1
|
Bae S, Bae S, Kim HS, Lim YJ, Kim G, Park IC, So KA, Kim TJ, Lee JH. Deguelin Restores Paclitaxel Sensitivity in Paclitaxel-Resistant Ovarian Cancer Cells via Inhibition of the EGFR Signaling Pathway. Cancer Manag Res 2024; 16:507-525. [PMID: 38827785 PMCID: PMC11144006 DOI: 10.2147/cmar.s457221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
Background Ovarian cancer is one of women's malignancies with the highest mortality among gynecological cancers. Paclitaxel is used in first-line ovarian cancer chemotherapy. Research on paclitaxel-resistant ovarian cancer holds significant clinical importance. Methods Cell viability and flow cytometric assays were conducted at different time and concentration points of deguelin and paclitaxel treatment. Immunoblotting was performed to assess the activation status of key signaling molecules important for cell survival and proliferation following treatment with deguelin and paclitaxel. The fluo-3 acetoxymethyl assay for P-glycoprotein transport activity assay and cell viability assay in the presence of N-acetyl-L-cysteine were also conducted. Results Cell viability and flow cytometric assays demonstrated that deguelin resensitized paclitaxel in a dose- and time-dependent manner. Cotreatment with deguelin and paclitaxel inhibited EGFR and its downstream signaling molecules, including AKT, ERK, STAT3, and p38 MAPK, in SKOV3-TR cells. Interestingly, cotreatment with deguelin and paclitaxel suppressed the expression level of EGFR via the lysosomal degradation pathway. Cotreatment did not affect the expression and function of P-glycoprotein. N-acetyl-L-cysteine failed to restore cell cytotoxicity when used in combination with deguelin and paclitaxel in SKOV3-TR cells. The expression of BCL-2, MCL-1, and the phosphorylation of the S155 residue of BAD were downregulated. Moreover, inhibition of paclitaxel resistance by deguelin was also observed in HeyA8-MDR cells. Conclusion Our research showed that deguelin effectively suppresses paclitaxel resistance in SKOV3-TR ovarian cancer cells by downregulating the EGFR and its downstream signaling pathway and modulating the BCL-2 family proteins. Furthermore, deguelin exhibits inhibitory effects on paclitaxel resistance in HeyA8-MDR ovarian cancer cells, suggesting a potential mechanism for paclitaxel resensitization that may not be cell-specific. These findings suggest that deguelin holds promise as an anticancer therapeutic agent for overcoming chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Seunghee Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Sowon Bae
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hee Su Kim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ye Jin Lim
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| | - Gyeongmi Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, Seoul, 01812, Republic of Korea
| | - Kyeong A So
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Tae Jin Kim
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, 05030, Republic of Korea
| | - Jae Ho Lee
- Department of Cosmetics Engineering, Konkuk University, Seoul, 05029, Republic of Korea
| |
Collapse
|
2
|
Liao J, Qing X, Li X, Gan Y, Wang R, Han S, Li W, Song W. TRAF4 regulates ubiquitination-modulated survivin turnover and confers radioresistance. Int J Biol Sci 2024; 20:182-199. [PMID: 38164179 PMCID: PMC10750280 DOI: 10.7150/ijbs.87180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/09/2023] [Indexed: 01/03/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is the most common cancer originating in the nasopharynx. Despite continuous improvement in treatment strategies, recurrence or persistence of cancer after radiotherapy is still inevitable, highlighting the need to identify therapeutic resistance factors and develop effective methods for NPC treatment. Herein, we found that TRAF4 is overexpressed in NPC cells and tissues. Knockdown TRAF4 significantly increased the radiosensitivity of NPC cells, possibly by inhibiting the Akt/Wee1/CDK1 axis, thereby suppressing survivin phosphorylation and promoting its degradation by FBXL7. TRAF4 is positively correlated with p-Akt and survivin in NPC tissues. High protein levels of TRAF4 were observed in acquired radioresistant NPC cells, and knockdown of TRAF4 overcomes radioresistant in vitro and the xenograft mouse model. Altogether, our study highlights the TRAF4-survivin axis as a potential therapeutic target for radiosensitization in NPC.
Collapse
Affiliation(s)
- Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Wei Song
- Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| |
Collapse
|
3
|
Li X, Liang Q, Zhou L, Deng G, Xiao Y, Gan Y, Han S, Liao J, Wang R, Qing X, Li W. Survivin degradation by bergenin overcomes pemetrexed resistance. Cell Oncol (Dordr) 2023; 46:1837-1853. [PMID: 37542022 DOI: 10.1007/s13402-023-00850-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2023] [Indexed: 08/06/2023] Open
Abstract
PURPOSE Chemoresistance is a primary factor for treatment failure and tumor recurrence in non-small cell lung cancer (NSCLC) patients. The oncoprotein survivin is commonly upregulated in human malignancies and is associated with poor prognosis, but its effect on carcinogenesis and chemoresistance in NSCLC is not yet evident, and to explore an effective inhibitor targeting survivin expression is urgently needed. METHODS The protumor characteristics of survivin and antitumor activities of bergenin in NSCLC cells were examined by MTS, colony formation assays, immunoblot, immunohistochemistry, and in vivo xenograft development. RESULTS Survivin was upregulated in non-small cell lung cancer (NSCLC) tissues, while its depletion inhibited NSCLC tumorigenesis. The current study focused on bergenin, identifying its effective antitumor effect on NSCLC cells both in vivo and in vitro. The results showed that bergenin could inhibit cell proliferation and induce the intrinsic pathway of apoptosis via downregulating survivin. Mechanistically, bergenin reduced the phosphorylation of survivin via inhibiting the Akt/Wee1/CDK1 signaling pathway, thus resulting in enhanced interaction between survivin and E3 ligase Fbxl7 to promote survivin ubiquitination and degradation. Furthermore, bergenin promoted chemoresistance in NSCLC cells re-sensitized to pemetrexed treatment. CONCLUSIONS Survivin overexpression is required for maintaining multiple malignant phenotypes of NSCLC cells. Bergenin exerts a potent antitumor effect on NSCLC via targeting survivin, rendering it a promising agent for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qi Liang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Gaoyan Deng
- Department of Thoracic Surgery, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yeqing Xiao
- Department of Ultrasonography, Hunan Chest Hospital, Changsha, Hunan, 410006, People's Republic of China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Shuangze Han
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, People's Republic of China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Ruirui Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xiang Qing
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
4
|
Cao Y, Tang H, Wang G, Li P, Song Z, Li W, Sun X, Zhong X, Yu Q, Zhu S, Zhu L. Targeting survivin with Tanshinone IIA inhibits tumor growth and overcomes chemoresistance in colorectal cancer. Cell Death Discov 2023; 9:351. [PMID: 37749082 PMCID: PMC10520088 DOI: 10.1038/s41420-023-01622-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023] Open
Abstract
The inhibitor of apoptosis protein survivin has a critical regulatory role in carcinogenesis and treatment tolerance in colorectal cancer (CRC). However, the targeted drugs for survivin protein are extremely limited. In the present research, we discovered that Tanshinone IIA (Tan IIA) played a dual regulatory role in inhibiting tumorigenesis and reversing 5-Fu tolerance via modulating the expression and phosphorylation of survivin in CRC cells. Mechanistically, Tan IIA suppressed the Akt/WEE1/CDK1 signaling pathway, which led to the downregulation of survivin Thr34 phosphorylation and destruction of the interaction between USP1 and survivin to promote survivin ubiquitination and degradation. Furthermore, Tan IIA significantly facilitated chemoresistant CRC cells to 5-Fu sensitivity. These results revealed that Tan IIA possessed a strong antitumor activity against CRC cells and could act as an up-and-coming agent for treating CRC and overcoming chemotherapy resistance.
Collapse
Affiliation(s)
- Yaoquan Cao
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Haibo Tang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Guohui Wang
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Pengzhou Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi Song
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Weizheng Li
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xulong Sun
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xiaoxiao Zhong
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Qianqian Yu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Shaihong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Liyong Zhu
- Department of General Surgery, Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
5
|
Zhou H, Zhou L, Guan Q, Hou X, Wang C, Liu L, Wang J, Yu X, Li W, Liu H. Skp2-mediated MLKL degradation confers cisplatin-resistant in non-small cell lung cancer cells. Commun Biol 2023; 6:805. [PMID: 37532777 PMCID: PMC10397346 DOI: 10.1038/s42003-023-05166-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most prevalent type of cancer and the leading cause of cancer-related death. Chemotherapeutic resistance is a major obstacle in treating NSCLC patients. Here, we discovered that the E3 ligase Skp2 is overexpressed, accompanied by the downregulation of necroptosis-related regulator MLKL in human NSCLC tissues and cell lines. Knockdown of Skp2 inhibited viability, anchorage-independent growth, and in vivo tumor development of NSCLC cells. We also found that the Skp2 protein is negatively correlated with MLKL in NSCLC tissues. Moreover, Skp2 is increased and accompanied by an upregulation of MLKL ubiquitination and degradation in cisplatin-resistant NSCLC cells. Accordingly, inhibition of Skp2 partially restores MLKL and sensitizes NSCLC cells to cisplatin in vitro and in vivo. Mechanistically, Skp2 interacts and promotes ubiquitination-mediated degradation of MLKL in cisplatin-resistant NSCLC cells. Our results provide evidence of an Skp2-dependent mechanism regulating MLKL degradation and cisplatin resistance, suggesting that targeting Skp2-ubiquitinated MLKL degradation may overcome NSCLC chemoresistance.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, The Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing Guan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xuyang Hou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Cong Wang
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Li M, Zhao Q, Liao J, Wang X, Liu L, Zhang X, Liu L, Liu H, Zhang S. Dioscin inhibiting EGFR-mediated Survivin expression promotes apoptosis in oral squamous cell carcinoma cells. J Cancer 2023; 14:2027-2038. [PMID: 37497406 PMCID: PMC10367921 DOI: 10.7150/jca.85011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/10/2023] [Indexed: 07/28/2023] Open
Abstract
Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies, including oral squamous cell carcinoma (OSCC). Thus, survivin has been proposed as an attractive target for new antitumor interventions. In the present study, we found that a natural compound, Dioscin, inhibited OSCC cells by reducing the survivin protein level and activating apoptotic signaling. Dioscin inhibits survivin expression by interrupting EGFR binding to the AT-rich sequences (ATRSs) at the survivin promoter, eventually promoting survivin-mediated cell apoptosis. The in vivo study showed that Dioscin suppressed the tumor development of SCC25 cells. Furthermore, the immunohistochemistry (IHC) results revealed that treated with Dioscin reduced the protein levels of EGFR and survivin in SCC25 xenograft tumors. Overall, our findings indicate that targeting the EGFR-survivin axis might be a promising OSCC treatment strategy.
Collapse
Affiliation(s)
- Ming Li
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qin Zhao
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinzhuang Liao
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, China
| | - Xiaocong Wang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lulu Liu
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaoyue Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Lijun Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Shusheng Zhang
- Changsha Stomatological Hospital, Changsha, Hunan 410004, China
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| |
Collapse
|
7
|
Xiao Y, Liu P, Wei J, Zhang X, Guo J, Lin Y. Recent progress in targeted therapy for non-small cell lung cancer. Front Pharmacol 2023; 14:1125547. [PMID: 36909198 PMCID: PMC9994183 DOI: 10.3389/fphar.2023.1125547] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
The high morbidity and mortality of non-small cell lung cancer (NSCLC) have always been major threats to people's health. With the identification of carcinogenic drivers in non-small cell lung cancer and the clinical application of targeted drugs, the prognosis of non-small cell lung cancer patients has greatly improved. However, in a large number of non-small cell lung cancer cases, the carcinogenic driver is unknown. Identifying genetic alterations is critical for effective individualized therapy in NSCLC. Moreover, targeted drugs are difficult to apply in the clinic. Cancer drug resistance is an unavoidable obstacle limiting the efficacy and application of targeted drugs. This review describes the mechanisms of targeted-drug resistance and newly identified non-small cell lung cancer targets (e.g., KRAS G12C, NGRs, DDRs, CLIP1-LTK, PELP1, STK11/LKB1, NFE2L2/KEAP1, RICTOR, PTEN, RASGRF1, LINE-1, and SphK1). Research into these mechanisms and targets will drive individualized treatment of non-small cell lung cancer to generate better outcomes.
Collapse
Affiliation(s)
- Yanxia Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Pu Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jie Wei
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Xin Zhang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China
| | - Yajun Lin
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital, National Center of Gerontology of National Health Commission, Beijing, China.,Peking University Fifth School of Clinical Medicine, Beijing, China
| |
Collapse
|
8
|
Lu ZH, Tu GJ, Fu SL, Shang K, Peng SJ, Chen L, Gu XJ. BMI1 induces ubiquitination and protein degradation of Nod-like receptor family CARD domain containing 5 and suppresses human leukocyte antigen class I expression to induce immune escape in non-small cell lung cancer. Kaohsiung J Med Sci 2022; 38:1190-1202. [PMID: 36194200 DOI: 10.1002/kjm2.12602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 08/29/2022] [Indexed: 12/15/2022] Open
Abstract
The Nod-like receptor (NLR) family CARD domain containing 5 (NLRC5) has been reported as an activator of human leukocyte antigen (HLA) class I that is responsible for immune activity in cancer treatment. This work focuses on the role of BMI1 proto-oncogene (BMI1) in the NLRC5-HLA class I axis and in immune escape in non-small cell lung cancer (NSCLC). First, immunoblot analysis and/or reverse transcription-quantitative polymerase chain reaction were performed, which identified decreased NLRC5 and HLA class I levels in NSCLC tissues and cell lines. NSCLCs were co-cultured with activated CD8+ T cells. Overexpression of NLRC5 in NSCLC cells elevated the expression of HLA class I and increased the activity of T cells and IL-2 production, and it reduced the PD-1/PD-L1 levels. The ubiquitination and immunoprecipitation assays confirmed that BMI1 bound to NLRC5 to induce is ubiquitination and protein degradation. Downregulation of BMI1 in NSCLC cells elevated NLRC5 and HLA class I levels, and consequently promoted T cell activation and decreased PD-1/PD-L1 levels in the co-culture system. However, overexpression of BMI1 in cells led to inverse trends. In summary, this study demonstrates that BMI1 induces ubiquitination and protein degradation of NLRC5 and suppresses HLA class I expression, which potentially helps immune escape in NSCLC.
Collapse
Affiliation(s)
- Zhi-Hui Lu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Gan-Jie Tu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Si-Lv Fu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Kai Shang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Su-Juan Peng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Li Chen
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xi-Juan Gu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
9
|
Dzul Keflee R, Hoong Leong K, Ogawa S, Bignon J, Chiang Chan M, Weng Kong K. Overview of the multifaceted resistances toward EGFR-TKIs and new chemotherapeutic strategies in non-small cell lung cancer. Biochem Pharmacol 2022; 205:115262. [PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/02/2022]
Abstract
The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanism of resistances towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever evolving and adaptive nature of NSCLC.
Collapse
Affiliation(s)
- Rashidi Dzul Keflee
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kok Hoong Leong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Satoshi Ogawa
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jerome Bignon
- Institut de Chimie des Substances Naturelles CNRS UPR 2301, Université Paris Saclay, Gif-sur-Yvette, France
| | - Mun Chiang Chan
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Kin Weng Kong
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
10
|
Asuzu DT, Alvarez R, Fletcher PA, Mandal D, Johnson K, Wu W, Elkahloun A, Clavijo P, Allen C, Maric D, Ray-Chaudhury A, Rajan S, Abdullaev Z, Nwokoye D, Aldape K, Nieman LK, Stratakis C, Stojilkovic SS, Chittiboina P. Pituitary adenomas evade apoptosis via noxa deregulation in Cushing's disease. Cell Rep 2022; 40:111223. [PMID: 36001971 PMCID: PMC9527711 DOI: 10.1016/j.celrep.2022.111223] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/03/2022] [Accepted: 07/26/2022] [Indexed: 12/13/2022] Open
Abstract
Sporadic pituitary adenomas occur in over 10% of the population. Hormone-secreting adenomas, including those causing Cushing’s disease (CD), cause severe morbidity and early mortality. Mechanistic studies of CD are hindered by a lack of in vitro models and control normal human pituitary glands. Here, we surgically annotate adenomas and adjacent normal glands in 25 of 34 patients. Using single-cell RNA sequencing (RNA-seq) analysis of 27594 cells, we identify CD adenoma transcriptomic signatures compared with adjacent normal cells, with validation by bulk RNA-seq, DNA methylation, qRT-PCR, and immunohistochemistry. CD adenoma cells include a subpopulation of proliferating, terminally differentiated corticotrophs. In CD adenomas, we find recurrent promoter hypomethylation and transcriptional upregulation of PMAIP1 (encoding pro-apoptotic BH3-only bcl-2 protein noxa) but paradoxical noxa downregulation. Using primary CD adenoma cell cultures and a corticotroph-enriched mouse cell line, we find that selective proteasomal inhibition with bortezomib stabilizes noxa and induces apoptosis, indicating its utility as an anti-tumor agent. Asuzu et al. perform single-cell transcriptomic profiling in Cushing’s disease (CD) adenomas and find overexpression and DNA hypomethylation of PMAIP1, which encodes the pro-apoptotic protein noxa. Noxa is degraded by the proteasome. Proteasomal inhibition rescues noxa and induces apoptosis in CD.
Collapse
Affiliation(s)
- David T Asuzu
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurosurgery, University of Virginia, Charlottesville, VA, USA
| | - Reinier Alvarez
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Florida International University Herbert Wertheim College of Medicine, Miami, FL, USA
| | - Patrick A Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Debjani Mandal
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kory Johnson
- DIR Bioinformatics Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Weiwei Wu
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Abdel Elkahloun
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Paul Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Clint Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, USA
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Abhik Ray-Chaudhury
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Zied Abdullaev
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Diana Nwokoye
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, Bethesda, MD, USA
| | - Lynnette K Nieman
- Section on Translational Endocrinology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Constantine Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Prashant Chittiboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Room 3D20, Bethesda, MD 20892, USA; Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
11
|
Deguelin Attenuates Non-Small-Cell Lung Cancer Cell Metastasis by Upregulating PTEN/KLF4/EMT Signaling Pathway. DISEASE MARKERS 2022; 2022:4090346. [PMID: 35637651 PMCID: PMC9148257 DOI: 10.1155/2022/4090346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022]
Abstract
Non-small-cell lung cancer (NSCLC) is the most common lung cancer and a major cause of cancer mortality worldwide. Deguelin plays a vital inhibitory role in NSCLC initiation and development. However, the downstream mechanism of deguelin-suppressed metastasis of NSCLC cells is still not completely understood. Interestingly, phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and Krüppel-like factor 4 (KLF4) also contribute to inhibition of metastasis in NSCLC cells. Here, we demonstrated that deguelin significantly upregulated PTEN and KLF4 expressions and PTEN positively upregulated KLF4 expression in NSCLC cells including A549 and PC9 cells. Moreover, overexpressions of PTEN and KLF4 inhibited the migration and invasion of NSCLC cells, an effect similar to that of deguelin. Furthermore, overexpressions of PTEN and KLF4 could suppress the epithelial-mesenchymal transition (EMT), an effect also similar to that of deguelin. Additionally, deguelin displayed a significant antitumor ability by upregulating PTEN and KLF4 expressions in mice model with NSCLC cells. Together, these results indicated that deguelin could be a potential therapeutic agent through upregulating PTEN and KLF4 expressions for NSCLC therapy.
Collapse
|
12
|
Lin ZY, Yun QZ, Wu L, Zhang TW, Yao TZ. Pharmacological basis and new insights of deguelin concerning its anticancer effects. Pharmacol Res 2021; 174:105935. [PMID: 34644595 DOI: 10.1016/j.phrs.2021.105935] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 12/15/2022]
Abstract
Deguelin is a rotenoid of the flavonoid family, which can be extracted from Lonchocarpus, Derris, or Tephrosia. It possesses the inhibition of cancer cell proliferation by inducing apoptosis through regulating the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) signaling pathway, the NF-κB signaling pathway, the Wnt signaling pathway, the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway and epidermal growth factor receptor (EGFR) signaling, activating the p38 mitogen-activated protein kinase (MAPK) pathway, repression of Bmi1, targeting cyclooxygenase-2 (COX-2), targeting galectin-1, promotion of glycogen synthase kinase-3β (GSK3β)/FBW7-mediated Mcl-1 destabilization and targeting mitochondria via down-regulating Hexokinases II-mediated glycolysis, PUMA-mediation, which are some crucial molecules which modulate closely cancer cell growth and metastasis. Deguelin inhibits tumor cell propagation and malignant transformation through targeting angiogenesis, targeting lymphangiogenesis, targeting focal adhesion kinase (FAK), inhibiting the CtsZ/FAK signaling pathway, targeting epithelial-mesenchymal transition (EMT), the NF-κB signaling pathway, regulating NIMA-related kinase 2 (NEK2). In addition, deguelin possesses other biological activities, such as targeting cell cycle arrest, modulation of autophagy, inhibition of hedgehog pathway, inducing differentiation of mutated NPM1 acute myeloid leukemia etc. Therefore, deguelin is a promising chemopreventive agent for cancer therapy.
Collapse
Affiliation(s)
- Zhu Yue Lin
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Qu Zhen Yun
- Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Liu Wu
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tian Wen Zhang
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China; Pathophysiology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China
| | - Tang Ze Yao
- Pharmacology Department, Dalian Medical University, Dalian 116044, Liaoning, PR China.
| |
Collapse
|
13
|
Mir MA, Mehraj U, Sheikh BA. Recent Advances in Chemotherapeutic Implications of Deguelin: A Plant-Derived Retinoid. ACTA ACUST UNITED AC 2021. [DOI: 10.2174/2210315510666200128125950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deguelin, a plant retinoid has emerged to be a promising therapeutic agent in the treatment
of different cancers. Recent studies demonstrate that deguelin has potential as an angiogenesis
antagonist in malignant and endothelial cells by specifically targeting HGF-c-Met and VEGFVEGFR
pathways. It is reported to have profound therapeutic effects in pancreatic cancer by inactivation
of the hedgehog (Hh) signalling pathway and suppresses the expression of matrix metalloproteinases
such as MMP-2 and MMP-9. The basic underlying mechanisms for deguelin mediated anti-
NSCLC effects were uncovered through its induction of elevated intracellular Reactive Oxygen Species
(ROS) levels and suppression of the PI3K /Akt-HK2 signalling pathway. Deguelin induces cell
apoptosis by targeting various pathways most notably regulating the expression of galectin-1 and
binding directly to anti-apoptotic Bcl-2 (B-cell lymphoma 2), Bcl-xl (B-cell lymphoma-extralarge)
and Mcl-1 (Myeloid Cell Leukemia Sequence 1) in the hydrophobic grooves thereby liberating BAD
and BAX from binding with these proteins. These results derived from the effect of Deguelin on various
cancer cell lines have further elucidated its role as a novel anti-tumorigenic agent targeting angiogenesis,
apoptosis, cell proliferation and migration for cancer chemoprevention. In this review, an
attempt has been made to highlight the potential therapeutic effects of Deguelin in destroying the
cancer cells by inhibiting various tumour promoting pathways and its uses as a therapeutic agent
alone or in combination.
Collapse
Affiliation(s)
- Manzoor A. Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Umar Mehraj
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| | - Bashir A. Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar-190006, India
| |
Collapse
|
14
|
Tuli HS, Mittal S, Loka M, Aggarwal V, Aggarwal D, Masurkar A, Kaur G, Varol M, Sak K, Kumar M, Sethi G, Bishayee A. Deguelin targets multiple oncogenic signaling pathways to combat human malignancies. Pharmacol Res 2021; 166:105487. [PMID: 33581287 DOI: 10.1016/j.phrs.2021.105487] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/23/2021] [Accepted: 02/07/2021] [Indexed: 02/07/2023]
Abstract
Cancer is an anomalous growth and differentiation of cells known to be governed by oncogenic factors. Plant-based natural metabolites have been well recognized to possess chemopreventive properties. Deguelin, a natural rotenoid, is among the class of bioactive phytoconstituents from a diverse range of plants with potential antineoplastic effects in different cancer subtypes. However, the precise mechanisms of how deguelin inhibits tumor progression remains elusive. Deguelin has shown promising results in targeting the hallmarks of tumor progression via inducing tumor apoptosis, cell cycle arrest, and inhibition of angiogenesis and metastasis. Based on initial scientific excerpts, deguelin has been reported to inhibit tumor growth via different signaling pathways, including mitogen-activated protein kinase, phosphoinositide 3-kinase, serine/threonine protein kinase B (also known as Akt), mammalian target of rapamycin, nuclear factor-κB, matrix metalloproteinase (MMP)-2, MMP-9 and caspase-3, caspase-8, and caspase-9. This review summarizes the mechanistic insights of antineoplastic action of deguelin to gain a clear understanding of its therapeutic effects in cancer. The anticancer potential of deguelin with respect to its efficacy in targeting tumorigenesis via nanotechnological approaches is also investigated. The initial scientific findings have presented deguelin as a promising antitumorigenic agent which can be used for monotherapy as well as synergistically to augment efficacy of chemotherapeutic treatment regimes.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Sonam Mittal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Mariam Loka
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Vaishali Aggarwal
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA15260, USA
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Akshara Masurkar
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Narsee Monjee Institute of Management Studies University, Mumbai 400 056, Maharashtra, India
| | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Mugla TR48000, Turkey
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Sadopur 134007, Haryana, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
15
|
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y, Liu H. RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem 2021; 476:1233-1243. [PMID: 33247805 PMCID: PMC7873015 DOI: 10.1007/s11010-020-03985-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Vinblastine (VBL) has been considered as a first-line anti-tumor drug for many years. However, vinblastine-caused myocardial damage has been continually reported. The underlying molecular mechanism of the myocardial damage remains unknown. Here, we show that vinblastine induces myocardial damage and necroptosis is involved in the vinblastine-induced myocardial damage both in vitro and in vivo. The results of WST-8 and flow cytometry analysis show that vinblastine causes damage to H9c2 cells, and the results of animal experiments show that vinblastine causes myocardial cell damage. The necrosome components, receptor-interacting protein 1 (RIP1) receptor-interacting protein 3 (RIP3), are significantly increased in vinblastine-treated H9c2 cells, primary neonatal rat ventricular myocytes and rat heart tissues. And the downstream substrate of RIP3, mixed lineage kinase domain like protein (MLKL) was also increased. Pre-treatment with necroptosis inhibitors partially inhibits the necrosome components and MLKL levels and alleviates vinblastine-induced myocardial injury both in vitro and in vivo. This study indicates that necroptosis participated in vinblastine-evoked myocardial cell death partially, which would be a potential target for relieving the chemotherapy-related myocardial damage.
Collapse
Affiliation(s)
- Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jinfu Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xinmin Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
16
|
Gao F, Li M, Yu X, Liu W, Zhou L, Li W. Licochalcone A inhibits EGFR signalling and translationally suppresses survivin expression in human cancer cells. J Cell Mol Med 2020; 25:813-826. [PMID: 33247550 PMCID: PMC7812290 DOI: 10.1111/jcmm.16135] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Dysfunction of epidermal growth factor receptor (EGFR) signalling plays a critical role in the oncogenesis of non–small‐cell lung cancer (NSCLC). Here, we reported the natural product, licochalcone A, exhibited a profound anti‐tumour efficacy through directly targeting EGFR signalling. Licochalcone A inhibited in vitro cell growth, colony formation and in vivo tumour growth of either wild‐type (WT) or activating mutation EGFR‐expressed NSCLC cells. Licochalcone A bound with L858R single‐site mutation, exon 19 deletion, L858R/T790M mutation and WT EGFR ex vivo, and impaired EGFR kinase activity both in vitro and in NSCLC cells. The in silico docking study further indicated that licochalcone A interacted with both WT and mutant EGFRs. Moreover, licochalcone A induced apoptosis and decreased survivin protein robustly in NSCLC cells. Mechanistically, we found that treatment with licochalcone A translationally suppressed survivin through inhibiting EGFR downstream kinases ERK1/2 and Akt. Depletion of the translation initiation complex by eIF4E knockdown effectively inhibited survivin expression. In contrast, knockdown of 4E‐BP1 showed the opposite effect and dramatically enhanced survivin protein level. Overall, our data indicate that targeting survivin might be an alternative strategy to sensitize EGFR‐targeted therapy.
Collapse
Affiliation(s)
- Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, China.,Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Changsha Stomatological Hospital, Changsha, China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The 3rd Xiangya Hospital of Central South University, Changsha, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Gao F, Li M, Zhou L, Liu W, Zuo H, Li W. Xanthohumol targets the ERK1/2‑Fra1 signaling axis to reduce cyclin D1 expression and inhibit non‑small cell lung cancer. Oncol Rep 2020; 44:1365-1374. [PMID: 32945473 PMCID: PMC7448415 DOI: 10.3892/or.2020.7697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
High expression of cyclin D1 has a crucial role in the maintenance of unlimited cell growth in human cancer cells. The present study indicated that cyclin D1 was overexpressed in human non-small cell lung cancer (NSCLC) tumor tissues and cell lines. Knockout of cyclin D1 suppressed NSCLC cell growth, colony formation and in vivo tumor growth. Of note, the natural product xanthohumol (Xanth) inhibited NSCLC cells via the downregulation of cyclin D1. A further mechanistic study revealed that Xanth suppressed ERK1/2 signaling and reduced the protein levels of FOS-related antigen 1 (Fra1), which eventually inhibited the transcriptional activity of activator protein-1 and decreased the mRNA level of cyclin D1. Furthermore, suppression of ERK1/2 impaired Fra1 phosphorylation and enhanced Xanth-induced Fra1 ubiquitination and degradation. In addition, the S265D mutation compromised Xanth-induced Fra1 degradation. Finally, the in vivo anti-tumor effect of Xanth was validated in a xenograft mouse model. In summary, the present results indicated that targeting ERK1/2-Fra1-cyclin D1 signaling is a promising anti-tumor strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Feng Gao
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Ming Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Huilan Zuo
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
18
|
Li M, Gao F, Yu X, Zhao Q, Zhou L, Liu W, Li W. Promotion of ubiquitination-dependent survivin destruction contributes to xanthohumol-mediated tumor suppression and overcomes radioresistance in human oral squamous cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:88. [PMID: 32410646 PMCID: PMC7227341 DOI: 10.1186/s13046-020-01593-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023]
Abstract
Background Overexpression of survivin plays a crucial role in tumorigenesis and correlates with poor prognosis in human malignancies. Thus, survivin has been proposed as an attractive target for new anti-tumor interventions. Methods A natural product library was used for natural compound screening through MTS assay. The expression of survivin in oral squamous cell carcinoma (OSCC) and the inhibitory effect of xanthohumol (XN) on OSCC were examined by anchorage-dependent and -independent growth assays, immunoblot, immunofluorescence, immunohistochemical staining, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. Results Survivin is highly expressed in OSCC patient-derived tissues and cell lines. Knockout of survivin reduced the tumorigenic properties of OSCC cells in vitro and in vivo. With a natural compound screening, we identified that xanthohumol inhibited OSCC cells by reducing survivin protein level and activating mitochondrial apoptotic signaling. Xanthohumol inhibited the Akt-Wee1-CDK1 signaling, which in turn decreased survivin phosphorylation on Thr34, and facilitated E3 ligase Fbxl7-mediated survivin ubiquitination and degradation. Xanthohumol alone or in combination with radiation overcame radioresistance in OSCC xenograft tumors. Conclusion Our findings indicate that targeting survivin for degradation might a promising strategy for OSCC treatment.
Collapse
Affiliation(s)
- Ming Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China.,Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha, Hunan, 410000, People's Republic of China
| | - Feng Gao
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Xinfang Yu
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China
| | - Qing Zhao
- Changsha Stomatological Hospital, Changsha, Hunan, 410004, People's Republic of China.,School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, People's Republic of China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, Changsha, Hunan, 410013, People's Republic of China
| | - Wei Li
- Cell Transplantation and Gene Therapy Institute, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, People's Republic of China. .,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, People's Republic of China.
| |
Collapse
|
19
|
Liu W, Yu X, Zhou L, Li J, Li M, Li W, Gao F. Sinomenine Inhibits Non-Small Cell Lung Cancer via Downregulation of Hexokinases II-Mediated Aerobic Glycolysis. Onco Targets Ther 2020; 13:3209-3221. [PMID: 32368080 PMCID: PMC7176511 DOI: 10.2147/ott.s243212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Addiction to aerobic glycolysis is a common metabolic phenotype in human non-small cell lung cancer (NSCLC). The natural product Sinomenine (Sin) exhibits significant anti-tumor effects in various human cancers. However, the underlying mechanism remains elusive. Methods The inhibitory effect of Sin on NSCLC cells was determined by MTS and soft agar assays. The glycolysis efficacy of NSCLC cells was examined by glucose uptake and lactate production. The activation of Akt signaling and the protein level of hexokinases II (HK2) were examined by immunoblot (IB), qRT-PCR, and immunohistochemical staining (IHC). The in vivo anti-tumor effect of Sin was validated by the xenograft mouse model. Results We showed that HK2 is highly expressed in NSCLC tissues and cell lines. Depletion of HK2 suppressed cell viability, anchorage-independent colony formation, and xenograft tumor growth. Sinomenine exhibited a profound inhibitory effect on NSCLC cells by reducing HK2-mediated glycolysis both in vitro and in vivo. Ectopic overexpression of HK2 compromised these anti-tumor efficacies in sinomenine-treated NSCLC cells. Moreover, we revealed that sinomenine decreased Akt activity, which caused the down-regulation of HK2-mediated glycolysis. Knockdown of Akt reduced HK2 protein level and impaired glycolysis. In contrast, overexpression of constitutively activated Akt1 reversed this phenotype. Conclusion This study suggests that targeting HK2-mediated aerobic glycolysis is required for sinomenine-mediated anti-tumor activity.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, People's Republic of China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Jigang Li
- Department of Pathology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, People's Republic of China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.,Changsha Stomatological Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, 410004, People's Republic of China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
20
|
Formononetin inhibits tumor growth by suppression of EGFR-Akt-Mcl-1 axis in non-small cell lung cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:62. [PMID: 32276600 PMCID: PMC7146989 DOI: 10.1186/s13046-020-01566-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/26/2020] [Indexed: 12/22/2022]
Abstract
Background Epidermal growth factor receptor (EGFR) activating mutations play crucial roles in the tumorigenesis of human non-small cell lung cancer (NSCLC). The mechanism regarding how EGFR signaling regulates myeloid cell leukemia sequence 1 (Mcl-1) protein stability and ubiquitination remains undefined. Methods MTS assay was used for natural product library screening. The effect of formononetin (Formo) on NSCLC cells was determined by MTS assay and soft agar assay. Molecular modeling was performed to analyze the potential different binding modes between Formo and EGFR WT or mutants. Mcl-1 protein level and the inhibitory effect of Formo on EGFR signaling were examined by immunoblot, in vitro kinase assay, in vitro pulldown and ATP competition assays, co-immunoprecipitation assay, ubiquitination analysis, in vivo xenograft model, and immunohistochemical staining. Results Formo was identified as an EGFR inhibitor by a 98 commercially available natural product screening. Formo suppresses WT and mutant EGFR kinases activity in vitro, ex vivo, and in vivo. Molecular modeling indicates that Formo docks into the ATP-binding pocket of both WT and mutant EGFR. Formo inhibits EGFR-Akt signaling, which in turn activates GSK3β and promotes Mcl-1 phosphorylation in NSCLC cells. Treatment with Formo enhances the interaction between Mcl-1 and SCFFbw7, which eventually promotes Mcl-1 ubiquitination and degradation. Depletion of either GSK3β or SCFFbw7 compromised Formo-induced Mcl-1 downregulation. Finally, Formo inhibits the in vivo tumor growth in a xenograft mouse model. Conclusion This study highlights the importance of promoting ubiquitination-dependent Mcl-1 turnover might be an alternative strategy to enhance the anti-tumor efficacy of EGFR-TKI.
Collapse
|
21
|
Yuan J, Peng G, Xiao G, Yang Z, Huang J, Liu Q, Yang Z, Liu D. Xanthohumol suppresses glioblastoma via modulation of Hexokinase 2 -mediated glycolysis. J Cancer 2020; 11:4047-4058. [PMID: 32368287 PMCID: PMC7196271 DOI: 10.7150/jca.33045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022] Open
Abstract
Deregulation of aerobic glycolysis is a common phenomenon in human cancers, including glioblastoma (GBM). In the present study, we demonstrated that the natural compound xanthohumol has a profound anti-tumor effect on GBM via direct inhibition of glycolysis. Xanthohumol suppressed cell proliferation and colony formation of GBM cells, and significantly impaired glucose metabolism via inhibiting Hexokinase 2 (HK2) expression. We demonstrated that down-regulation of c-Myc was required for xanthohumol-induced decrease of HK2. Xanthohumol destabilization of c-Myc, and promoted FBW7-mediated ubiquitination of c-Myc. Xanthohumol attenuated Akt activity and inhibited the activation of GSK3β, resulted in c-Myc degradation. Overexpression of Myr-Akt1 significantly rescued xanthohumol-mediated c-Myc inhibition and glycolysis suppression. Finally, the xanthohumol-mediated down-regulation of the PI3-K/Akt-GSK3beta-FBW7 signaling axis promoted the destabilization of c-Myc. Finally, the animal results demonstrated that xanthohumol substantially inhibited tumor growth in vivo. Collectively, xanthohumol appears to be a promising new anti-tumor agent with the therapeutic potential for GBM.
Collapse
Affiliation(s)
- Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- The Institute of Skull Base Surgery and Neuro-oncology at Hunan, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- The Institute of Skull Base Surgery and Neuro-oncology at Hunan, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Zhuanyi Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- The Institute of Skull Base Surgery and Neuro-oncology at Hunan, 87 Xiangya Road, Changsha, Hunan, 410008, China
| | - Zhiquan Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
| | - Dingyang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, China
- The Institute of Skull Base Surgery and Neuro-oncology at Hunan, 87 Xiangya Road, Changsha, Hunan, 410008, China
| |
Collapse
|
22
|
Gao F, Yu X, Li M, Zhou L, Liu W, Li W, Liu H. Deguelin suppresses non-small cell lung cancer by inhibiting EGFR signaling and promoting GSK3β/FBW7-mediated Mcl-1 destabilization. Cell Death Dis 2020; 11:143. [PMID: 32081857 PMCID: PMC7035355 DOI: 10.1038/s41419-020-2344-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Activating mutations of epidermal growth factor receptor (EGFR) play crucial roles in the oncogenesis of human non-small cell lung cancer (NSCLC). By screening 79 commercially available natural products, we found that the natural compound deguelin exhibited a profound anti-tumor effect on NSCLC via directly down-regulating of EGFR-signaling pathway. Deguelin potently inhibited in vitro EGFR kinase activity of wild type (WT), exon 19 deletion, and L858R/T790M-mutated EGFR. The in silico docking study indicated that deguelin was docked into the ATP-binding pocket of EGFRs. By suppression of EGFR signaling, deguelin inhibited anchorage-dependent, and independent growth of NSCLC cell lines, and significantly delayed tumorigenesis in vivo. Further study showed that deguelin inhibited EGFR and downstream kinase Akt, which resulted in the activation of GSK3β and eventually enhanced Mcl-1 phosphorylation at S159. Moreover, deguelin promoted the interaction between Mcl-1 and E3 ligase SCFFBW7, which enhanced FBW7-mediated Mcl-1 ubiquitination and degradation. Additionally, phosphorylation of Mcl-1 by GSK3β is a prerequisite for FBW7-mediated Mcl-1 destruction. Depletion or pharmacological inactivation of GSK3β compromised deguelin-induced Mcl-1 ubiquitination and reduction. Taken together, our data indicate that enhancement of ubiquitination-dependent Mcl-1 turnover might be a promising approach for cancer treatment.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.,Department of Ultrasonography, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ming Li
- Changsha Stomatological Hospital, 410004, Changsha, Hunan, P.R. China.,School of Stomatology, Hunan University of Chinese Medicine, 410208, Changsha, Hunan, P.R. China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, P.R. China
| | - Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital, 410013, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, 410013, Changsha, Hunan, P.R. China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, 410011, Changsha, Hunan, P.R. China.
| |
Collapse
|
23
|
Cdh1-mediated Skp2 degradation by dioscin reprogrammes aerobic glycolysis and inhibits colorectal cancer cells growth. EBioMedicine 2019; 51:102570. [PMID: 31806563 PMCID: PMC7000337 DOI: 10.1016/j.ebiom.2019.11.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/13/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The F-box protein S-phase kinase-associated protein 2 (Skp2) is overexpressed and correlated with poor prognosis in human malignancies, including colorectal cancer (CRC). METHODS A natural product library was used for natural compound screening through glycolysis analysis. The expression of Skp2 in CRCs and the inhibitory effect of dioscin on glycolysis were examined through methods of immunoblot, immunofluorescence, immunohistochemical staining, anchorage-dependent and -independent growth assays, EdU incorporation assay, ubiquitination analysis, co-immunoprecipitation assay, CRISPR-Cas9-based gene knockout, and xenograft experiment. FINDINGS We demonstrated that Skp2 was highly expressed in CRC tissues and cell lines. Knockout of Skp2 inhibited HK2 and glycolysis and decreased CRC cell growth in vitro and in vivo. We screened 88 commercially available natural products and found that dioscin, a natural steroid saponin derived from several plants, significantly inhibited glycolysis in CRC cells. Dioscin decreased the protein level of Skp2 by shortening the half-life of Skp2. Further study showed that dioscin attenuated Skp2 phosphorylation on S72 and promoted the interaction between Skp2 and Cdh1, which eventually enhanced Skp2 lysine 48 (K48)-linked polyubiquitination and degradation. Depletion of Cdh1 impaired dioscin-induced Skp2 reduction, rescued HK2 expression, and glycolysis in CRC cells. Finally, dioscin delayed the in vivo tumor growth, promoted Skp2 ubiquitination, and inhibited Skp2 expression in a mouse xenograft model. INTERPRETATION This study suggests that in addition to pharmacological inactivation of Skp2, enhancement of ubiquitination-dependent Skp2 turnover is a promising approach for cancer treatment.
Collapse
|
24
|
Tsai HL, Pang SY, Wang HC, Luo CW, Li QL, Chen TY, Fang SY, Wang JY, Pan MR. Impact of BMI1 expression on the apoptotic effect of paclitaxel in colorectal cancer. Am J Cancer Res 2019; 9:2544-2553. [PMID: 31815052 PMCID: PMC6895441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. Despite advances in treatment, no treatment modality specific for the different CRC phenotypes has been developed. BMI1 has been previously reported to play an important role in the regulation of cancer stem cells and cell cycle in CRC. However, the role of BMI1 in individualized treatment for CRC is largely unknown. In this study, we found that the apoptotic effect of paclitaxel is more profound in BMI1-depleted cells. The apoptotic effect is exerted by promoting caspase-8-independent apoptotic pathways after combination with paclitaxel in BMI1 knockdown cells. This effect could be totally recovered by pretreatment with caspase inhibitor compared with caspase-8 inhibitor alone. It has been reported that the levels of MCL-1 play a role in regulating cell resistance to paclitaxel treatment. Our data indicated that the downregulation of MCL-1 through the activation of GSK3beta and JNK is driven by BMI1 depletion. Consistent with in vitro data, a synergic anti-growth effect of BMI1 depletion with paclitaxel treatment was shown in vivo. In conclusion, paclitaxel has a stronger suppressive effect on tumor growth and proliferation in CRC with low BMI1 expression. Thus, in CRC patients, paclitaxel could be specifically indicated for patients with low BMI1 expression.
Collapse
Affiliation(s)
- Hsiang-Lin Tsai
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shin-Yu Pang
- College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Hui-Ching Wang
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Qiao-Lin Li
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Shao-Yu Fang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| | - Mei-Ren Pan
- Drug Development and Value Creation Research Center, Kaohsiung Medical UniversityKaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan
| |
Collapse
|
25
|
LncRNA CASC9 Suppressed the Apoptosis of Gastric Cancer Cells through Regulating BMI1. Pathol Oncol Res 2019; 26:475-482. [PMID: 31642035 DOI: 10.1007/s12253-019-00703-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/19/2019] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) play important roles in regulating the apoptosis of gastric cancer (GC) cells. This study aims to investigate the underlying mechanism of lncRNA CASC9 in regulating the apoptosis of GC cells. The expressions of lncRNA and protein in GC tissues and cell lines were detected by qRT-PCR and western blot. GC cell apoptosis was detected by flow cytometry analysis. RNA pull-down and RNA immunoprecipitation (RIP) assays were conducted to verify the interaction between CASC9 and BMI1. LncRNA CASC9 was upregulated in GC tissue and GC cells, and high CASC9 expression was positively correlated with TNM stage and lymph node metastasis. Silencing CASC9 promoted the apoptosis of GC cells. LncRNA CASC9 could interact with BMI1 and positively regulate BMI1 expression. Silencing CASC9 promoted the ubiquitination of BMI1. In addition, lncRNA CASC9 regulated the apoptosis of GC cells through BMI1. Furthermore, interfering CASC9 inhibited the tumor growth of GC. LncRNA CASC9 could interact with BMI1 to regulate the degradation of BMI1, thus to affect the apoptosis of GC cells and suppressed tumor growth.
Collapse
|
26
|
Liu W, Li W, Liu H, Yu X. Xanthohumol inhibits colorectal cancer cells via downregulation of Hexokinases II-mediated glycolysis. Int J Biol Sci 2019; 15:2497-2508. [PMID: 31595166 PMCID: PMC6775317 DOI: 10.7150/ijbs.37481] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human colorectal cancer (CRC). In the present study, we reported that Hexokinase 2 (HK2) is overexpressed in human CRC tissues and cell lines, knockout of HK2 inhibited cell proliferation, colony formation, and xenograft tumor growth. We demonstrated that the natural compound, xanthohumol, has a profound anti-tumor effect on CRC via down-regulation of HK2 and glycolysis. Xanthohumol suppressed CRC cell growth both in vitro and in vivo. Treatment with xanthohumol promoted the release of cytochrome C and activated the intrinsic apoptosis pathway. Moreover, our results revealed that xanthohumol down-regulated the EGFR-Akt signaling, exogenous overexpression of constitutively activated Akt1 significantly impaired xanthohumol-induced glycolysis suppression and apoptosis induction. Our results suggest that targeting HK2 appears to be a new approach for clinical CRC prevention or treatment.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Pathology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410006, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Haidan Liu
- Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
27
|
Yu X, Wang R, Zhang Y, Zhou L, Wang W, Liu H, Li W. Skp2-mediated ubiquitination and mitochondrial localization of Akt drive tumor growth and chemoresistance to cisplatin. Oncogene 2019; 38:7457-7472. [PMID: 31435020 DOI: 10.1038/s41388-019-0955-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/09/2022]
Abstract
The E3 ligase S-phase kinase-associated protein 2(Skp2) is overexpressed in human cancers and correlated with poor prognosis, but its contributions to tumorigenesis and chemoresistance in nasopharyngeal carcinoma (NPC) are not evident. Herein we show that Skp2 is highly expressed in NPC tumor tissues and cell lines. Knockdown of Skp2 suppresses tumor cell growth, colony formation, glycolysis, and in vivo tumor growth. Skp2 promotes Akt K63-mediated ubiquitination and activation, which is required for EGF-induced Akt mitochondrial localization. Importantly, K63-linked ubiquitination enhances the interaction between Akt and HK2 and eventually increases HK2 phosphorylation on Thr473 and mitochondrial localization. Overexpression of Skp2 impaired the intrinsic apoptotic pathway and confers cisplatin resistance. Moreover, ectopic expression of Myr-Akt1 or phosphomimetic HK2-T473D rescued cisplatin-induced tumor suppression in Skp2 knockdown stable cells. Also, depletion of Akt ubiquitination enhances the antitumor efficacy of cisplatin in vitro and in vivo. Finally, we demonstrated that Skp2 is positively correlated with p-Akt and HK2 in NPC tumor tissues. This study highlights the clinical value of Skp2 targeting in NPC treatment.
Collapse
Affiliation(s)
- Xinfang Yu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Ruike Wang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Yangnan Zhang
- Xiangya School of Medicine, Central South University, Changsha, 410000, Hunan, PR China
| | - Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, PR China
| | - Wei Wang
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China. .,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, PR China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, 410000, Hunan, PR China.
| |
Collapse
|
28
|
Zhou L, Li M, Yu X, Gao F, Li W. Repression of Hexokinases II-Mediated Glycolysis Contributes to Piperlongumine-Induced Tumor Suppression in Non-Small Cell Lung Cancer Cells. Int J Biol Sci 2019; 15:826-837. [PMID: 30906213 PMCID: PMC6429016 DOI: 10.7150/ijbs.31749] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Deregulation of glycolysis is a common phenomenon in human non-small cell lung cancer (NSCLC). In the present study, we reported the natural compound, piperlongumine, has a profound anti-tumor effect on NSCLC via regulation of glycolysis. Piperlongumine suppressed the proliferation, colony formation and HK2-mediated glycolysis in NSCLC cells. We demonstrated that exposure to piperlongumine disrupted the interaction between HK2 and VDAC1, induced the activation of the intrinsic apoptosis signaling pathway. Moreover, our results revealed that piperlongumine down-regulated the Akt signaling, exogenous overexpression of constitutively activated Akt1 in HCC827 and H1975 cells significantly rescued piperlongumine-induced glycolysis suppression and apoptosis. The xenograft mouse model data demonstrated the pivotal role of suppression of Akt activation and HK2-mediated glycolysis in mediating the in vivo antitumor effects of piperlongumine. The expression of HK2 was higher in malignant NSCLC tissues than that of the paired adjacent tissues, and was positively correlated with poor survival time. Our results suggest that HK2 could be used as a potential predictor of survival and targeting HK2 appears to be a new approach for clinical NSCLC prevention or treatment.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pathology, Xiangya Hospital of Central South University, Changsha, Hunan 410008, P.R. China
| | - Ming Li
- School of Stomatology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
- Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China
| | - Xinyou Yu
- Shandong Lvdu Bio-Industry Co., Ltd., Binzhou, Shandong 256600, P.R. China
| | - Feng Gao
- Department of Ultrasonography, The Third Xiangya Hospital of Central South University, Changsha, Hunan, 410013, P.R. China
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
29
|
Nukui M, O'Connor CM, Murphy EA. The Natural Flavonoid Compound Deguelin Inhibits HCMV Lytic Replication within Fibroblasts. Viruses 2018; 10:v10110614. [PMID: 30405048 PMCID: PMC6265796 DOI: 10.3390/v10110614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous herpesvirus for which there is no vaccine or cure. This viral infection, once acquired, is life-long, residing latently in hematopoietic cells. However, latently infected individuals with weakened immune systems often undergo HCMV reactivation, which can cause serious complications in immunosuppressed and immunocompromised patients. Current anti-viral therapies target late stages of viral replication, and are often met with therapeutic resistance, necessitating the development of novel therapeutics. In this current study, we identified a naturally-occurring flavonoid compound, deguelin, which inhibits HCMV lytic replication. Our findings reveal that nanomolar concentrations of deguelin significantly suppress the production of the infectious virus. Further, we show that deguelin inhibits the lytic cycle during the phase of the replication cycle consistent with early (E) gene and protein expression. Importantly, our data reveal that deguelin inhibits replication of a ganciclovir-resistant strain of HCMV. Together, our findings identify a novel, naturally occurring compound that may prove useful in the treatment of HCMV replication.
Collapse
Affiliation(s)
- Masatoshi Nukui
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Christine M O'Connor
- Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA.
| | - Eain A Murphy
- FORGE Life Science, Pennsylvania Biotechnology Center, Doylestown, PA 18901, USA.
| |
Collapse
|
30
|
Li W, Yu X, Xia Z, Yu X, Xie L, Ma X, Zhou H, Liu L, Wang J, Yang Y, Liu H. Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells. J Cell Mol Med 2018; 22:6213-6227. [PMID: 30255595 PMCID: PMC6237602 DOI: 10.1111/jcmm.13908] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/21/2018] [Indexed: 01/07/2023] Open
Abstract
Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti‐tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non‐small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin‐induced apoptosis, whereas overexpression of Bmi1 down‐regulated Noxa protein level and deguelin‐induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti‐tumour activity in NSCLC cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinfang Yu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Zhenkun Xia
- Department of Thoracic Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xinyou Yu
- Shangdong Lvdu Bio-Industry Co., Ltd., Binzhou, Shangdong, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaolong Ma
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huiling Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lijun Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jian Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Haidan Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.,Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|