1
|
Dong Y, Zhang B, Wei Y, Murashev A, Wang S, Wu Y, Ma W, Liu T. Development of Cas13a-based therapy for cancer treatment. Mol Biol Rep 2024; 51:94. [PMID: 38194206 DOI: 10.1007/s11033-023-09129-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024]
Abstract
Gene therapy has become a major focus of current biomedical research. CRISPR (Clustered Regularly Inter spaced Short Palindromic Repeats) systems have been extensively researched for disease treatment applications through genome editing specificity. Compared with Cas9 (CRISPR-associated proteins, Cas), a commonly used tool enzyme for genome editing, Cas13a exhibits RNA-dependent endonuclease activity, including collateral cleavage without obvious potential genetic risks. With its high specificity, Cas13a has significantly improved the sensitivity of viral diagnosis and shown potential to eliminate viruses. However, its efficacy in tumor therapy has not been determined. This review introduces the mechanism and research developments associated with the CRISPR-Cas13a system in tumor treatments and its potential to be used as a new tool for gene therapy. We hope more research would apply Cas13a-based therapy in cancer treatment in the future.
Collapse
Affiliation(s)
- Ying Dong
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Bingyang Zhang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Yi Wei
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Arkady Murashev
- Biological Testing Center of Shamyakin and Ovchimnikov Institute of Bioorganic Chemistry, Moscow, 142290, Russian Federation
| | - Suihai Wang
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Yingsong Wu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China
| | - Weifeng Ma
- Department of Microbiology, School of Public Health, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China.
| | - Tiancai Liu
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 Shatai Rd, Guangzhou, 510515, China.
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Provincial Key Laboratory of Immune Regulation and Immunotherapy, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Muallah D, Matschke J, Muallah S, Klimova A, Kroschwald LM, Schröder TA, Lauer G, Haim D. Socioeconomic disparities between oral cavity cancer patients in Germany. Front Public Health 2022; 10:831479. [PMID: 35937274 PMCID: PMC9353687 DOI: 10.3389/fpubh.2022.831479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
ObjectiveIn many countries the access to high quality medical service depends on socioeconomic factors. Therefore, these factors are associated with the treatment and prognosis of many diseases. In Germany health care is claimed to be independent from such factors due to obligatory health insurance and a well-developed medical infrastructure. Thus, socioeconomically caused health disparities should be absent. The aim of this study was to analyze the association between socioeconomic factors and the survival of oral cavity cancer in Germany.Patients and methodsIn this descriptive cohort study socioeconomic status related factors as well as demographic, tumor-specific, and comorbidity factors of 500 patients treated for oral cavity cancer were obtained in the university hospital of Dresden. Pearson correlation was used to describe associations between continuous variables. Associations between categorical variables were assessed using the chi-square test. Overall and recurrence-free survival were studied using the Kaplan-Meier method. Log-rank test was carried out to test between-group differences. Cox proportional hazard models were used to estimate the risk of death and the risk of recurrence.ResultsSignificant differences in overall survival were found between the different educational levels and sex. Seventy-nine percent of the patients did not have a university degree or master craftsman/craftswoman. Less discrepancy was observed according to the marital status (49.4% married/engaged vs. 47.8% single, divorced, or widowed). In the multivariable analysis only sex, age at diagnosis, the Charlson score, the number of positive lymph nodes, and the nodal status were identified as independent predictors for overall survival whereas sex and the age at diagnosis were identified as independent predictors for recurrence-free survival.ConclusionDespite the equitable health system in Germany, significant associations between overall survival of oral cavity cancer and different socioeconomic factors could be found. For elimination of these disparities, health education programs should be established in socially deprived areas. Furthermore, clinicians should keep these factors in mind when determining recall periods for dental check-ups.
Collapse
Affiliation(s)
- David Muallah
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- *Correspondence: David Muallah
| | - Jan Matschke
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Sophie Muallah
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Anna Klimova
- Institute for Medical Informatics and Biometry, Technische Universität Dresden, Dresden, Germany
| | - Lysann Michaela Kroschwald
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Tom Alexander Schröder
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| | - Dominik Haim
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
3
|
Roles of enhancer RNAs in sex hormone-dependent cancers. J Cancer Res Clin Oncol 2022; 148:293-307. [DOI: 10.1007/s00432-021-03886-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022]
|
4
|
Tong W, Zhu L, Bai Y, Yang L, Liu Z, Zhang Y. Enhancer RNA LINC00242-Induced Expression of PHF10 Drives a Better Prognosis in Pancreatic Adenocarcinoma. Front Oncol 2022; 11:795090. [PMID: 35127503 PMCID: PMC8812487 DOI: 10.3389/fonc.2021.795090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/27/2021] [Indexed: 12/22/2022] Open
Abstract
Enhancer RNA is a kind of non-coding RNA, which is transcribed from the enhancer region of gene and plays an important role in gene transcription regulation. However, the role of eRNA in pancreatic adenocarcinoma (PAAD) is still unclear. In this study, we identified the key eRNA and its target gene in PAAD. The transcriptome data and clinical information of pancreatic cancer were downloaded from the UCSC Xena platform. A total of 2,695 eRNAs and its target gene predicted by the PreSTIGE method were selected as candidate eRNA–target pairs. After survival analysis, we found that LINC00242 was the eRNA most related to patients’ survival, and correlation analysis further indicated that LINC00242 and its target gene PHF10 had a significant co-expression relationship. Downregulation of LINC00242 was significantly associated with unfavorable clinicopathological features. Based on pan-cancer analysis, we found that LINC00242 was associated with the survival of multiple cancers, and LINC00242 was co-expressed with its target genes in multiple cancer types. External experiments further demonstrated that PHF10 was the downstream target gene of LINC00242. After ssGSEA analysis, PAAD patients were classified as high, medium, and low immune cell infiltration clusters. Compared with the low and medium immune infiltration clusters, the expression level of PHF10 was significantly upregulated in the high immune infiltration clusters. After performing the CIBERSORT algorithm, we found that there was a significant difference in the abundance of immune infiltrating cells between the PHF10 high- and low-expression groups. Additionally, the web tool TIMER was used to detect the distribution and expression of PHF10 in pan-cancer.
Collapse
Affiliation(s)
- Wen Tong
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Liuyang Zhu
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Yi Bai
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, China
- *Correspondence: Yamin Zhang,
| |
Collapse
|
5
|
Zhao Y, Che J, Tian A, Zhang G, Xu Y, Li S, Liu S, Wan Y. PBX1 Participates in Estrogen-mediated Bladder Cancer Progression and Chemo-resistance Affecting Estrogen Receptors. Curr Cancer Drug Targets 2022; 22:757-770. [PMID: 35422219 DOI: 10.2174/1568009622666220413084456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 02/05/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) is a common cancer associated with high morbidity and mortality worldwide. Pre-B-cell leukemia transcription factor 1 (PBX1) has been reported to be involved in tumor progression. OBJECTIVE The aim of the study was to explore the specific role of PBX1 in BCa and its underlying mechanisms. METHODS The relative expressions of PBX1 in muscle-invasive BCa tissues and cell lines were analyzed through RT-qPCR and western blotting. Kaplan-Meier analysis was used to analyze the relationship between PBX1 levels and survival status. Co-immunoprecipitation (CO-IP) and chromatin immunoprecipitation (ChIP)-qPCR assays were adopted to verify the interaction between PBX1 and Estrogen receptors (ERs) and explore the estrogen receptors (ERs)-dependent genes transcription. RESULTS PBX1 was upregulated in invasive BCa patients and BCa cells, positively associated with tumor size, lymph node metastasis, distant metastasis and poorer survival status. The overexpression of PBX1 promoted cell growth, invasion, epithelial-mesenchymal transition (EMT) process and cisplatin resistance in BCa cells, while the silence of PBX1 showed opposite effects. Furthermore, PBX1 interacted with ERs and was required for ER function. PBX1 overexpression aggravated the tumorpromoting effect of estrogen on BCa cells, while it partially suppressed the inhibitory effects of ER antagonist AZD9496 on BCa cells. CONCLUSION This study revealed that PBX1 participated in estrogen mediated BCa progression and chemo-resistance through binding and activating estrogen receptors. Hence, PBX1 may serve as a potential prognostic and therapeutic target for BCa treatment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Jizhong Che
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Aimin Tian
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Gang Zhang
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yankai Xu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Songlin Liu
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| | - Yinxu Wan
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, No. 717 Jinbu Street, Muping District, 264100, Yantai, Shandong, China
| |
Collapse
|
6
|
Cai S, Feng Y, Ye J, Deng Y, Cai Z, Zhu X, Liu R, Zhang Y, Zou Z, Tang Z, Han Z, Hon CT, Zhong W, He H. The prognostic roles of CYP19A1 expression in bladder cancer patients of different genders. Transl Androl Urol 2021; 10:3579-3590. [PMID: 34733654 PMCID: PMC8511542 DOI: 10.21037/tau-21-400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/02/2021] [Indexed: 12/24/2022] Open
Abstract
Background The incidence of bladder cancer (BCa) in male is approximately three to four times higher than in female, but the oncological outcomes in female patients with BCa are significantly worse than in male patients. Although many biomarkers have been identified in recent decades to predict the prognosis of BCa patients, few of them are able to distinguish the prognosis of BCa patients with gender difference. Aromatase encoded by the CYP19A1 gene catalyzes the conversion of androgens to estrogens. In this study, we investigate the prognosis significance of CYP19A1 expression considering the gender difference in BCa patients from four available public databases. Methods Four available public databases of BCa, including GSE13507, TCGA-BLCA, E-MTAB-4321, and E-MTAB-1803, were utilized in this analysis. The overall survival (OS) and progression-free survival (PFS) in different stages and genders were evaluated using the Kaplan-Meier analysis based on the optimal cut-off values of CYP19A1 expression. Then, Gene Set Enrichment Analysis (GSEA) were further performed to explore the potential biologic pathways by altering CYP19A1 expression in BCa patients. Results The results showed that patients with high CYP19A1 expression had a poorer outcome compared with those with low expression in both BCa cohorts in general. Higher CYP19A1 expression in male patients were significantly associated with shorter survival for either non-muscle-invasive bladder cancer (NMIBC) or muscle-invasive bladder cancer (MIBC). However, female NMIBC patients with high CYP19A1 expression were identified to have a better prognosis, whereas high CYP19A1 expression in female MIBC patients were significantly associated with poorer survival. The result of the GSEA showed that different outcomes in female and male patients with NMIBC were related to the interaction of CYP19A1 and the cell-cycle-related pathways. Conclusions These findings demonstrated that CYP19A1 expression might have a potential role in distinguishing the prognosis of female BCa patients dependent on tumor stage. Our results provide new insights for aromatase-mediated BCa therapy.
Collapse
Affiliation(s)
- Shanghua Cai
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Yuanfa Feng
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Jianheng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yulin Deng
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuejin Zhu
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Ren Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yixun Zhang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhihao Zou
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhenfeng Tang
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Zhaodong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chi Tin Hon
- Macau Institute of Systems Engineering, Macau University of Science and Technology, Macau, China
| | - Weide Zhong
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China.,Department of Urology, Huizhou Municipal Central Hospital, Huizhou, China.,Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau, China
| | - Huichan He
- Department of Urology, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
7
|
Palaz F, Kalkan AK, Can Ö, Demir AN, Tozluyurt A, Özcan A, Ozsoz M. CRISPR-Cas13 System as a Promising and Versatile Tool for Cancer Diagnosis, Therapy, and Research. ACS Synth Biol 2021; 10:1245-1267. [PMID: 34037380 DOI: 10.1021/acssynbio.1c00107] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Over the past decades, significant progress has been made in targeted cancer therapy. In precision oncology, molecular profiling of cancer patients enables the use of targeted cancer therapeutics. However, current diagnostic methods for molecular analysis of cancer are costly and require sophisticated equipment. Moreover, targeted cancer therapeutics such as monoclonal antibodies and small-molecule drugs may cause off-target effects and they are available for only a minority of cancer driver proteins. Therefore, there is still a need for versatile, efficient, and precise tools for cancer diagnostics and targeted cancer treatment. In recent years, the CRISPR-based genome and transcriptome engineering toolbox has expanded rapidly. Particularly, the RNA-targeting CRISPR-Cas13 system has unique biochemical properties, making Cas13 a promising tool for cancer diagnosis, therapy, and research. Cas13-based diagnostic methods allow early detection and monitoring of cancer markers from liquid biopsy samples without the need for complex instrumentation. In addition, Cas13 can be used for targeted cancer therapy through degrading and manipulating cancer-associated transcripts with high efficiency and specificity. Moreover, Cas13-mediated programmable RNA manipulation tools offer invaluable opportunities for cancer research, identification of drug-resistance mechanisms, and discovery of novel therapeutic targets. Here, we review and discuss the current use and potential applications of the CRISPR-Cas13 system in cancer diagnosis, therapy, and research. Thus, researchers will gain a deep understanding of CRISPR-Cas13 technologies, which have the potential to be used as next-generation cancer diagnostics and therapeutics.
Collapse
Affiliation(s)
- Fahreddin Palaz
- Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | | | - Özgür Can
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Ayça Nur Demir
- Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar 03100, Turkey
| | - Abdullah Tozluyurt
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara 06100, Turkey
| | - Ahsen Özcan
- Institute of Genetic Engineering and Biotechnology, TUBITAK Marmara Research Center, Kocaeli 41470, Turkey
| | - Mehmet Ozsoz
- Department of Biomedical Engineering, Near East University, 10 Mersin, Nicosia, Turkey
| |
Collapse
|
8
|
Ide H, Miyamoto H. Sex Hormone Receptor Signaling in Bladder Cancer: A Potential Target for Enhancing the Efficacy of Conventional Non-Surgical Therapy. Cells 2021; 10:1169. [PMID: 34064926 PMCID: PMC8150801 DOI: 10.3390/cells10051169] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
There have been critical problems in the non-surgical treatment for bladder cancer, especially residence to intravesical pharmacotherapy, including BCG immunotherapy, cisplatin-based chemotherapy, and radiotherapy. Recent preclinical and clinical evidence has suggested a vital role of sex steroid hormone-mediated signaling in the progression of urothelial cancer. Moreover, activation of the androgen receptor and estrogen receptor pathways has been implicated in modulating sensitivity to conventional non-surgical therapy for bladder cancer. This may indicate the possibility of anti-androgenic and anti-estrogenic drugs, apart from their direct anti-tumor activity, to function as sensitizers of such conventional treatment. This article summarizes available data suggesting the involvement of sex hormone receptors, such as androgen receptor, estrogen receptor-α, and estrogen receptor-β, in the progression of urothelial cancer, focusing on their modulation for the efficacy of conventional therapy, and discusses their potential of overcoming therapeutic resistance.
Collapse
Affiliation(s)
- Hiroki Ide
- Department of Urology, Keio University School of Medicine, Tokyo 160-8582, Japan;
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
9
|
Odame E, Chen Y, Zheng S, Dai D, Kyei B, Zhan S, Cao J, Guo J, Zhong T, Wang L, Li L, Zhang H. Enhancer RNAs: transcriptional regulators and workmates of NamiRNAs in myogenesis. Cell Mol Biol Lett 2021; 26:4. [PMID: 33568070 PMCID: PMC7877072 DOI: 10.1186/s11658-021-00248-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs are well known to be gene repressors. A newly identified class of miRNAs termed nuclear activating miRNAs (NamiRNAs), transcribed from miRNA loci that exhibit enhancer features, promote gene expression via binding to the promoter and enhancer marker regions of the target genes. Meanwhile, activated enhancers produce endogenous non-coding RNAs (named enhancer RNAs, eRNAs) to activate gene expression. During chromatin looping, transcribed eRNAs interact with NamiRNAs through enhancer-promoter interaction to perform similar functions. Here, we review the functional differences and similarities between eRNAs and NamiRNAs in myogenesis and disease. We also propose models demonstrating their mutual mechanism and function. We conclude that eRNAs are active molecules, transcriptional regulators, and partners of NamiRNAs, rather than mere RNAs produced during enhancer activation.
Collapse
Affiliation(s)
- Emmanuel Odame
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuan Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuailong Zheng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dinghui Dai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bismark Kyei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siyuan Zhan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaxue Cao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiazhong Guo
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tao Zhong
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Linjie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Hongping Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
10
|
Goto T, Miyamoto H. The Role of Estrogen Receptors in Urothelial Cancer. Front Endocrinol (Lausanne) 2021; 12:643870. [PMID: 33796076 PMCID: PMC8008958 DOI: 10.3389/fendo.2021.643870] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
Epidemiological data have indicated that there are some sex-related differences in bladder cancer. Indeed, the incidence of bladder cancer in men has been substantially higher than that in women throughout the world, while women tend to have higher stage disease and poorer prognosis. These gender disparities have prompted to investigate sex hormones and their cognitive receptors in bladder cancer. Specifically, estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to contribute to urothelial carcinogenesis and cancer progression, as well as to modulating chemosensitivity in bladder cancer, although conflicting findings exist. Meanwhile, immunohistochemical studies in surgical specimens have assessed the expression of estrogen receptors and related proteins as well as its associations with clinicopathologic features of bladder cancer and patient outcomes. This review article summarizes and discusses available data indicating that estrogen receptor signaling plays an important role in urothelial cancer.
Collapse
Affiliation(s)
- Takuro Goto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
| | - Hiroshi Miyamoto
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Hiroshi Miyamoto,
| |
Collapse
|
11
|
Jiang H, Chen H, Wan P, Song S, Chen N. Downregulation of enhancer RNA EMX2OS is associated with poor prognosis in kidney renal clear cell carcinoma. Aging (Albany NY) 2020; 12:25865-25877. [PMID: 33234727 PMCID: PMC7803531 DOI: 10.18632/aging.202151] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/29/2020] [Indexed: 02/05/2023]
Abstract
Enhancer RNAs are a subclass of long non-coding RNAs transcribed from enhancer regions that play an important role in the transcriptional regulation of genes. However, their role in kidney renal clear cell carcinoma (KIRC) is largely unknown. Herein, we identified the key enhancer RNAs in KIRC via an integrated data analysis method. Gene expression profiles and clinical data of KIRC and 32 other cancer types were acquired using the University of California Santa Cruz Xena platform. Reported enhancer RNAs and genes regulated by them were selected as putative enhancer RNA-target pairs. Kaplan-Meier survival and correlation analyses were performed to identify the key enhancer RNAs. Finally, EMX2OS was identified as the enhancer RNA most associated with survival, with EMX2 as its target. EMX2OS downregulation was significantly associated with higher histological grade, advanced stage, and poorer prognosis. The results were validated in pan-cancer data from The Cancer Genome Atlas and RT-qPCR analysis of 12 pairs of KIRC and normal real-world samples. Functional enrichment analysis indicated that several metabolism-associated signaling pathways were enriched. This study demonstrated that EMX2OS is a key metabolism-associated enhancer RNA in KIRC with a favorable impact on survival and may be a novel therapeutic target in KIRC.
Collapse
Affiliation(s)
- Huiming Jiang
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Haibin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou 515041, Guangdong Province, P.R. China
| | - Pei Wan
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Shengda Song
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| | - Nanhui Chen
- Department of Urology, Meizhou People’s Hospital, Guangdong Provincial Key Laboratory of Precision Medicine and Clinical Translational Research of Hakka Population, Meizhou 514031, Guangdong Province, P.R. China
| |
Collapse
|
12
|
Yue H, Huang R, Shan Y, Xing D. Delivery of Cas13a/crRNA by self-degradable black phosphorus nanosheets to specifically inhibit Mcl-1 for breast cancer therapy. J Mater Chem B 2020; 8:11096-11106. [DOI: 10.1039/d0tb01914c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The constructed Cas13a/crRNA complex is delivered into cytoplasm by PBP via endocytosis, followed by endosomal escape based on biodegradation of the PBP, and efficiently knocked down Mcl-1 at transcriptional level for breast cancer therapy.
Collapse
Affiliation(s)
- Huahua Yue
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Ru Huang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Yuanyue Shan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science
- College of Biophotonics
- South China Normal University
- Guangzhou 510631
- P. R. China
| |
Collapse
|
13
|
Wu M, Shen J. From Super-Enhancer Non-coding RNA to Immune Checkpoint: Frameworks to Functions. Front Oncol 2019; 9:1307. [PMID: 31824865 PMCID: PMC6883490 DOI: 10.3389/fonc.2019.01307] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Super-enhancers (SEs) are clusters of enhancers that play a key role in regulating genes that determine cell identity. Enhancer RNAs (eRNAs) are non-coding RNAs transcribed from enhancers that function to promote the enhancer's functions via multiple mechanisms, such as recruiting transcription factors to specific enhancers, promoting enhancer-promoter looping, directing chromatin accessibility, interacting with RNA polymerase II and facilitating histone acetylation. Understanding how super-enhancer RNAs (seRNAs) contribute to specific gene regulation has thus become an area of active interest. Immune checkpoint deregulation is one of the key characteristics of tumors and autoimmune diseases, and is also closely related to cell identity. Recent studies revealed a potential pathway for seRNA's involvement in regulating the expression of immune checkpoints. The present study reviews the current knowledge of eRNA function, immune checkpoint blockage mechanism, and its effect. In addition, for the first time, we explore the direct and indirect roles of seRNAs in regulating immune checkpoint expression in cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Manqing Wu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Division of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Division of Gastroenterology and Hepatology, Ministry of Health, School of Medicine, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Ding M, Liu Y, Li J, Yao L, Liao X, Xie H, Yang K, Zhou Q, Liu Y, Huang W, Cai Z. Oestrogen promotes tumorigenesis of bladder cancer by inducing the enhancer RNA-eGREB1. J Cell Mol Med 2018; 22:5919-5927. [PMID: 30252203 PMCID: PMC6237589 DOI: 10.1111/jcmm.13861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/24/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, studies have shown that enhancer RNAs (eRNAs) can be transcribed from enhancers. Increasing evidence has revealed that eRNAs play critical roles in the development of various cancers. Oestrogen‐associated eRNAs are closely related to breast cancer. In view of the gender differences in bladder cancer (BCa), we suppose that oestrogen‐associated eRNAs are also involved in tumorigenesis of BCa. In our study, we first demonstrated that eGREB1 derived from the enhancer of an oestrogen‐responsive gene—GREB1 was up‐regulated in BCa tissues, and the expression level of eGREB1 is positively associated with the histological grade and TNM stage of BCa. Knockdown of eGREB1 by CRISPR‐Cas13a could inhibit cell proliferation, migration and invasion and induce apoptosis in BCa cells T24 and 5637. Besides, we exhibited the promoting effect of oestrogen on BCa cells. What's more, down‐regulation of eGREB1 could improve the malignant biological characteristics of BCa cells induced by oestrogen. In conclusion, our data indicated that eGREB1 plays oncogenic role and oestrogen may promote the occurrence and progression of BCa by inducing eGREB1 production. Our findings provide new insights into the prevention of BCa and develop a novel therapeutic target for the treatment of BCa.
Collapse
Affiliation(s)
- Mengting Ding
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yuhan Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Jianfa Li
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Lin Yao
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, China
| | - Xinhui Liao
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Haibiao Xie
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kang Yang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.,University of South China, Hengyang, China
| | - Qun Zhou
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Clinical Medicine College of Anhui Medical University, Shenzhen, China.,Anhui Medical University, Hefei, China
| | - Yuchen Liu
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Weiren Huang
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhiming Cai
- Department of Urology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|