghai Geriatic Medical CenterShanghaiChina
- Department of AnesthesiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Duojiao Wu
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Center for Tumor Diagnosis & TherapyJinshan HospitalFudan UniversityShanghaiChina
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Yan F, Liu C, Song D, Zeng Y, Zhan Y, Zhuang X, Qiao T, Wu D, Cheng Y, Chen H. Integration of clinical phenoms and metabolomics facilitates precision medicine for lung cancer. Cell Biol Toxicol 2024; 40:25. [PMID: 38691184 PMCID: PMC11063108 DOI: 10.1007/s10565-024-09861-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/25/2024] [Indexed: 05/03/2024]
Abstract
Lung cancer is a common malignancy that is frequently associated with systemic metabolic disorders. Early detection is pivotal to survival improvement. Although blood biomarkers have been used in its early diagnosis, missed diagnosis and misdiagnosis still exist due to the heterogeneity of lung cancer. Integration of multiple biomarkers or trans-omics results can improve the accuracy and reliability for lung cancer diagnosis. As metabolic reprogramming is a hallmark of lung cancer, metabolites, specifically lipids might be useful for lung cancer detection, yet systematic characterizations of metabolites in lung cancer are still incipient. The present study profiled the polar metabolome and lipidome in the plasma of lung cancer patients to construct an inclusive metabolomic atlas of lung cancer. A comprehensive analysis of lung cancer was also conducted combining metabolomics with clinical phenotypes. Furthermore, the differences in plasma lipid metabolites were compared and analyzed among different lung cancer subtypes. Alcohols, amides, and peptide metabolites were significantly increased in lung cancer, while carboxylic acids, hydrocarbons, and fatty acids were remarkably decreased. Lipid profiling revealed a significant increase in plasma levels of CER, PE, SM, and TAG in individuals with lung cancer as compared to those in healthy controls. Correlation analysis confirmed the association between a panel of metabolites and TAGs. Clinical trans-omics studies elucidated the complex correlations between lipidomic data and clinical phenotypes. The present study emphasized the clinical importance of lipidomics in lung cancer, which involves the correlation between metabolites and the expressions of other omics, ultimately influencing clinical phenotypes. This novel trans-omics network approach would facilitate the development of precision therapy for lung cancer.
Collapse
Affiliation(s)
- Furong Yan
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Chanjuan Liu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Hematology, Xiang'an Hospital, Xiamen University School of Medicine, Xiamen, 361101, China
| | - Dongli Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China
| | - Yiming Zeng
- Center of Molecular Diagnosis and Therapy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Xibing Zhuang
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Duojiao Wu
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunfeng Cheng
- Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Shanghai Institute of Clinical Bioinformatics, Shanghai, 200032, China.
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Hematology, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan-Xuhui Hospital, Fudan University, 366 North Longchuan Rd, Shanghai, 200237, China.
| |
Collapse
|
5
|
Lv M, Shao S, Du Y, Zhuang X, Wang X, Qiao T. Plasma Lipidomics Profiling to Identify the Biomarkers of Diagnosis and Radiotherapy Response for Advanced Non-Small-Cell Lung Cancer Patients. J Lipids 2024; 2024:6730504. [PMID: 38312939 PMCID: PMC10838201 DOI: 10.1155/2024/6730504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Background Advanced lung cancer that contributes to a heavy burden on medical institutions is the leading cause of cancer-related death and is often accompanied by metabolic disorders. In this study, we aimed to explore the biomarkers of diagnosis and radiotherapy response in non-small-cell lung cancer (NSCLC) patients by plasma lipidomics analysis. Method Using triple-quadrupole mass spectrometer analysis, our research characterized the plasma lipid metabolomics profile of 25 healthy controls and 31 advanced NSCLC patients in each of three different radiotherapy phases. Results The results showed altered lipid elements and concentrations among NSCLC patients with different radiotherapy phases, NSCLC subtypes, and different radiotherapeutic responses. We found that compared to the healthy controls, myelin-associated glycoprotein (MAG), phosphatidylinositol (PI), and phosphatidylserine (PS) were mainly and significantly altered lipid elements (> twofold, and p < 0.05) among NSCLC patients with different radiotherapy phases. Through comparison of lipid elements between bad and good responses of NSCLC patients with radiotherapy, the obviously declined phosphatidylglycerol (PG 18 : 0/14 : 0, 18 : 1/18 : 3, and 18 : 0/20 : 1) or markedly elevated PI (20 : 0/22 : 5 and 18 : 2/22 : 4) and phosphatidic acid (PA 14 : 0/20 : 4, 14 : 0/20 : 3, and 18 : 2/22 : 4) could indicate poor therapeutic response for NSCLC patients. The results of ROC curve analysis suggested that PG (18 : 0/20 : 1 and 18 : 0/14 : 0) could clearly predict the radiotherapeutic response for NSCLC patients, and PS (18 : 0/20 : 0) and cholesterol were the first two lipid components with the most potential for the diagnosis of advanced NSCLC. Conclusion Our results indicated that plasma lipidomics profiling might have a vital value to uncover the heterogeneity of lipid metabolism in healthy people and advanced NSCLC patients with different radiotherapy phase, and further to screen out radiotherapeutic response-specific biomarkers.
Collapse
Affiliation(s)
- Minghe Lv
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
- Department of Radiotherapy, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Pudong New Area, Shanghai 201203, China
| | - Shali Shao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
| | - Yajing Du
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
| | - Xibing Zhuang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
| | - Xiangdong Wang
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
| | - Tiankui Qiao
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Jinshan District, Shanghai 201508, China
| |
Collapse
|
6
|
Javid H, Oryani MA, Rezagholinejad N, Esparham A, Tajaldini M, Karimi‐Shahri M. RGD peptide in cancer targeting: Benefits, challenges, solutions, and possible integrin-RGD interactions. Cancer Med 2024; 13:e6800. [PMID: 38349028 PMCID: PMC10832341 DOI: 10.1002/cam4.6800] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/15/2024] Open
Abstract
RGD peptide can be found in cell adhesion and signaling proteins, such as fibronectin, vitronectin, and fibrinogen. RGD peptides' principal function is to facilitate cell adhesion by interacting with integrin receptors on the cell surface. They have been intensively researched for use in biotechnology and medicine, including incorporation into biomaterials, conjugation to medicinal molecules or nanoparticles, and labeling with imaging agents. RGD peptides can be utilized to specifically target cancer cells and the tumor vasculature by engaging with these integrins, improving drug delivery efficiency and minimizing adverse effects on healthy tissues. RGD-functionalized drug carriers are a viable option for cancer therapy as this focused approach has demonstrated promise in the future. Writing a review on the RGD peptide can significantly influence how drugs are developed in the future by improving our understanding of the peptide, finding knowledge gaps, fostering innovation, and making drug design easier.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Medical Laboratory SciencesVarastegan Institute for Medical SciencesMashhadIran
- Department of Clinical Biochemistry, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
- Surgical Oncology Research CenterMashhad University of Medical SciencesMashhadIran
| | - Mahsa Akbari Oryani
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
| | | | - Ali Esparham
- Student Research Committee, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research CenterGolestan University of Medical SciencesGorganIran
| | - Mehdi Karimi‐Shahri
- Department of Pathology, School of MedicineMashhad University of Medical SciencesMashhadIran
- Department of Pathology, School of MedicineGonabad University of Medical SciencesGonabadIran
| |
Collapse
|
7
|
Lv J, Yanting W, Wei S. Regulatory roles of ACSL5 in the anti-tumor function of palmitic acid (C16:0) <em>via</em> the ERK signaling pathway. Eur J Histochem 2023; 67. [PMID: 37946526 DOI: 10.4081/ejh.2023.3867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Previous studies have highlighted the susceptibility of cancer to perturbations in lipid metabolism. In particular, C16:0 has emerged as a promising novel treatment for hepatocellular carcinoma. In our study, we investigated the levels of C16:0 in the serum of non-small lung cancer patients were significant downregulation compared to healthy individuals (n=10; p<0.05). Moreover, our in vitro experiments using A549 cells demonstrated that C16:0 effectively inhibited proliferation, apoptosis, migration, and invasion. Despite these promising results, its pathogenesis remains poorly understood. CCK-8 assay, annexin V-FITC/PI double staining assay, wound healing assay and transwell assay were performed to evaluate the effects of C16:0, on proliferation, apoptosis, migration and invasion of A549 cells. RNA sequencing was used to identify essential factors involved in C16:0-growth inhibition in lung cancer. Further, the expression levels of related gene and proteins were detected by quantitative RT-PCR and Western blotting. Mouse NSCLC subcutaneous xenograft tumor model was established, and gastric lavage was given with C16:0. Tumor volume assay and hematoxylin-eosin staining were used to detect tumor growth in vivo. Our analysis revealed a significant upregulation of ACSL5 and its associated proteins in C16:0-treated A549 cells compared to the control group both in vivo and in vitro. Moreover, the knockdown of ACSL5 reversed the anti-tumor effect, resulting in an increased rate of the malignant phenotype mentioned above. Additionally, the expression of phosphorylated ERK protein was significantly inhibited with increasing concentrations of C16:0 in A549 cells. These results reveal for the first time that C16:0, as a novel target, regulates ACLS5 through the ERK signaling pathway, to inhibit the proliferation and apoptosis and inhibits cell migration and invasion of NSCLC. These findings may lead to the development of a novel therapeutic approach for non-small lung cancer.
Collapse
Affiliation(s)
- Jiapei Lv
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang.
| | - Wang Yanting
- Ningbo Zhenhai People's Hospital, Ningbo, Zhejiang.
| | - Shan Wei
- The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang.
| |
Collapse
|
8
|
Shields PG. Role of untargeted omics biomarkers of exposure and effect for tobacco research. ADDICTION NEUROSCIENCE 2023; 7:100098. [PMID: 37396411 PMCID: PMC10310069 DOI: 10.1016/j.addicn.2023.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Tobacco research remains a clear priority to improve individual and population health, and has recently become more complex with emerging combustible and noncombustible tobacco products. The use of omics methods in prevention and cessation studies are intended to identify new biomarkers for risk, compared risks related to other products and never use, and compliance for cessation and reinitation. to assess the relative effects of tobacco products to each other. They are important for the prediction of reinitiation of tobacco use and relapse prevention. In the research setting, both technical and clinical validation is required, which presents a number of complexities in the omics methodologies from biospecimen collection and sample preparation to data collection and analysis. When the results identify differences in omics features, networks or pathways, it is unclear if the results are toxic effects, a healthy response to a toxic exposure or neither. The use of surrogate biospecimens (e.g., urine, blood, sputum or nasal) may or may not reflect target organs such as the lung or bladder. This review describes the approaches for the use of omics in tobacco research and provides examples of prior studies, along with the strengths and limitations of the various methods. To date, there is little consistency in results, likely due to small number of studies, limitations in study size, the variability in the analytic platforms and bioinformatic pipelines, differences in biospecimen collection and/or human subject study design. Given the demonstrated value for the use of omics in clinical medicine, it is anticipated that the use in tobacco research will be similarly productive.
Collapse
Affiliation(s)
- Peter G. Shields
- Comprehensive Cancer Center, The Ohio State University and James Cancer Hospital, Columbus, OH
| |
Collapse
|
9
|
Shi L, Dai X, Yan F, Lin Y, Lin L, Zhang Y, Zeng Y, Chen X. Novel lipidomes profile and clinical phenotype identified in pneumoconiosis patients. JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2023; 42:55. [PMID: 37322561 DOI: 10.1186/s41043-023-00400-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pneumoconiosis is a group of occupational lung diseases caused by the inhalation of mineral dust in the lungs, leading to lung dysfunction. Patients with pneumoconiosis are usually accompanied by weight loss, which suggests a lipid metabolism disorder. Recent progress in lipidomics uncovered detailed lipid profiles that play important roles in respiratory diseases, such as asthma, lung cancer and lung injury. The purpose of this study was to shed light on the different expression of lipidome between pneumoconiosis and healthy, hoping to bring new ideas for the diagnosis and treatment of pneumoconiosis. METHODOLOGY This non-matching case-control study was performed among 96 subjects (48 outpatients with male pneumoconiosis and 48 healthy volunteers), data of clinical phenotypes were recorded, and plasma biochemistry (lipidomic profiles) was tested for both pneumoconiosis patients and healthy controls. A total of 426 species in 11 lipid classes were analyzed by high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC-QqQ-MS) for the cases and controls. We also analyzed the correlation of lipid profiles with clinical phenomes from pneumoconiosis patients by expression quantitative trait locus (eQTL) model to evaluate trans-nodules between lipidomic profiles and clinical phenomes. All visually re-checked data were analyzed using appropriate statistical tools (t-test or one-way ANOVA test) on SPSS. RESULTS Compared with healthy people, 26 significantly increased (> 1.5-fold) and 30 decreased lipid elements (< 2/threefold) in patients with pneumoconiosis were identified (P values all < 0.05). The majority of those elevated lipid elements were phosphatidylethanolamines (PEs), and the minority were free fatty acids (FFAs), while phosphatidylcholines (PCs) and lysophosphatidylcholines (lysoPCs) declined in pneumoconiosis. Clinical trans-omics analyses demonstrated that phenomes in pneumoconiosis connections with multiple lipids, which showed that pH, lung function, mediastinal lymph node calcification, and complication were highly correlated with lipid elements. Furthermore, up-regulated PE was corresponded to pH, smoking history and mediastinal lymph node calcification. PC was corresponded to dust exposure history, BMI and mediastinal lymph node calcification. CONCLUSION We found altered lipid panels between male pneumoconiosis patients and healthy people by qualitatively and quantitatively measured plasma lipidomic profiles. The trans-omic analysis between clinical phenomes and lipidomes might have the potential to uncover the heterogeneity of lipid metabolism of pneumoconiosis patients and to screen out clinically significant phenome-based lipid panels.
Collapse
Affiliation(s)
- Liyong Shi
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaofang Dai
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Furong Yan
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yujun Lin
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Lianshun Lin
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yongquan Zhang
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Xiaoyang Chen
- Department of Pulmonary and Critical Care Medicine, Respiratory Medicine Center of Fujian Province, Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
10
|
Cui H, Cui Y, Tang Q, Chu G, Wang Y, Bi K, Li Q, Li T, Liu R. PDMS-TiO 2 composite films combined with LC-MS/MS for determination of phospholipids of urine in non-small cell lung cancer patients with traditional Chinese medicine syndromes. J Pharm Biomed Anal 2023; 233:115472. [PMID: 37235959 DOI: 10.1016/j.jpba.2023.115472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Lung cancer is one of the most common malignant tumors in China. Most patients are already in the mid to advanced stages during the consultation and the survival rate is less than 23 % with a poor prognosis. Therefore, effective dialectical diagnosis of advanced cancer can guide individualized treatment to improve survival. Phospholipids are the building blocks of cell membranes and abnormal phospholipid metabolism is associated with plentiful diseases. Most studies of disease markers use blood as a sample. However, urine covers extensive metabolites that are produced during the body's metabolic processes. Therefore, the study of markers in urine can be used as a complement to improve the diagnosis rate of marker diseases. Moreover, urine is characterized by high water content, high polarity, and high inorganic salt, therefore the detection of phospholipids in urine is challenging. In this study, an original Polydimethylsiloxane (PDMS)-titanium dioxide (TiO2) composite film for sample pre-treatment coupled with the LC-MS/MS method for the determination of phospholipids in the urine with high selectivity and low matrix effects was prepared and developed. The extraction process was scientifically optimized by the single-factor test. After systematic validation, the established method was successfully applied to the accurate determination of phospholipid substances in the urine of lung cancer patients and healthy subjects. In conclusion, the developed method has great potential for the development of lipid enrichment analysis in urine and can be used as a beneficial tool for cancer diagnosis and Chinese medicine syndrome typing.
Collapse
Affiliation(s)
- Haiyue Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Yan Cui
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Qi Tang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Ge Chu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Yue Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Kaishun Bi
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Qing Li
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, Liaoning, China
| | - Ting Li
- Liaoning Inspection, Examination&Certification Centre, China
| | - Ran Liu
- School of Food and Drug, Shenzhen Polytechnic, 7098 Lau sin Avenue, Shenzhen 518000, China.
| |
Collapse
|
11
|
Effects of Lipid Metabolism-Related Genes PTGIS and HRASLS on Phenotype, Prognosis, and Tumor Immunity in Lung Squamous Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6811625. [PMID: 36703911 PMCID: PMC9873467 DOI: 10.1155/2023/6811625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023]
Abstract
Background Lipid metabolism reprogramming played an important role in cancer occurrence, development, and immune regulation. The aim of this study was to identify and validate lipid metabolism-related genes (LMRGs) associated with the phenotype, prognosis, and immunological characteristics of lung squamous cell carcinoma (LUSC). Methods In the TCGA cohort, bioinformatics and survival analysis were used to identify lipid metabolism-related differentially expressed genes (DEGs) associated with the prognosis of LUSC. PTGIS/HRASLS knockdown and overexpression effects on the LUSC phenotype were analyzed in vitro experiments. Based on the expression distribution of PTGIS/HRASLS, LUSC patients were divided into two clusters by consensus clustering. Clinical information, prognosis, immune infiltration, expression of immune checkpoints, and tumor mutation burden (TMB) level were compared between the TCGA and GSE4573 cohorts. The genes related to clustering and tumor immunity were screened by weighted gene coexpression network analysis (WGCNA), and the target module genes were analyzed by functional enrichment analysis, protein-protein interaction (PPI) analysis, and immune correlation analysis. Results 191 lipid metabolism-related DEGs were identified, of which 5 genes were independent prognostic genes of LUSC. PTGIS/HRASLS were most closely related to LUSC prognosis and immunity. RT-qPCR, western blot (WB) analysis, and immunohistochemistry (IHC) showed that the expression of PTGIS was low in LUSC, while HRASLS was high. Functionally, PTGIS promoted LUSC proliferation, migration, and invasion, while HRASLS inhibited LUSC proliferation, migration, and invasion. The two clusters' expression and distribution of PTGIS/HRASLS had the opposite trend. Cluster 1 was associated with lower pathological staging (pT, pN, and pTNM stages), better prognosis, stronger immune infiltration, higher expression of immune checkpoints, and higher TMB level than cluster 2. WGCNA found that 28 genes including CD4 and IL10RA were related to the expression of PTGIS/HRASLS and tumor immune infiltration. PTGIS/HRASLS in the GSE4573 cohort had the same effect on LUSC prognosis and tumor immunity as the TCGA cohort. Conclusions PTGIS and HRASLS can be used as new therapeutic targets for LUSC as well as biomarkers for prognosis and tumor immunity, which has positive significance for guiding the immunotherapy of LUSC.
Collapse
|
12
|
Zhang L, Liu X, Liu Y, Yan F, Zeng Y, Song Y, Fang H, Song D, Wang X. Lysophosphatidylcholine inhibits lung cancer cell proliferation by regulating fatty acid metabolism enzyme long-chain acyl-coenzyme A synthase 5. Clin Transl Med 2023; 13:e1180. [PMID: 36639836 PMCID: PMC9839868 DOI: 10.1002/ctm2.1180] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Lung cancer is a widespread malignancy with a high death rate and disorder of lipid metabolism. Lysophosphatidylcholine (lysoPC) has anti-tumour effects, although the underlying mechanism is not entirely known. The purpose of this study aims at defining changes in lysoPC in lung cancer patients, the effects of lysoPC on lung cancer cells and molecular mechanisms. Lung cancer cell sensitivity to lysoPC was evaluated and decisive roles of long-chain acyl-coenzyme A synthase 5 (ACSL5) in lysoPC regulation were defined by comprehensively evaluating transcriptomic changes of ACSL5-downregulated epithelia. ACSL5 over-expressed in ciliated, club and Goblet cells in lung cancer patients, different from other lung diseases. LysoPC inhibited lung cancer cell proliferation, by inducing mitochondrial dysfunction, altering lipid metabolisms, increasing fatty acid oxidation and reprograming ACSL5/phosphoinositide 3-kinase/extracellular signal-regulated kinase-regulated triacylglycerol-lysoPC balance. Thus, this study provides a general new basis for the discovery of reprogramming metabolisms and metabolites as a new strategy of lung cancer precision medicine.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Furong Yan
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Yiming Zeng
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Hao Fang
- Department of AnesthesiologyZhongshan and Minhang HospitalFudan UniversityShanghaiChina
| | - Dongli Song
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care MedicineZhongshan Hospital, Fudan University Shanghai Medical CollegeShanghaiChina,Shanghai Institute of Clinical BioinformaticsShanghaiChina,Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
13
|
Rezaie J, Feghhi M, Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun Signal 2022; 20:145. [PMID: 36123730 PMCID: PMC9483361 DOI: 10.1186/s12964-022-00959-4] [Citation(s) in RCA: 292] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/16/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Exosomes are progressively known as significant mediators of cell-to-cell communication. They convey active biomolecules to target cells and have vital functions in several physiological and pathological processes, and show substantial promise as novel treatment strategies for diseases. METHODS In this review study, we studied numerous articles over the past two decades published on application of exosomes in different diseases as well as on perspective and challenges in this field. RESULTS The main clinical application of exosomes are using them as a biomarker, cell-free therapeutic agents, drug delivery carriers, basic analysis for exosome kinetics, and cancer vaccine. Different exosomes from human or plant sources are utilized in various clinical trials. Most researchers used exosomes from the circulatory system for biomarker experiments. Mesenchymal stem cells (MSCs) and dendritic cells (DCs) are two widely held cell sources for exosome use. MSCs-derived exosomes are commonly used for inflammation treatment and drug delivery, while DCs-exosomes are used to induce inflammation response in cancer patients. However, the clinical application of exosomes faces various questions and challenges. In addition, translation of exosome-based clinical trials is required to conform to specific good manufacturing practices (GMP). In this review, we summarize exosomes in the clinical trials according to the type of application and disease. We also address the main questions and challenges regarding exosome kinetics and clinical applications. CONCLUSIONS Exosomes are promising platforms for treatment of many diseases in clinical trials. This exciting field is developing hastily, understanding of the underlying mechanisms that direct the various observed roles of exosomes remains far from complete and needs further multidisciplinary research in working with these small vesicles. Video Abstract.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd., P.O. BoX: 1138, Urmia, 57147, Iran.
| | - Maryam Feghhi
- Institute of Molecular Biophysics, Florida State University, Florida, USA
| | - Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
14
|
Zang X, Zhang J, Jiao P, Xue X, Lv Z. Non-Small Cell Lung Cancer Detection and Subtyping by UPLC-HRMS-Based Tissue Metabolomics. J Proteome Res 2022; 21:2011-2022. [PMID: 35856400 DOI: 10.1021/acs.jproteome.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Non-small cell lung cancer (NSCLC) is the prevalent histological subtype of lung cancer. In this study, we performed ultraperformance liquid chromatography-high-resolution mass spectrometry (UPLC-HRMS)-based metabolic profiling of 227 tissue samples from 79 lung cancer patients with adenocarcinoma (AC) or squamous cell carcinoma (SCC). Orthogonal partial least squares-discriminant analysis (oPLS-DA) analyses showed that AC, SCC, and NSCLC tumors were discriminated from adjacent noncancerous tissue (ANT) and distant noncancerous tissue (DNT) samples with good accuracies (91.3, 100, and 88.3%), sensitivities (85.7, 100, and 83.9%), and specificities (94.3, 100, and 90.7%), using 12, 4, and 7 discriminant metabolites, respectively. The discriminant panel for AC detection included valine, sphingosine, glutamic acid γ-methyl ester, and lysophosphatidylcholine (LPC) (16:0), levels of which in tumor tissues were significantly altered. Valine, sphingosine, LPC (18:1), and leucine derivatives were used for SCC detection. The discrimination between AC and SCC had 96.8% accuracy, 98.2% sensitivity, and 85.7% specificity using a five-metabolite panel, of which valine and creatine had significant differences. The classification models were further verified with external validation sets, showing a promising prospect for NSCLC tissue detection and subtyping.
Collapse
Affiliation(s)
- Xiaoling Zang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Jie Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| | - Peng Jiao
- Department of Thoracic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, P. R. China
| | - Xuyan Xue
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, P. R. China
| |
Collapse
|
15
|
Li L, Liu Y, Liu X, Zheng N, Gu Y, Song Y, Wang X. Regulatory roles of external cholesterol in human airway epithelial mitochondrial function through STARD3 signalling. Clin Transl Med 2022; 12:e902. [PMID: 35678098 PMCID: PMC9178408 DOI: 10.1002/ctm2.902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypercholesterolemia is found in patients with chronic lung inflammation, during which airway epithelial cells play important roles in maintenance of inflammatory responses to pathogens. The present study aims at molecular mechanisms by which cholesterol changes airway epithelial sensitivity in response to smoking. METHODS Human bronchial epithelial cells (HBEs) were stimulated with cigarette smoke extract (CSE) and mice were exposed to CS/lipopolysaccharide (LPS) as models in vitro and in vivo. Severe COPD patients and healthy volunteers were also enrolled and the level of cholesterol in plasma was detected by metabolomics. Filipin III and elisa kits were used to stain free cholesterol. Mitochondrial function was detected by mitotracker green, mitotracker green, and Seahorse. Mitochondrial morphology was detected by high content screening and electron microscopy. The mRNA and protein levels of mitochondrial dynamics-related proteins were detected by RT-qPCR and Western blot,respectively. BODIPY 493/503 was used to stain lipid droplets. Lipidomics was used to detect intracellular lipid components. The mRNA level of interleukin (IL)-6 and IL-8 were detected by RT-qPCR. RESULTS We found that the cholesterol overload was associated with chronic obstructive pulmonary disease (COPD) and airway epithelia-driven inflammation, evidenced by hypercholesterolemia in patients with COPD and preclinical models, alteration of lipid metabolism-associated genes in CSE-induced airway epithelia and production of ILs. External cholesterol altered airway epithelial sensitivity of inflammation in response to CSE, through the regulation of STARD3-MFN2 pathway, cholesterol re-distribution, altered transport and accumulation of cholesterol, activities of lipid transport regulators and disorder of mitochondrial function and dynamics. MFN2 down-regulation increased airway epithelial sensitivity and production of ILs after smoking, at least partially by injuring fatty acid oxidation and activating mTOR phosphorylation. CONCLUSIONS Our data provide new insights for understanding molecular mechanisms of cholesterol-altered airway epithelial inflammation and for developing diagnostic biomarkers and therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yutong Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
16
|
Zeng W, Zheng W, Hu S, Zhang J, Zhang W, Xu J, Yu D, Peng J, Zhang L, Gong M, Wei Y. Application of Lipidomics for Assessing Tissue Lipid Profiles of Patients With Squamous Cell Carcinoma. Technol Cancer Res Treat 2021; 20:15330338211049903. [PMID: 34761720 PMCID: PMC8591777 DOI: 10.1177/15330338211049903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Lipid metabolism disorders play a key role in the pathogenesis of squamous cell carcinoma (SqCC). Herein we used lipidomics to study the tissue lipid profiles of 40 patients with SqCC. Methods: Lipidomics, based on ultrahigh-performance liquid chromatography-Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry, was applied to identify altered lipid metabolites between tumor and adjacent noninvolved tissues (ANIT), and partial least squares-discriminant analysis model facilitated the identification of differentially abundant lipids. The area under the receiver operator characteristic curve and variable importance in projection scores of the aforementioned model were calculated to select lipid profiles. Metabolic pathway analyses were completed using Kyoto Encyclopedia of Genes and Genomes and MetaboAnalyst. Results: Differences in lipid profiles were found between tumor and ANIT, early- and advanced-stage SqCC, and positive and negative lymph node metastases. The lipid profile panel was composed of five lipids-PC(44:4), diacylglycerol(36:5), sphingomyelin(d18:1/20:0), phosphatidylinositol(46:7), and HexCer-AP(t8:0/32:2 + O)-and could effectively differentiate between tumor and ANIT. Further, pathway analyses revealed alterations in several lipid metabolism pathways, including glycerophospholipid metabolism, glycosylphosphatidylinositol anchor biosynthesis, linoleic acid metabolism, glycerolipid metabolism, and sphingolipid metabolism. Conclusion: Our data revealed several changes in the tissue lipid profiles of patients with SqCC; moreover, we identified a lipid profile panel that could effectually distinguish tumor tissues from ANIT. We believe that our results provide new insights into the biological behavior of lung SqCC.
Collapse
Affiliation(s)
- Weibiao Zeng
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Wen Zheng
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Sheng Hu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jianyong Zhang
- 74720The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Wenxiong Zhang
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jianjun Xu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Dongliang Yu
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Jinhua Peng
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| | - Lu Zhang
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Meng Gong
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network34753West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Yiping Wei
- 196534The Second Department of Thoracic Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, P. R. China
| |
Collapse
|
17
|
Katz L, Tata A, Woolman M, Zarrine-Afsar A. Lipid Profiling in Cancer Diagnosis with Hand-Held Ambient Mass Spectrometry Probes: Addressing the Late-Stage Performance Concerns. Metabolites 2021; 11:metabo11100660. [PMID: 34677375 PMCID: PMC8537725 DOI: 10.3390/metabo11100660] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Untargeted lipid fingerprinting with hand-held ambient mass spectrometry (MS) probes without chromatographic separation has shown promise in the rapid characterization of cancers. As human cancers present significant molecular heterogeneities, careful molecular modeling and data validation strategies are required to minimize late-stage performance variations of these models across a large population. This review utilizes parallels from the pitfalls of conventional protein biomarkers in reaching bedside utility and provides recommendations for robust modeling as well as validation strategies that could enable the next logical steps in large scale assessment of the utility of ambient MS profiling for cancer diagnosis. Six recommendations are provided that range from careful initial determination of clinical added value to moving beyond just statistical associations to validate lipid involvements in disease processes mechanistically. Further guidelines for careful selection of suitable samples to capture expected and unexpected intragroup variance are provided and discussed in the context of demographic heterogeneities in the lipidome, further influenced by lifestyle factors, diet, and potential intersect with cancer lipid pathways probed in ambient mass spectrometry profiling studies.
Collapse
Affiliation(s)
- Lauren Katz
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico delle Venezie, Viale Fiume 78, 36100 Vicenza, Italy;
| | - Michael Woolman
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
| | - Arash Zarrine-Afsar
- Department of Medical Biophysics, University of Toronto, 101 College Street, Toronto, ON M5G 1L7, Canada; (L.K.); (M.W.)
- Techna Institute for the Advancement of Technology for Health, University Health Network, 100 College Street, Toronto, ON M5G 1P5, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, ON M5T 1P5, Canada
- Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael’s Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada
- Correspondence: ; Tel.: +1-416-581-8473
| |
Collapse
|
18
|
Xue VW, Wong SCC, Cho WC. From proteomic landscape to single-cell oncoproteomics. Expert Rev Proteomics 2021; 18:1-6. [PMID: 33571016 DOI: 10.1080/14789450.2021.1890036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
Introduction: Proteomic profiling plays an important role in the exploration of cancer from molecular mechanisms to clinical diagnosis and treatment. In recent years, the advent of new technologies has promoted oncoproteomics from the initial global style to a refined single-cell level.Areas Covered: Among them, the development of microfluidic devices, the improvement of liquid mass spectrometry in accuracy and trace sample handling processes, and the emergence of protein sequencing have contributed to the oncoproteomic analysis at the single-cell level.Expert Opinion: The proteomic analysis at the global level and the single-cell level gives different perspectives while combining them can reveal more comprehensive oncoproteomics and help cancer research and treatment strategies.
Collapse
Affiliation(s)
- Vivian Weiwen Xue
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen University, Shenzhen, China
| | - Sze Chuen Cesar Wong
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - William Chi Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China
| |
Collapse
|
19
|
Cheng F, Wen Z, Feng X, Wang X, Chen Y. A serum lipidomic strategy revealed potential lipid biomarkers for early-stage cervical cancer. Life Sci 2020; 260:118489. [PMID: 32976882 DOI: 10.1016/j.lfs.2020.118489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 12/15/2022]
Abstract
AIMS Cervical cancer (CC) is a common tumor of women worldwide. Here, we conducted a non-targeted lipidomic study to discover novel lipid biomarkers for early-stage CC. MAIN METHODS The lipidomic analysis of 71 samples in discovery set and 72 samples in validation set were performed by coupling ultra-high-pressure liquid chromatography (UHPLC) with quadrupole time-of-flight tandem mass spectrometry (Q-TOF-MS). Lipids with variable importance (VIP) values greater than 1, adj. p < 0.05 (the adjusted p value obtained from false discovery rate correction) and fold change (FC) higher than 1.5 were reserved as potential biomarkers. Subsequently, receiver operating characteristic (ROC) curve and binary logistic regression were implemented to assess the diagnostic potential of these biomarkers and to acquire the best biomarker combination. KEY FINDINGS A lipid biomarker panel, including phosphatidylcholine (PC, PC 14:0/18:2) and phosphatidylethanolamine (PE, PE 15:1e/22:6 and PE 16:1e/18:2), was established. This panel was effective in distinguishing between CC and non-CC (squamous intraepithelial lesions [SIL] and healthy controls) within the area under the ROC curve (AUC), sensitivity, and specificity reaching 0.966, 0.952, and 0.860 for discovery set and 0.961, 0.920, and 0.915 for external validation set. Furthermore, this panel was also capable of discriminating early-stage CC from SIL with AUC, sensitivity, and specificity reaching 0.946, 0.952, and 0.800 for discovery set and 0.956, 0.960, and 0.815 for external validation set. SIGNIFICANCE The combination of PC 14:0/18:2, PE 15:1e/22:6, and PE 16:1e/18:2 could serve as a promising serum biomarker for discriminating early-stage CC from SIL and healthy subjects.
Collapse
Affiliation(s)
- Feng Cheng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, Jiangsu, China.
| | - Zhifa Wen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, Jiangsu, China.
| | - Xiaodan Feng
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, Jiangsu, China
| | - Xiaoman Wang
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, Jiangsu, China
| | - Yajun Chen
- Department of Clinical Laboratory, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, Jiangsu, China.
| |
Collapse
|
20
|
Liessi N, Pesce E, Braccia C, Bertozzi SM, Giraudo A, Bandiera T, Pedemonte N, Armirotti A. Distinctive lipid signatures of bronchial epithelial cells associated with cystic fibrosis drugs, including Trikafta. JCI Insight 2020; 5:138722. [PMID: 32673287 PMCID: PMC7455125 DOI: 10.1172/jci.insight.138722] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, a number of drugs have been approved for the treatment of cystic fibrosis (CF). Among them, newly released Trikafta, a combination of 3 drugs (VX-661/VX-445/VX-770), holds great promise to radically improve the quality of life for a large portion of patients with CF carrying 1 copy of F508del, the most frequent CF transmembrane conductance regulator (CFTR) mutation. Currently available disease-modifying CF drugs work by rescuing the function of the mutated CFTR anion channel. Recent research has shown that membrane lipids, and the cell lipidome in general, play a significant role in the mechanism of CFTR-defective trafficking and, on the other hand, its rescue. In this paper, by using untargeted lipidomics on CFBE41o- cells, we identified distinctive changes in the bronchial epithelial cell lipidome associated with treatment with Trikafta and other CF drugs. Particularly interesting was the reduction of levels of ceramide, a known molecular player in the induction of apoptosis, which appeared to be associated with a decrease in the susceptibility of cells to undergo apoptosis. This evidence could account for additional beneficial roles of the triple combination of drugs on CF phenotypes.
Collapse
Affiliation(s)
- Nara Liessi
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | - Emanuela Pesce
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Clarissa Braccia
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Tiziano Bandiera
- D3 PharmaChemistry, Istituto Italiano di Tecnologia, Genova, Italy
| | - Nicoletta Pedemonte
- L'Unità Operativa Complessa (UOC) Genetica Medica, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genova, Italy
| | - Andrea Armirotti
- Analytical Chemistry Lab, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
21
|
Zhu Z, Zhang L, Lv J, Liu X, Wang X. Trans-omic profiling between clinical phenoms and lipidomes among patients with different subtypes of lung cancer. Clin Transl Med 2020; 10:e151. [PMID: 32898330 PMCID: PMC7438979 DOI: 10.1002/ctm2.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/26/2020] [Accepted: 07/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer has high mortality, often accompanied with systemic metabolic disorders. The present study aimed at defining values of trans-nodules cross-clinical phenomic and lipidomic network layers in patients with adenocarcinoma (ADC), squamous cell carcinomas, or small cell lung cancer (SCLC). We measured plasma lipidomic profiles of lung cancer patients and found that altered lipid panels and concentrations varied among lung cancer subtypes, genders, ages, stages, metastatic status, nutritional status, and clinical phenome severity. It was shown that phosphatidylethanolamine elements (36:2, 18:0/18:2, and 18:1/18:1) were SCLC specific, whereas lysophosphatidylcholine (20:1 and 22:0 sn-position-1) and phosphatidylcholine (19:0/19:0 and 19:0/21:2) were ADC specific. There were statistically more lipids declined in male, <60 ages, late stage, metastasis, or body mass index < 22 . Clinical trans-omics analyses demonstrated that one phenome in lung cancer subtypes might be generated from multiple metabolic pathways and metabolites, whereas a metabolic pathway and metabolite could contribute to different phenomes among subtypes, although those needed to be furthermore confirmed by bigger studies including larger population of patients in multicenters. Thus, our data suggested that trans-omic profiles between clinical phenomes and lipidomes might have the value to uncover the heterogeneity of lipid metabolism among lung cancer subtypes and to screen out phenome-based lipid panels as subtype-specific biomarkers.
Collapse
Affiliation(s)
- Zhenhua Zhu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Institute of Respiratory Diseases, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Linlin Zhang
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Jiapei Lv
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiaoxia Liu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
- Shanghai Institute of Respiratory Diseases, Zhongshan Hospital, Shanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
22
|
Roles of acyl-CoA synthetase long-chain family member 5 and colony stimulating factor 2 in inhibition of palmitic or stearic acids in lung cancer cell proliferation and metabolism. Cell Biol Toxicol 2020; 37:15-34. [PMID: 32347412 DOI: 10.1007/s10565-020-09520-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Lung cancer is a heterogeneous and complex disease with the highest incidence and mortality rate. The present study aims at defining the lung cancer phenome specificity of lipidomic profiles, screening target lipid-dependent transcriptional alternations, identifying target lipid-associated target genes, and exploring molecular mechanisms. Lung cancer-specific and lung cancer subtype-specific target lipids palmitic acid (C16:0) and stearic acid (C18:0) were found as target lipids by integrating clinical phenomics, lipidomics, and transcriptomics and exhibited antiproliferative effects in sensitive cells. The metabolism-associated gene ACSL5 or inflammation-associated gene CCL3 was identified in lung adenocarcinoma or small lung cancer cells, respectively. C16:0 or C18:0 could upregulate ACSL5 or CSF2 expression in a time- and dose-dependent pattern, and the deletion of both genes led to the insensitivity of cells. Target lipids increased the expression of PDK4 gene in different patterns and inhibited cell proliferation through alterations of intracellular energy. Thus, our data provide a new strategy to investigate the trans-points between clinical and phenomics and lipidomics and target lipid-associated molecular mechanisms to benefit from the discovery of new therapies.
Collapse
|
23
|
Serum lipidomic biomarkers for non-small cell lung cancer in nonsmoking female patients. J Pharm Biomed Anal 2020; 185:113220. [PMID: 32145537 DOI: 10.1016/j.jpba.2020.113220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/06/2023]
Abstract
Lung cancer (Lca) is one of the malignant tumors with the fastest morbidity and mortality increase and the greatest threat to human health and life. The incidence of non-small cell lung cancer (NSCLC) in the nonsmoking female has increased recently. However, its pathogenesis is still unclear, and there is an urgent need for clinical diagnostic biomarkers, especially for early diagnosis. A nontargeted lipidomic approach based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS), as well as two machine learning approaches (genetic algorithm and binary logistic regression) was used to screen candidate discriminating lipids and define a combinational lipid biomarker in serum samples to distinguish female patients with NSCLC from healthy controls. Moreover, the candidate biomarkers were verified by using an external validation sample set. Our result revealed that fatty acid (FA) (20:4), FA (22:0) and LPE (20:4) can serve as a combinational biomarker for distinguishing female patients with NSCLC from healthy control with good sensitivity and specificity. Furthermore, this combinational biomarker also showed good performance in distinguishing early-stage NSCLC female patients from a healthy control. We observed that levels of unsaturated fatty acids clearly decreased, while saturated fatty acids and lysophosphatidylethanolamines pronouncedly increased in Lca patients, compared with the healthy controls, which revealed significant disturbance of lipid metabolism in NSCLC females. Our results not only provide hints to the pathological mechanism of NSCLC in nonsmoking female but also supply a combinational lipid biomarker to aid the diagnosis of NSCLC at early-stage.
Collapse
|
24
|
Walters JL, Gadella BM, Sutherland JM, Nixon B, Bromfield EG. Male Infertility: Shining a Light on Lipids and Lipid-Modulating Enzymes in the Male Germline. J Clin Med 2020; 9:E327. [PMID: 31979378 PMCID: PMC7073900 DOI: 10.3390/jcm9020327] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/20/2020] [Indexed: 12/24/2022] Open
Abstract
Despite the prevalence of male factor infertility, most cases are defined as idiopathic, thus limiting treatment options and driving increased rates of recourse to assisted reproductive technologies (ARTs). Regrettably, our current armory of ARTs does not constitute therapeutic treatments for male infertility, thus highlighting an urgent need for novel intervention strategies. In our attempts to fill this void, we have come to appreciate that the production of pathological levels of oxygen radicals within the male germline are a defining etiology of many idiopathic infertility cases. Indeed, an imbalance of reactive oxygen species can precipitate a cascade of deleterious sequelae, beginning with the peroxidation of membrane lipids and culminating in cellular dysfunction and death. Here, we shine light on the importance of lipid homeostasis, and the impact of lipid stress in the demise of the male germ cell. We also seek to highlight the utility of emerging lipidomic technologies to enhance our understanding of the diverse roles that lipids play in sperm function, and to identify biomarkers capable of tracking infertility in patient cohorts. Such information should improve our fundamental understanding of the mechanistic causes of male infertility and find application in the development of efficacious treatment options.
Collapse
Affiliation(s)
- Jessica L.H. Walters
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Bart M. Gadella
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Jessie M. Sutherland
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Hunter Medical Research Institute, Pregnancy and Reproduction Program, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Elizabeth G. Bromfield
- Priority Research Centre for Reproductive Science, Schools of Environmental and Life Sciences and Biomedical Sciences and Pharmacy, Discipline of Biological Sciences, University of Newcastle, Callaghan, NSW 2308, Australia
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
25
|
Zhang L, Zhu B, Zeng Y, Shen H, Zhang J, Wang X. Clinical lipidomics in understanding of lung cancer: Opportunity and challenge. Cancer Lett 2019; 470:75-83. [PMID: 31655086 DOI: 10.1016/j.canlet.2019.08.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022]
Abstract
Disordered lipid metabolisms have been evidenced in lung cancer as well as its subtypes. Lipidomics with in-depth mining is considered as a critical member of the multiple omics family and a lipid-specific tool to understand disease-associated lipid metabolism and disease-specific dysfunctions of lipid species, discover biomarkers and targets for monitoring therapeutic strategies, and provide insights into lipid profiling and pathophysiological mechanisms in lung cancer. The present review describes the characters and patterns of lipidomic profiles in patients with different lung cancer subtypes, important values of comprehensive lipidomic profiles in understanding of lung cancer heterogeneity, urgent needs of standardized methodologies, potential mechanisms by lipid-associated enzymes and proteins, and the importance of integration between clinical phenomes and lipidomic profiles. The characteristics of lipidomic profiles in different lung cancer subtypes are extremely varied among study designs, objects, methods, and analyses. Preliminary data from recent studies demonstrate the specificity of lipidomic profiles specific for lung cancer stage, severity, subtype, and response to drugs. The heterogeneity of lipidomic profiles and lipid metabolism may be part of systems heterogeneity in lung cancer and be responsible for the development of drug resistance, although there are needs for direct evidence to show the existence of intra- or inter-lung cancer heterogeneity of lipidomic profiles. With an increasing understanding of expression profiles of genes and proteins, lipidomic profiles should be associated with activities of enzymes and proteins involved in the processes of lipid metabolism, which can be profiled with genomics and proteomics, and to provide the opportunity for the integration of lipidomic profiles with gene and protein expression profiles. The concept of clinical trans-omics should be emphasized to integrate data of lipidomics with clinical phenomics to identify disease-specific and phenome-specific biomarkers and targets, although there are still a large number of challenges to be overcome in the integration between clinical phenomes and lipidomic profiles.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Bijun Zhu
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China
| | - Yiming Zeng
- Department of Respiratory Diseases, Clinical Center for Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| | - Hui Shen
- Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| | - Jiaqiang Zhang
- Department of Anesthesiology, Clinical Center of Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Torkhovskaya TI, Zakharova TS, Korotkevich EI, Ipatova OM, Markin SS. Human Blood Plasma Lipidome: Opportunities and Prospects of Its Analysis in Medical Chemistry. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s106816201905011x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Serum lipidome screening in patients with stage I non-small cell lung cancer. Clin Exp Med 2019; 19:505-513. [PMID: 31264112 PMCID: PMC6797644 DOI: 10.1007/s10238-019-00566-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/18/2019] [Indexed: 12/24/2022]
Abstract
The ability of early lung cancer diagnosis is an unmet need in clinical practice. Lung cancer metabolomic analyses conducted so far have demonstrated several abnormalities in cancer lipid profile providing a rationale for further study of blood lipidome of the patients. In the present research, we performed a targeted lipidome screening to select molecules that show promise for early lung cancer detection. The study was conducted on serum samples collected from newly diagnosed, stage I non-small cell lung cancer (NSCLC) patients and non-cancer controls. A high-throughput mass spectrometry-based platform with confirmed interlaboratory reproducibility was used. The analyzed profile consisted of acylcarnitines, sphingomyelins, phosphatidylcholines and lysophosphatidylcholines. Among the assayed lipid species, the significant differences between NSCLC and non-cancer subjects were observed in the group of phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC), especially in the levels of lysoPC a C26:0; lysoPC a C26:1; PC aa C42:4; and PC aa C34:4. The metabolites mentioned above were used to create a multivariate classification model, which reliability was proved by permutation tests as well as external validation. Our study indicated choline-containing phospholipids as potential lung cancer markers. Further investigations of phospholipidome are crucial to better describe the shifts in metabolite composition occurring in lung cancer patients.
Collapse
|
28
|
Cell Therapy: Past, Present, and Future. CURRENT TRANSPLANTATION REPORTS 2019. [DOI: 10.1007/s40472-019-00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Gao D, Zhang L, Song D, Lv J, Wang L, Zhou S, Li Y, Zeng T, Zeng Y, Zhang J, Wang X. Values of integration between lipidomics and clinical phenomes in patients with acute lung infection, pulmonary embolism, or acute exacerbation of chronic pulmonary diseases: a preliminary study. J Transl Med 2019; 17:162. [PMID: 31109325 PMCID: PMC6528323 DOI: 10.1186/s12967-019-1898-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022] Open
Abstract
Background The morbidity and mortality of patients with critical illnesses remain high in pulmonary critical care units and a poorly understood correlation between alterations of lipid elements and clinical phenomes remain unelucidated. Methods In the present study, we investigated plasma lipidomic profiles of 30 patients with severe acute pneumonia (SAP), acute pulmonary embolism (APE), and acute exacerbation of chronic pulmonary diseases (AECOPD) or 15 healthy with the aim to compare disease specificity of lipidomic patterns. We defined the specificity of lipidomic profiles in SAP by comparing it to both APE and AECOPD. Analysis of the correlation between altered lipid elements and clinical phenotypes using the lipid-QTL model was then carried out. Results We integrated lipidomic profiles with clinical phenomes measured by score values from the digital evaluation score system and found phenome-associated lipid elements to identify disease-specific lipidomic profiling. The present study demonstrates that lipidomic profiles of patients with acute lung diseases are different from healthy lungs, and there are also disease-specific portions of lipidomics among SAP, APE, or AECOPD. The comprehensive profiles of clinical phenomes or lipidomics are valuable in describing the disease specificity of patient phenomes and lipid elements. The combination of clinical phenomes with lipidomic profiles provides more detailed disease-specific information on panels of lipid elements When compared to the use of each separately. Conclusions Integrating biological functions with disease specificity, we believe that clinical lipidomics may create a new alternative way to understand lipid-associated mechanisms of critical illnesses and develop a new category of disease-specific biomarkers and therapeutic targets. Electronic supplementary material The online version of this article (10.1186/s12967-019-1898-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Danyan Gao
- Department of Pulmonary Diseases, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linlin Zhang
- Department of Pulmonary Diseases, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiapei Lv
- Department of Pulmonary Diseases, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Linyan Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuang Zhou
- Clinical Center for Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanjun Li
- Department of Anesthesiology, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Chinese Academy Science, Shanghai, China
| | - Yiming Zeng
- Clinical Center for Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian, China.
| | - Jiaqiang Zhang
- Department of Anesthesiology, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xiangdong Wang
- Department of Pulmonary Diseases, The First Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. .,Zhongshan Hospital Institute for Clinical Science, Shanghai Institute of Clinical Bioinformatics, Shanghai Engineering Research for AI Technology for Cardiopulmonary Diseases, Center for Tumor Diagnosis and Therapy, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Clinical Center for Molecular Diagnosis and Therapy, The Second Hospital of Fujian Medical University, Quanzhou, Fujian, China. .,Department of Anesthesiology, Center for Clinical Single Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
30
|
Interferon gamma induces inflammatory responses through the interaction of CEACAM1 and PI3K in airway epithelial cells. J Transl Med 2019; 17:147. [PMID: 31072323 PMCID: PMC6507156 DOI: 10.1186/s12967-019-1894-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Interferon gamma (IFNγ) plays an important role in the development of chronic lung diseases via the production of inflammatory mediators, although the exact mechanism remains unclear. The present study aimed at investigating the potential mechanisms by which IFNγ induced over-production of interleukins through the interaction between carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway. METHODS IFN-γ induced over-production of interleukin (IL) 6 and IL8, and RNA expression of CEACAM1 and its subtypes or PI3K and its subtypes in human bronchial epithelial cells (HBE). The production of IL6 and IL8 or cell proliferation and movement were also evaluated in cellCEACAM1- or cellCEACAM1+ after the induction of IFN-γ. Roles of PI3K subtype proteins, e.g. PI3Kp110α/δ, Akt, p110α/γ/δ/β/mTOR, PI3Kp110α/δ/β, PI3Kp110δ, or pan-PI3K in IFN-γ-induced CEACAM1 subtype alterations were furthermore validated using those proteins of PI3K subtypes. RESULTS CEACAM1, especially CEACAM1-S isoforms, was significantly up-regulated in HBE cells after treatment with IFN-γ. CEACAM1 played roles in expression of IL-6 and IL-8, and facilitated cellular proliferation and migration. IFN-γ up-regulated the expression of CEACAM1 in airway epithelial cells, especially CEACAM1-S isoforms, promoting cellular proliferation, migration, and the production of inflammatory factors. PI3K (p110δ)/Akt/mTOR pathway was involved in the process of IFN-γ-upregulated CEACAM1, especially CEACAM1-S. On the other hand, CEACAM1 could promote the activation of PI3K/Akt/mTOR pathway. CONCLUSION IFN-γ could induce inflammatory responses, cellular growth and proliferation through the interaction of CEACAM1 (especially CEACAM1-S isoforms) and PI3K(p110δ)/Akt/mTOR in airway epithelial cells, which might be new alternative of future therapies against epithelial transition from inflammation to cancer.
Collapse
|
31
|
The role of extracellular vesicles in renal fibrosis. Cell Death Dis 2019; 10:367. [PMID: 31068572 PMCID: PMC6506498 DOI: 10.1038/s41419-019-1605-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/11/2019] [Accepted: 04/16/2019] [Indexed: 12/15/2022]
Abstract
As a particularly important mediator of intercellular communication, extracellular vesicles (EVs) have been proved to be extensively involved in various system diseases over the past two decades, including in renal diseases. As is well-known, renal fibrosis is the common pathological process of any ongoing renal disease or adaptive repair of kidney injury based on current knowledge. Although much work has been performed focusing on EVs in various renal diseases, the role of EVs in renal fibrosis has not been described in detail and summarized. In this review, we provide a brief overview of the definition, classification and biological process of EVs. Then, the potential mechanisms of EVs in renal fibrosis are illustrated. Lastly, recent advances in EVs and the implications of EVs for diagnosis and therapy in renal fibrosis disease are introduced. We look forward to a more comprehensive understanding of EVs in renal fibrosis, which could be a boon to patients with renal fibrosis disease.
Collapse
|
32
|
Song D, Yang D, Powell CA, Wang X. Cell-cell communication: old mystery and new opportunity. Cell Biol Toxicol 2019; 35:89-93. [PMID: 30815784 DOI: 10.1007/s10565-019-09470-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Dongli Song
- Zhongshan Hospital Institute for Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dawei Yang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China.,Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, NY, 10029, USA
| | - Charles A Powell
- Zhongshan Hospital Institute for Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China.,Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1232, New York, NY, 10029, USA
| | - Xiangdong Wang
- Zhongshan Hospital Institute for Clinical Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
33
|
Li F, Xiang B, Jin Y, Li C, Li J, Ren S, Huang H, Luo Q. Dysregulation of lipid metabolism induced by airway exposure to polycyclic aromatic hydrocarbons in C57BL/6 mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:986-993. [PMID: 30682755 DOI: 10.1016/j.envpol.2018.11.049] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 11/02/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), originated from cigarette smoke and fine particle matter (PM2.5), are important inducers of lung cancer. Lipid metabolic disorder is an important biological feature in the progression of lung cancer. However, the dysregulation of lipid metabolism induced by airway exposure to PAHs remains unknown. In this study, an untargeted lipidomics approach was performed to characterize the effects of airway exposure to benzo[a]pyrene (BaP) on lipid metabolism of C57BL/6 mice. Lipidome of serum samples were analyzed with an ultra-performance liquid chromatography coupled with quadrupole-orbitrap mass spectrometer. Lipid profiling and multivariate statistical analysis results demonstrated that airway exposure to BaP mainly disturbed glycerophospholipid metabolism of mice. Moreover, sex-dependent and time-dependent effects of BaP exposure on lipids profile of mice were observed. Several phosphatidylcholines (PCs), Lysophosphatidylcholines (LysoPCs), phosphatidylethanolamines (PEs), Lysophosphatidylethanolamines (LysoPEs) and phosphatidylinositols (PIs) were significantly down-regulated in mice serum after BaP exposure. Meanwhile, these altered lipids showed different susceptibility and change trends in male and female mice. Our results are corresponding with the lipid metabolic alterations induced by cigarette smoke and PM2.5 in animals or human. Compared with the dysregulation of lipid metabolism in patients with lung cancer, these results indicated that the lipid metabolism response to PAHs airway exposure may contribute to the lung cancer progression.
Collapse
Affiliation(s)
- Fang Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Binbin Xiang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Jin
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Chao Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jingguang Li
- The Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center of Food Safety and Risk Assessment, Beijing, 100021, China.
| | - Songlei Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huiting Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qian Luo
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
34
|
Extracellular Vesicles: Opportunities and Challenges for the Treatment of Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:693-709. [PMID: 31399991 DOI: 10.1007/978-981-13-8871-2_34] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are small lipid-based membrane-bound vesicles secreted by most cells under both physiological and pathological conditions. A key function of EVs is to mediate cell-cell communication via transferring mRNAs, miRNAs and proteins from parent cells to recipient cells. These unique features of EVs have spurred a renewed interest in their utility for therapeutics. Given the growing evidence for EV-mediated renal diseases, strategies that could block the release or uptake of pathogenic EVs will be discussed in this review. Then, the therapeutic potential of EVs predominantly from stem cells in renal diseases will be outlined. Finally, we will focus on the specific application of EVs as a novel drug delivery system and highlight the challenges of EVs-based therapies for renal diseases.
Collapse
|
35
|
Zhang L, Han X, Wang X. Is the clinical lipidomics a potential goldmine? Cell Biol Toxicol 2018; 34:421-423. [PMID: 30032454 PMCID: PMC6208904 DOI: 10.1007/s10565-018-9441-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/09/2018] [Indexed: 01/11/2023]
Abstract
Clinical lipidomics is a new extension of lipidomics to study lipid profiles, pathways, and networks by characterizing and quantifying the complete lipid molecules in cells, biopsy, or body fluids of patients. It undoubtfully has more values if lipidomics can be integrated with the data of clinical proteomic, genomic, and phenomic profiles. A number of challenges, e.g., instability, specificity, and sensitivity, in lipidomics have to be faced and overcome before clinical application. The association of lipidomics data with gene expression and sequencing of lipid-specific proteins/enzymes should be furthermore clarified. Therefore, clinical lipidomics is expected to be more stable during handling, sensitive in response to changes, specific for diseases, efficient in data analyses, and standardized in measurements, in order to meet clinical needs. Clinical lipidomics will become a more important approach in clinical applications and will be the part of "natural" measures for early diagnosis and progress of disease. Thus, clinical lipidomics will be one of the most powerful approaches for disease-specific diagnosis and therapy, once the mystery of lipidomic profiles and metabolic enzymes is deciphered.
Collapse
Affiliation(s)
- Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Shanghai Medical School, Shanghai, China
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, Department of Medicine, Division of Diabetes, Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, USA.
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Shanghai Institute of Clinical Bioinformatics, Fudan University Shanghai Medical School, Shanghai, China.
| |
Collapse
|
36
|
Lv J, Gao D, Zhang Y, Wu D, Shen L, Wang X. Heterogeneity of lipidomic profiles among lung cancer subtypes of patients. J Cell Mol Med 2018; 22:5155-5159. [PMID: 29999584 PMCID: PMC6156354 DOI: 10.1111/jcmm.13782] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/07/2018] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is a leading cause of cancer-related deaths with an increasing incidence and poor prognoses. To further understand the regulatory mechanisms of lipidomic profiles in lung cancer subtypes, we measure the profiles of plasma lipidome between health and patients with lung cancer or among patients with squamous cell carcinomas, adenocarcinoma or small cell lung cancer and to correct lipidomic and genomic profiles of lipid-associated enzymes and proteins by integrating the data of large-scale genome screening. Our studies demonstrated that circulating levels of PS and lysoPS significantly increased, while lysoPE and PE decreased in patients with lung cancer. Our data indicate that lung cancer-specific and subtype-specific lipidomics in the circulation are important to understand mechanisms of systemic metabolisms and identify diagnostic biomarkers and therapeutic targets. The carbon atoms, dual bonds or isomerism in the lipid molecule may play important roles in lung cancer cell differentiations and development. This is the first try to integrate lipidomic data with lipid protein-associated genomic expression among lung cancer subtypes as the part of clinical trans-omics. We found that a large number of lipid protein-associated genes significantly change among cancer subtypes, with correlations with altered species and spatial structures of lipid metabolites.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Danyan Gao
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Yong Zhang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Duojiao Wu
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Lihua Shen
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical ScienceShanghai Institute of Clinical BioinformaticsFudan University Institute of Biomedical ScienceFudan UniversityShanghaiChina
| |
Collapse
|
37
|
Yan F, Zhao H, Zeng Y. Lipidomics: a promising cancer biomarker. Clin Transl Med 2018; 7:21. [PMID: 30058036 PMCID: PMC6064713 DOI: 10.1186/s40169-018-0199-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/23/2018] [Indexed: 12/14/2022] Open
Abstract
The prevention, diagnosis and targeted therapies of cancer are important in cancer controlling and treatment. The present challenge about cancer biomarker still remains in identifying the special biomarkers for predicting cancer risk and assessing patient’s response during anticancer treatment. Lipidomics, in simple definition is the quantification of all lipids in a confined biological entity. Lipids play roles in membrane structure, energy storage, and signal transduction as well as in human cancers. Previous researches indicated that lipids may serve as a promising biomarker in the early diagnoses and individualized treatment of cancer.
Collapse
Affiliation(s)
- Furong Yan
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Hong Zhao
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Yiming Zeng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China.
| |
Collapse
|
38
|
Lv J, Zhang L, Yan F, Wang X. Clinical lipidomics: a new way to diagnose human diseases. Clin Transl Med 2018; 7:12. [PMID: 29704148 PMCID: PMC5923182 DOI: 10.1186/s40169-018-0190-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022] Open
Abstract
Lipidomics is a measurement of a large scale of lipid species to understand roles of their carbon atoms, dual bonds, or isomerism in the lipid molecule. Clinical lipidomics was recently defined “as a new integrative biomedicine to discover the correlation and regulation between a large scale of lipid elements measured and analyzed in liquid biopsies from patients with those patient phenomes and clinical phenotypes”. The first step to translate lipidomics into clinical lipidomics is to settle a number of standard operation procedures and protocols of lipidomics performance and measurement. Clinical lipidomics is the part of clinical trans-omics which was coined as a new emerging scientific discipline where clinical phenomes are integrated with molecular multiomics. We believe it is the time to translate lipid science and lipidomics into clinical application and to understand the importance of clinical lipidomics as one of the most helpful approaches during the design and decision-making of therapeutic strategies for individuals. We emphasize here that clinical lipidomics should be merged with clinical phenomes, e.g. patient signs and symptoms, biomedical analyses, pathology, images, and responses to therapies, although it is difficult to integrate and fuse the information of clinical lipidomics with clinical phenomes. It will be a great achievement if we can draw the networks of lipidomic species fused with networks of genes and proteins to describe the molecular mechanisms of the disease in multi-dimensions.
Collapse
Affiliation(s)
- Jiapei Lv
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Linlin Zhang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Furong Yan
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China
| | - Xiangdong Wang
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical School, Shanghai Institute of Clinical Bioinformatics, Shanghai, China.
| |
Collapse
|