1
|
Abu-Nada L, Liu Y, Saleh Al-Hamed F, Ouliass B, Millecamps M, Tran SD, Ferland G, Soleimani VD, Marino FT, Murshed M. Young bone marrow transplantation delays bone aging in old mice. Exp Gerontol 2025; 202:112704. [PMID: 39914580 DOI: 10.1016/j.exger.2025.112704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/14/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Recent discoveries have shown that systemic manipulations, such as parabiosis, blood exchange, and young plasma transfer, can counteract many hallmarks of aging. This rejuvenation effect has been attributed to circulatory factors produced by cells from both hematopoietic and non-hematopoietic lineages. However, the specific involvement of bone marrow (BM) or hematopoietic cells in producing such factors and their effects on aging is still unclear. We developed a model of aged mice with transplanted young or old BM cells and assessed the impact on the aging process, specifically on energy metabolism and bone remodeling parameters. The donor BM cell engraftment in the aged mice was confirmed by flow cytometry using a transplanted cell-specific marker (green fluorescent protein). Energy metabolism was assessed using Oxymax indirect calorimetry system after 3 months of transplantation. Tibiae and L3-L4 vertebrae were analyzed using micro-CT, a three-point bending test and bone histomorphometry. Moreover, bone marrow proteome was assessed using proteomics, and blood serum/plasma was collected and analyzed using the Luminex assay. Our results showed that while the effect on energy metabolism was insignificant, rejuvenating the BM through young bone marrow transplantation reversed age-associated low bone mass traits in old mice. Specifically, young bone marrow transplantation improved bone trabecular microarchitecture both in tibiae and vertebrae of old mice and increased the number of osteoblasts and osteoclasts compared to old bone marrow transplantation. In conclusion, young bone marrow cells may represent a future therapeutic strategy for age-related diseases such as osteoporosis. The findings of this study provide important insights into our understanding of aging.
Collapse
Affiliation(s)
- Lina Abu-Nada
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates; Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Younan Liu
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Bouchra Ouliass
- Montreal Heart Institute Research Centre, Montreal, QC, Canada
| | - Magali Millecamps
- ABC-Platform (Animal Behavioral Characterization) at Alan Edwards Center for Research on Pain, McGill University, Montreal, Quebec, Canada; Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, University of Montreal, Montreal, Quebec, Canada
| | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | | | - Vahab D Soleimani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada; Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Monzur Murshed
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada; Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada; Shriners hospital for children, Montreal, Quebec, Canada.
| |
Collapse
|
2
|
Wang S, Xiao R, Lu Y, Zhang Y, Zhang S, Liu X, Yuan H. Inhibiting NLRP3 Inflammasome Activation to Alleviate Retinal Inflammation and Protect the Optic Nerve of OPTN(E50K)Mice. Inflammation 2024:10.1007/s10753-024-02178-0. [PMID: 39578308 DOI: 10.1007/s10753-024-02178-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
OPTN (E50K) mutation is one of the significant pathogenic mutations in normal tension glaucoma (NTG). The molecular mechanism of NTG optic nerve injury is complex and diverse; its key mechanism is still unclear. The NLR family pyrin domain containing (NLRP3) inflammasome plays an essential role in the occurrence and development of inflammation. There is no report on whether NLRP3 inflammasome activation plays a crucial role in NTG optic nerve injury. Here, we explored the role of retinal inflammatory cascade reaction triggered by NLRP3 inflammasome activation in OPTN (E50K) mutated NTG optic nerve injury. This research may provide innovative strategies for effectively treating NTG optic nerve injury caused by OPTN (E50K) mutation. The R28 cell was constructed by AAV2 transfection, named GFP-R28, WT-R28, and E50K-R28 groups. Western blot, qPCR, and immunofluorescence were performed to measure the expression levels of the neurotrophic factors, the senescence indicators, the NLRP3-related indicators, the expression of the glial cell markers, and the inflammatory cytokines. Further, observe the changes in the above indicators in the WT-R28 and E50K-R28 groups after treatment with MCC950. Next, we compared the expression of neurotrophic factors and senescence indicators, NLRP3-related indicators, glial cell markers, and inflammatory factors between young and old WT and OPTN (E50K) mice. We examined the visual function of mice on days 1, 4 and 7. Furthermore, we observed the retinal morphology and the expression of neurotrophic factors and senescence indicators, NLRP3-related indicators, glial cell markers, and inflammatory factors between all groups were measured. We found that OPTN (E50K) mutations lead to NLRP3 inflammasome activation. The OPTN (E50K) mutant groups showed an inflammatory cascade, including glial cell activation and release of proinflammatory factors, leading to retinal structural and functional impairment in mice.MCC950 effectively inhibited the activation of the NLRP3 inflammasome and alleviated the retinal inflammatory cascade caused by the OPTN (E50K) mutation, ultimately improving visual function and retinal damage in mice. OPTN (E50K) mutation induces the activation of the NLRP3 inflammasome, which leads to a retinal inflammatory cascade. MCC950 can inhibit the activation of the NLRP3 inflammasome and retinal inflammatory cascade, improving visual function in OPTN (E50K) mutation mice.
Collapse
Affiliation(s)
- Shujing Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rong Xiao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Yanfei Lu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanfeng Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
3
|
Wang Q, Dong J, Du M, Liu X, Zhang S, Zhang D, Qin W, Xu X, Li X, Su R, Qiu L, Li B, Yuan H. Chitosan-Rapamycin Carbon Dots Alleviate Glaucomatous Retinal Injury by Inducing Autophagy to Promote M2 Microglial Polarization. Int J Nanomedicine 2024; 19:2265-2284. [PMID: 38476273 PMCID: PMC10928492 DOI: 10.2147/ijn.s440025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Glaucoma is a prevalent cause of irreversible vision impairment, characterized by progressive retinal ganglion cells (RGCs) loss, with no currently available effective treatment. Rapamycin (RAPA), an autophagy inducer, has been reported to treat glaucoma in rodent models by promoting RGC survival, but its limited water solubility, systemic toxicity, and pre-treatment requirements hinder its potential clinical applications. Methods Chitosan (CS)-RAPA carbon dot (CRCD) was synthesized via hydrothermal carbonization of CS and RAPA and characterized by transmission electron microscopy, Fourier transform infrared spectra, and proton nuclear magnetic resonance. In vitro assays on human umbilical cord vein endothelial and rat retinal cell line examined its biocompatibility and anti-oxidative capabilities, while lipopolysaccharide-stimulated murine microglia (BV2) assays measured its effects on microglial polarization. In vivo, using a mouse retinal ischemia/reperfusion (I/R) model by acute intraocular pressure elevation, the effects of CRCD on visual function, RGC apoptosis, oxidative stress, and M2 microglial polarization were examined. Results CRCD exhibited good water solubility and anti-oxidative capabilities, in the form of free radical scavenging. In vitro, CRCD was bio-compatible and lowered oxidative stress, which was also found in vivo in the retinal I/R model. Additionally, both in vitro with lipopolysaccharide-stimulated BV2 cells and in vivo with the I/R model, CRCD was able to promote M2 microglial polarization by activating autophagy, which, in turn, down-regulated pro-inflammatory cytokines, such as IL-1β and TNF-α, as well as up-regulated anti-inflammatory cytokines, such as IL-4 and TGF-β. All these anti-oxidative and anti-inflammatory effects ultimately aided in preserving RGCs, and subsequently, improved visual function. Discussion CRCD could serve as a potential novel treatment strategy for glaucoma, via incorporating RAPA into CDs, in turn not only mitigating its toxic side effects but also enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Jiaxin Dong
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Di Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Wanyun Qin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Xikun Xu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Xianghui Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| | - Ruidong Su
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Leyi Qiu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, People’s Republic of China
| | - Baoqiang Li
- Institute for Advanced Ceramics, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People’s Republic of China
- Laboratory of Dynamics and Extreme Characteristics of Promising Nanostructured Materials, Saint Petersburg State University, St. Petersburg, Russia
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Qin WY, Wang Q, Liu XN, Li XH, Ye XQ, Bai Y, Zhang Y, Liu P, Wang XL, Zhou YH, Shao ZB, Yuan HP. Young Sca-1 + bone marrow stem cell-derived exosomes preserve visual function via the miR-150-5p/MEKK3/JNK/c-Jun pathway to reduce M1 microglial polarization. J Nanobiotechnology 2023; 21:194. [PMID: 37322478 DOI: 10.1186/s12951-023-01944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND Polarization of microglia, the resident retinal immune cells, plays important roles in mediating both injury and repair responses post-retinal ischemia-reperfusion (I/R) injury, which is one of the main pathological mechanisms behind ganglion cell apoptosis. Aging could perturb microglial balances, resulting in lowered post-I/R retinal repair. Young bone marrow (BM) stem cell antigen 1-positive (Sca-1+) cells have been demonstrated to have higher reparative capabilities post-I/R retinal injury when transplanted into old mice, where they were able to home and differentiate into retinal microglia. METHODS Exosomes were enriched from young Sca-1+ or Sca-1- cells, and injected into the vitreous humor of old mice post-retinal I/R. Bioinformatics analyses, including miRNA sequencing, was used to analyze exosome contents, which was confirmed by RT-qPCR. Western blot was then performed to examine expression levels of inflammatory factors and underlying signaling pathway proteins, while immunofluorescence staining was used to examine the extent of pro-inflammatory M1 microglial polarization. Fluoro-Gold labelling was then utilized to identify viable ganglion cells, while H&E staining was used to examine retinal morphology post-I/R and exosome treatment. RESULTS Sca-1+ exosome-injected mice yielded better visual functional preservation and lowered inflammatory factors, compared to Sca-1-, at days 1, 3, and 7 days post-I/R. miRNA sequencing found that Sca-1+ exosomes had higher miR-150-5p levels, compared to Sca-1- exosomes, which was confirmed by RT-qPCR. Mechanistic analysis found that miR-150-5p from Sca-1+ exosomes repressed the mitogen-activated protein kinase kinase kinase 3 (MEKK3)/JNK/c-Jun axis, leading to IL-6 and TNF-α downregulation, and subsequently reduced microglial polarization, all of which contributes to reduced ganglion cell apoptosis and preservation of proper retinal morphology. CONCLUSION This study elucidates a potential new therapeutic approach for neuroprotection against I/R injury, via delivering miR-150-5p-enriched Sca-1+ exosomes, which targets the miR-150-5p/MEKK3/JNK/c-Jun axis, thereby serving as a cell-free remedy for treating retinal I/R injury and preserving visual functioning.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wan-Yun Qin
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, China
| | - Xin-Na Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin, China
| | - Xiang-Hui Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Qi Ye
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Bai
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pan Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin-Lin Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu-Hang Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zheng-Bo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Hui-Ping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
5
|
Garcia-Ayuso D, Di Pierdomenico J, García-Bernal D, Vidal-Sanz M, Villegas-Pérez MP. Bone marrow-derived mononuclear stem cells in the treatment of retinal degenerations. Neural Regen Res 2022; 17:1937-1944. [PMID: 35142670 PMCID: PMC8848608 DOI: 10.4103/1673-5374.335692] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Retinal degenerative diseases affecting the outer retina in its many forms (inherited, acquired or induced) are characterized by photoreceptor loss, and represent currently a leading cause of irreversible vision loss in the world. At present, there are very few treatments capable of preventing, recovering or reversing photoreceptor degeneration or the secondary retinal remodeling, which follows photoreceptor loss and can also cause the death of other retinal cells. Thus, these diseases are nowadays one of the greatest challenges in the field of ophthalmological research. Bone marrow derived-mononuclear stem cell transplantation has shown promising results for the treatment of photoreceptor degenerations. These cells may have the potential to slow down photoreceptor loss, and therefore should be applied in the early stages of photoreceptor degenerations. Furthermore, because of their possible paracrine effects, they may have a wide range of clinical applications, since they can potentially impact on several retinal cell types at once and photoreceptor degenerations can involve different cells and/or begin in one cell type and then affect adjacent cells. The intraocular injection of bone marrow derived-mononuclear stem cells also enhances the outcomes of other treatments aimed to protect photoreceptors. Therefore, it is likely that future investigations may combine bone marrow derived-mononuclear stem cell therapy with other systemic or intraocular treatments to obtain greater therapeutic effects in degenerative retinal diseases.
Collapse
Affiliation(s)
- Diego Garcia-Ayuso
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - Johnny Di Pierdomenico
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - David García-Bernal
- Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca); Servicio de Hematología, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Manuel Vidal-Sanz
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| | - María P Villegas-Pérez
- Departamento de Oftalmología, Facultad de Medicina, Universidad de Murcia, Campus de Ciencias de la salud; Instituto Murciano de Investigación Biosanitaria Hospital Virgen de la Arrixaca (IMIB-Virgen de la Arrixaca), Murcia, Spain
| |
Collapse
|
6
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
7
|
Neuroprotective effects of bone marrow Sca-1 + cells against age-related retinal degeneration in OPTN E50K mice. Cell Death Dis 2021; 12:613. [PMID: 34127652 PMCID: PMC8203676 DOI: 10.1038/s41419-021-03851-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022]
Abstract
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1- chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1- cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1- chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1- cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.
Collapse
|
8
|
Liu X, Wang Q, Shao Z, Zhang S, Hou M, Jiang M, Du M, Li J, Yuan H. Proteomic analysis of aged and OPTN E50K retina in the development of normal tension glaucoma. Hum Mol Genet 2021; 30:1030-1044. [PMID: 33856034 DOI: 10.1093/hmg/ddab099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/23/2022] Open
Abstract
Progressive degeneration of retinal ganglion cells (RGCs) is a major characteristic of glaucoma, whose underlying mechanisms are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal tension glaucoma (NTG), directly affecting RGCs without high intraocular pressure and causing severe glaucomatous symptoms in clinical settings. A systematic analysis of the NTG mouse model is crucial for better understanding of the underlying pathological mechanisms for glaucoma. To elucidate proteomic and biochemical pathway alterations during NTG development, we established an OPTN E50K mutant mouse model through CRISPR/Cas9. Retinal proteins from resulting mice exhibiting glaucomatous phenotypes were subject to tandem mass tag-labeled quantitative proteomics and then analyzed through bioinformatics methods to characterize the molecular and functional signatures of NTG. We identified 6364 quantitative proteins in our proteomic analysis. Bioinformatics analysis revealed that OPTN E50K mice experienced protein synthesis dysregulation, age-dependent energy defects and autophagy-lysosome pathway dysfunction. Certain biological features, including amyloid deposition, RNA splicing, microglia activation and reduction of crystallin production, were similar to Alzheimer's disease. Our study is the first to describe proteomic and biochemical pathway alterations in NTG pathogenesis during disease advancement. Several proteomic signatures overlapped with retinal changes found in the ad mice model, suggesting the presence of common mechanisms between age-related degenerative disorders, as well as prospective new targets for diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Xinna Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Qi Wang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Zhengbo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Shiqi Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Mingying Hou
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Harbin 150086, China
| | - Menglu Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Mengxian Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jing Li
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.,Future Medical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
9
|
Zhang S, Shao Z, Liu X, Hou M, Cheng F, Lei D, Yuan H. The E50K optineurin mutation impacts autophagy-mediated degradation of TDP-43 and leads to RGC apoptosis in vivo and in vitro. Cell Death Dis 2021; 7:49. [PMID: 33723228 PMCID: PMC7960725 DOI: 10.1038/s41420-021-00432-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/23/2021] [Accepted: 02/13/2021] [Indexed: 01/31/2023]
Abstract
The glaucoma-associated E50K mutation in optineurin (OPTN) is known to affect autophagy and cause the apoptosis of retinal ganglion cells (RGCs), but the pathogenic mechanism remains unclear. In this study, we investigated whether the OPTN (E50K) mutation caused TDP-43 aggregation by disrupting autophagy in vivo and in vitro. OPTN (E50K) mutant mice were generated and analysed for genotype and phenotype. Adeno-associated virus type 2 vectors containing either GFP only, GFP-tagged wild-type OPTN or GFP-tagged E50K-mutated OPTN were used to transfect R28 cells. Loss of RGCs decreased retinal thickness and visual impairment were observed in OPTN (E50K) mice compared with WT mice. Moreover, overexpression of E50K OPTN induced R28 cell apoptosis. Increased p62/SQSTM1 and LC3-II levels indicated that autophagic flux was inhibited and contributed to TDP-43 aggregation in vivo and in vitro. We found that rapamycin effectively reduced the aggregation of TDP-43 in OPTN (E50K) mice and decreased the protein levels of p62/SQSTM1 and the autophagic marker LC3-II. Moreover, rapamycin increased the RGC number and visual function of E50K mice. In addition, we also observed increased cytoplasmic TDP-43 in the spinal cord and motor dysfunction in 24-month-old OPTN (E50K) mice, indicating that TDP-43 accumulation may be the common pathological mechanism of glaucoma and amyotrophic lateral sclerosis (ALS). In conclusion, the disruption of autophagy by OPTN (E50K) affected the degradation of TDP-43 and may play an important role in OPTN (E50K)-mediated glaucomatous retinal neurodegeneration.
Collapse
Affiliation(s)
- Shiqi Zhang
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Zhengbo Shao
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Future Medical Laboratory, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinna Liu
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Mingying Hou
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.410736.70000 0001 2204 9268The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry Education, Heilongjiang Province, Harbin, China
| | - Fang Cheng
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dawei Lei
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huiping Yuan
- grid.412463.60000 0004 1762 6325Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China ,grid.412463.60000 0004 1762 6325Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Yoshida GM, Yáñez JM. Multi-trait GWAS using imputed high-density genotypes from whole-genome sequencing identifies genes associated with body traits in Nile tilapia. BMC Genomics 2021; 22:57. [PMID: 33451291 PMCID: PMC7811220 DOI: 10.1186/s12864-020-07341-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022] Open
Abstract
Background Body traits are generally controlled by several genes in vertebrates (i.e. polygenes), which in turn make them difficult to identify through association mapping. Increasing the power of association studies by combining approaches such as genotype imputation and multi-trait analysis improves the ability to detect quantitative trait loci associated with polygenic traits, such as body traits. Results A multi-trait genome-wide association study (mtGWAS) was performed to identify quantitative trait loci (QTL) and genes associated with body traits in Nile tilapia (Oreochromis niloticus) using genotypes imputed to whole-genome sequences (WGS). To increase the statistical power of mtGWAS for the detection of genetic associations, summary statistics from single-trait genome-wide association studies (stGWAS) for eight different body traits recorded in 1309 animals were used. The mtGWAS increased the statistical power from the original sample size from 13 to 44%, depending on the trait analyzed. The better resolution of the WGS data, combined with the increased power of the mtGWAS approach, allowed the detection of significant markers which were not previously found in the stGWAS. Some of the lead single nucleotide polymorphisms (SNPs) were found within important functional candidate genes previously associated with growth-related traits in other terrestrial species. For instance, we identified SNP within the α1,6-fucosyltransferase (FUT8), solute carrier family 4 member 2 (SLC4A2), A disintegrin and metalloproteinase with thrombospondin motifs 9 (ADAMTS9) and heart development protein with EGF like domains 1 (HEG1) genes, which have been associated with average daily gain in sheep, osteopetrosis in cattle, chest size in goats, and growth and meat quality in sheep, respectively. Conclusions The high-resolution mtGWAS presented here allowed the identification of significant SNPs, linked to strong functional candidate genes, associated with body traits in Nile tilapia. These results provide further insights about the genetic variants and genes underlying body trait variation in cichlid fish with high accuracy and strong statistical support. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07341-z.
Collapse
Affiliation(s)
- Grazyella M Yoshida
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - José M Yáñez
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile. .,Núcleo Milenio INVASAL, Concepción, Chile.
| |
Collapse
|
11
|
Kezic JM, Chrysostomou V, McMenamin PG, Crowston JG. Effects of age on retinal macrophage responses to acute elevation of intraocular pressure. Exp Eye Res 2020; 193:107995. [PMID: 32156653 DOI: 10.1016/j.exer.2020.107995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022]
Abstract
There is accumulating evidence that aging shifts the central nervous system milieu towards a proinflammatory state, with increased reactivity of microglia in the aging eye and brain having been implicated in the development of age-related neurodegenerative conditions. Indeed, alterations to microglial morphology and function have been recognized as a part of normal aging. Here, we sought to assess the effects of age on the retinal microglial and macrophage response to acute intraocular pressure (IOP) elevation. Further, we performed experiments whereby bone marrow from young or middle-aged mice was used to reconstitute the bone marrow of whole-body irradiated 12 month old mice. Bone marrow chimeric mice then underwent cannulation and IOP elevation 8 weeks after whole-body irradiation and bone marrow transplantation in order to determine whether the age of bone marrow alters the macrophage response to retinal injury. Our data show retinal macrophage reactivity and microglial morphological changes were enhanced in older mice when compared to younger mice in response to injury. When IOP elevation was performed after whole-body irradiation and bone marrow rescue, we noted subretinal macrophage accumulation and glial reactivity was reduced compared to non-irradiated mice that had also undergone IOP elevation. This effect was evident in both groups of chimeric mice that had received either young or middle-aged bone marrow, suggesting irradiation itself may alter the macrophage and glial response to injury rather than the age of bone marrow.
Collapse
Affiliation(s)
- Jelena M Kezic
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| | - Vicki Chrysostomou
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia.
| |
Collapse
|
12
|
Targeting aged bone marrow for systemic rejuvenation. Aging (Albany NY) 2020; 12:2024-2025. [PMID: 32028261 PMCID: PMC7041784 DOI: 10.18632/aging.102838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
|
13
|
Colaprico A, Olsen C, Bailey MH, Odom GJ, Terkelsen T, Silva TC, Olsen AV, Cantini L, Zinovyev A, Barillot E, Noushmehr H, Bertoli G, Castiglioni I, Cava C, Bontempi G, Chen XS, Papaleo E. Interpreting pathways to discover cancer driver genes with Moonlight. Nat Commun 2020; 11:69. [PMID: 31900418 PMCID: PMC6941958 DOI: 10.1038/s41467-019-13803-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/22/2019] [Indexed: 12/28/2022] Open
Abstract
Cancer driver gene alterations influence cancer development, occurring in oncogenes, tumor suppressors, and dual role genes. Discovering dual role cancer genes is difficult because of their elusive context-dependent behavior. We define oncogenic mediators as genes controlling biological processes. With them, we classify cancer driver genes, unveiling their roles in cancer mechanisms. To this end, we present Moonlight, a tool that incorporates multiple -omics data to identify critical cancer driver genes. With Moonlight, we analyze 8000+ tumor samples from 18 cancer types, discovering 3310 oncogenic mediators, 151 having dual roles. By incorporating additional data (amplification, mutation, DNA methylation, chromatin accessibility), we reveal 1000+ cancer driver genes, corroborating known molecular mechanisms. Additionally, we confirm critical cancer driver genes by analysing cell-line datasets. We discover inactivation of tumor suppressors in intron regions and that tissue type and subtype indicate dual role status. These findings help explain tumor heterogeneity and could guide therapeutic decisions.
Collapse
Affiliation(s)
- Antonio Colaprico
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium.
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| | - Catharina Olsen
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Center for Medical Genetics, Reproduction and Genetics, Reproduction Genetics and Regenerative Medicine, Vrije Universiteit Brussel, UZ Brussel, Laarbeeklaan 101, 1090, Brussels, Belgium
- Brussels Interuniversity Genomics High Throughput core (BRIGHTcore), VUB-ULB, Laarbeeklaan 101, 1090, Brussels, Belgium
| | - Matthew H Bailey
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
- McDonnell Genome Institute, Washington University, St. Louis, MO, 63108, USA
| | - Gabriel J Odom
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biostatistics, Stempel College of Public Health, Florida International University, Miami, FL, 33199, USA
| | - Thilde Terkelsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Tiago C Silva
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
| | - André V Olsen
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Laura Cantini
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
- Computational Systems Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, Ecole Normale Supérieure, Paris Sciences et Lettres Research University, 75005, Paris, France
| | - Andrei Zinovyev
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Emmanuel Barillot
- Institut Curie, 26 rue d'Ulm, F-75248, Paris, France
- INSERM, U900, Paris, F-75248, France
- Mines ParisTech, Fontainebleau, F-77300, France
| | - Houtan Noushmehr
- Department of Genetics, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, Brazil
- Department of Neurosurgery, Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Gloria Bertoli
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Claudia Cava
- Institute of Molecular Bioimaging and Physiology of the National Research Council (IBFM-CNR), Milan, Italy
| | - Gianluca Bontempi
- Interuniversity Institute of Bioinformatics in Brussels (IB)2, Brussels, Belgium
- Machine Learning Group, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Xi Steven Chen
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Elena Papaleo
- Computational Biology Laboratory, and Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Translational Disease System Biology, Faculty of Health and Medical Science, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37:101421. [PMID: 30933723 DOI: 10.1016/j.scr.2019.101421] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/11/2022] Open
Abstract
Ischemia-reperfusion injury (I/RI), produced by an initial interruption of organ blood flow and its subsequent restoration, contributes significantly to the pathophysiologies of stroke, myocardial infarction, renal I/RI, intestinal I/RI and liver I/RI, which are major causes of disability (including transplant failure) and even mortality. While the restoration of blood flow is required to restore oxygen and nutrient requirements, reperfusion often triggers local and systemic inflammatory responses and subsequently elevate the ischemic insult where the duration of ischemia determines the magnitude of I/RI damage. I/RI increases vascular leakage, changes transcriptional and cell death programs, drives leukocyte entrapment and inflammation and oxidative stress in tissues. Therapeutic approaches which reduce complications associated with I/RI are desperately needed to address the clinical and economic burden created by I/RI. Stem cells (SC) represent ubiquitous and uncommitted cell populations with the ability to self-renew and differentiate into one or more developmental 'fates'. Like immune cells, stem cells can home to and penetrate I/R-injured tissues, where they can differentiate into target tissues and induce trophic paracrine signaling which suppress injury and maintain tissue functions perturbed by ischemia-reperfusion. This review article summarizes the present use and possible protective mechanisms underlying stem cell protection in diverse forms of ischemia-reperfusion.
Collapse
Affiliation(s)
- M Barzegar
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - G Kaur
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - F N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Y Wang
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA; Department of Obstetrics and Gynecology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - C J Boyer
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - J S Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA.
| |
Collapse
|
15
|
Shao Z, Wu J, Du G, Song H, Li SH, He S, Li J, Wu J, Weisel RD, Yuan H, Li RK. Young bone marrow Sca-1 cells protect aged retina from ischaemia-reperfusion injury through activation of FGF2. J Cell Mol Med 2018; 22:6176-6189. [PMID: 30255622 PMCID: PMC6237572 DOI: 10.1111/jcmm.13905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/14/2018] [Accepted: 08/19/2018] [Indexed: 12/14/2022] Open
Abstract
Retinal ganglion cell apoptosis and optic nerve degeneration are prevalent in aged patients, which may be related to the decrease in bone marrow (BM) stem cell number/function because of the possible cross‐talk between the two organs. This pathological process is accelerated by retinal ischaemia‐reperfusion (I/R) injury. This study investigated whether young BM stem cells can regenerate and repair the aged retina after acute I/R injury. Young BM stem cell antigen 1 positive (Sca‐1+) or Sca‐1− cells were transplanted into lethally irradiated aged recipient mice to generate Sca‐1+ and Sca‐1− chimaeras, respectively. The animals were housed for 3 months to allow the young Sca‐1 cells to repopulate in the BM of aged mice. Retinal I/R was then induced by elevation of intraocular pressure. Better preservation of visual function was found in Sca‐1+ than Sca‐1− chimaeras 7 days after injury. More Sca‐1+ cells homed to the retina than Sca‐1− cells and more cells differentiated into glial and microglial cells in the Sca‐1+ chimaeras. After injury, Sca‐1+ cells in the retina reduced host cellular apoptosis, which was associated with higher expression of fibroblast growth factor 2 (FGF2) in the Sca‐1+ chimaeras. Young Sca‐1+ cells repopulated the stem cells in the aged retina and diminished cellular apoptosis after acute I/R injury through FGF2 and Akt signalling pathways.
Collapse
Affiliation(s)
- Zhengbo Shao
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Jie Wu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Guoqing Du
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China.,Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Huifang Song
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Shu-Hong Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Sheng He
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Shanxi Medical University, Taiyuan, China
| | - Jiao Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Department of Cardiology, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun Wu
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Huiping Yuan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Research Institute, Second Affiliated Hospital of Harbin Medical University, Harbin, China.,Laboratory of Medical Genetics, Harbin Medical University, Harbin, China
| | - Ren-Ke Li
- Division of Cardiovascular Surgery, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada.,Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|