1
|
Huang YD, Zhao XL, Lin Y, Ouyang XM, Cheng XS, Liang LY, Huo YN, Xie GJ, Lin JH, Jazag A, Guleng B. Mindin orchestrates the macrophage-mediated resolution of liver fibrosis in mice. Hepatol Int 2025:10.1007/s12072-025-10813-7. [PMID: 40186763 DOI: 10.1007/s12072-025-10813-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/28/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND & AIMS Liver disease that progresses to cirrhosis is an enormous health problem worldwide. The extracellular matrix protein Mindin is known to have immune functions, but its role in liver homeostasis remains largely unexplored. We aimed to characterize the role of Mindin in the regulation of liver fibrosis. APPROACH & RESULTS Mindin was upregulated in mice with carbon tetrachloride (CCl4) or thioacetamide (TAA)-induced liver fibrosis, and was primarily expressed in hepatocytes. Global Mindin knockout mice were generated, which were susceptible to liver fibrosis. Notably, Mindin failed to activate hepatic stellate cells directly; however, it played a role in promoting the recruitment and phagocytosis of macrophages, and caused a phenotypic switch toward restorative macrophages during liver fibrosis. Furthermore, Mindin was found to bind to the αM-I domain of CD11b/CD18 heterodimeric receptors. To further explore this mechanism, we created Mindin and CD11b double-knockout (DKO) mice. In DKO mice, phagocytosis was further reduced, and liver fibrosis was markedly exacerbated. CONCLUSIONS Mindin promotes the resolution of liver fibrosis and the Mindin/CD11b axis might represent a novel target for the macrophage-mediated regression of liver fibrosis.
Collapse
Affiliation(s)
- Yong-Dong Huang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Xian-Ling Zhao
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Lai-Ying Liang
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Gui-Jing Xie
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Jun-Hui Lin
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China
| | - Amarsanaa Jazag
- Department of Medicine, Otoch Manramba University, Ulaanbaatar, Mongolia
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen, 361004, China.
- Department of Digestive Disease & Institute of Microbial Ecology, School of Medicine, Xiamen University, Xiamen, 361004, China.
| |
Collapse
|
2
|
Mindin Activates Autophagy for Lipid Utilization and Facilitates White Spot Syndrome Virus Infection in Shrimp. mBio 2023; 14:e0291922. [PMID: 36779788 PMCID: PMC10127999 DOI: 10.1128/mbio.02919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Mindin is a secreted extracellular matrix protein that is involved in regulating cellular events through interacting with integrin. Studies have demonstrated its role in host immunity, including phagocytosis, cell migration, and cytokine production. However, the function of Mindin in the host-virus interaction is largely unknown. In the present study, we report that Mindin facilitates virus infection by activating lipid utilization in an arthropod, kuruma shrimp (Marsupenaeus japonicus). Shrimp Mindin facilitates white spot syndrome virus infection by facilitating viral entry and replication. By activating autophagy, Mindin induces lipid droplet consumption, the hydrolysis of triglycerides into free fatty acids, and ATP production, ultimately providing energy for virus infection. Moreover, integrin is essential for Mindin-mediated autophagy and lipid utilization. Therefore, by revealing the mechanism by which Mindin facilitates virus infection through regulating lipid metabolism, the present study reveals the significance of Mindin in the host-virus interaction. IMPORTANCE White spot syndrome virus (WSSV) is an enveloped double-stranded DNA virus that has had a serious influence on worldwide shrimp farming in the last 30 years. We have demonstrated that WSSV hijacks host autophagy and lipid metabolism for reproduction in kuruma shrimp (Marsupenaeus japonicus). These findings revealed the mechanism by which WSSV exploits host machinery for its infection and provided serial targets for WSSV prevention and control in shrimp farming.
Collapse
|
3
|
Han X, Su X, Li Z, Liu Y, Wang S, Zhu M, Zhang C, Yang F, Zhao J, Li X, Chen F, Han L. Complement receptor 3 mediates Aspergillus fumigatus internalization into alveolar epithelial cells with the increase of intracellular phosphatidic acid by activating FAK. Virulence 2021; 12:1980-1996. [PMID: 34338598 PMCID: PMC8331038 DOI: 10.1080/21505594.2021.1958042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Complement receptor 3 (CD11b/CD18) is an important receptor that mediates adhesion, phagocytosis and chemotaxis in various immunocytes. The conidia of the medically-important pathogenic fungus, Aspergillus fumigatus can be internalized into alveolar epithelial cells to disseminate its infection in immunocompromised host; however, the role of CR3 in this process is poorly understood. In the present study, we investigated the potential role of CR3 on A. fumigatus internalization into type II alveolar epithelial cells and its effect on host intracellular PA content induced by A. fumigatus. We found that CR3 is expressed in alveolar epithelial cells and that human serum and bronchoalveolar lavage fluid (BALF) could improve A. fumigatus conidial internalization into A549 type II alveolar epithelial cell line and mouse primary alveolar epithelial cells, which were significantly inhibited by the complement C3 quencher and CD11b-blocking antibody. Serum-opsonization of swollen conidia, but not resting conidia led to the increase of cellular phosphatidic acid (PA) in A549 cells during infection. Moreover, both conidial internalization and induced PA production were interfered by CD11b-blocking antibody and dependent on FAK activity, but not Syk in alveolar epithelial cells. Overall, our results revealed that CR3 is a critical modulator of Aspergillus fumigatus internalization into alveolar epithelial cells.
Collapse
Affiliation(s)
- Xuelin Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xueting Su
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Zhiqian Li
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Department of Laboratory Medicine & Blood Transfusion, the 907th Hospital, Fujian, Nanping, China
| | - Yanxi Liu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Shuo Wang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Northwest Institute of Plateau Biology, Chinese Academy of Science, Qinghai, Xining, China
| | - Miao Zhu
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Changjian Zhang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China.,Central Laboratory of the sixth medical center of PLA general hospital, Beijing, China
| | - Fan Yang
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Jingya Zhao
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Xianping Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fangyan Chen
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| | - Li Han
- Department for Disinfection and Infection Control, Chinese PLA Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
4
|
Jensen RK, Bajic G, Sen M, Springer TA, Vorup-Jensen T, Andersen GR. Complement Receptor 3 Forms a Compact High-Affinity Complex with iC3b. THE JOURNAL OF IMMUNOLOGY 2021; 206:3032-3042. [PMID: 34117107 DOI: 10.4049/jimmunol.2001208] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022]
Abstract
Complement receptor 3 (CR3, also known as Mac-1, integrin αMβ2, or CD11b/CD18) is expressed on a subset of myeloid and certain activated lymphoid cells. CR3 is essential for the phagocytosis of complement-opsonized particles such as pathogens and apoptotic or necrotic cells opsonized with the complement fragment iC3b and, to a lesser extent, C3dg. Although the interaction between the iC3b thioester domain and the ligand binding CR3 αM I-domain is structurally and functionally well characterized, the nature of additional CR3-iC3b interactions required for phagocytosis of complement-opsonized objects remains obscure. In this study, we analyzed the interaction between iC3b and the 150-kDa headpiece fragment of the CR3 ectodomain. Surface plasmon resonance experiments demonstrated a 30 nM affinity of the CR3 headpiece for iC3b compared with 515 nM for the iC3b thioester domain, whereas experiments monitoring binding of iC3b to CR3-expressing cells suggested an affinity of 50 nM for the CR3-iC3b interaction. Small angle x-ray scattering analysis revealed that iC3b adopts an extended but preferred conformation in solution. Upon interaction with CR3, iC3b rearranges to form a compact receptor-ligand complex. Overall, the data suggest that the iC3b-CR3 interaction is of high affinity and relies on minor contacts formed between CR3 and regions outside the iC3b thioester domain. Our results rationalize the more efficient phagocytosis elicited by iC3b than by C3dg and pave the way for the development of specific therapeutics for the treatment of inflammatory and neurodegenerative diseases that do not interfere with the recognition of noncomplement CR3 ligands.
Collapse
Affiliation(s)
- Rasmus K Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Goran Bajic
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Department of Pediatrics, Harvard Medical School, Boston, MA.,Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mehmet Sen
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA; and
| | | | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark;
| |
Collapse
|
5
|
Lamers C, Plüss CJ, Ricklin D. The Promiscuous Profile of Complement Receptor 3 in Ligand Binding, Immune Modulation, and Pathophysiology. Front Immunol 2021; 12:662164. [PMID: 33995387 PMCID: PMC8118671 DOI: 10.3389/fimmu.2021.662164] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022] Open
Abstract
The β2-integrin receptor family has a broad spectrum of physiological functions ranging from leukocyte adhesion, cell migration, activation, and communication to the phagocytic uptake of cells and particles. Among the members of this family, complement receptor 3 (CR3; CD11b/CD18, Mac-1, αMβ2) is particularly promiscuous in its functional profile and ligand selectivity. There are close to 100 reported structurally unrelated ligands for CR3, and while many ligands appear to cluster at the αMI domain, molecular details about binding modes remain largely elusive. The versatility of CR3 is reflected in its functional portfolio, which includes prominent roles in the removal of invaders and cell debris, induction of tolerance and synaptic pruning, and involvement in the pathogenesis of numerous autoimmune and chronic inflammatory pathologies. While CR3 is an interesting therapeutic target for immune modulation due to these known pathophysiological associations, drug development efforts are limited by concerns of potential interference with host defense functions and, most importantly, an insufficient molecular understanding of the interplay between ligand binding and functional impact. Here, we provide a systematic summary of the various interaction partners of CR3 with a focus on binding mechanisms and functional implications. We also discuss the roles of CR3 as an immune receptor in health and disease, as an activation marker in research and diagnostics, and as a therapeutic target.
Collapse
Affiliation(s)
- Christina Lamers
- Molecular Pharmacy Unit, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
6
|
Zhong H, Lin H, Pang Q, Zhuang J, Liu X, Li X, Liu J, Tang J. Macrophage ICAM-1 functions as a regulator of phagocytosis in LPS induced endotoxemia. Inflamm Res 2021; 70:193-203. [PMID: 33474594 PMCID: PMC7817350 DOI: 10.1007/s00011-021-01437-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 01/11/2021] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Intracellular adhesion molecule-1 (ICAM-1), a transmembrane glycoprotein belonging to the immunoglobulin superfamily, plays a critical role in mediating cell-cell interaction and outside-in cell signaling during the immune response. ICAM-1 is expressed on the cell surface of several cell types including endothelial cells, epithelial cells, leucocytes, fibroblasts, and neutrophils. Despite ICAM-1 has been detected on macrophage, little is known about the function and mechanism of macrophage ICAM-1. METHODS To investigate the role of lipopolysaccharide (LPS) in ICAM-1 regulation, both the protein and cell surface expression of ICAM-1 were measured. The phagocytosis of macrophage was evaluated by flow cytometry and Confocal microscopy. Small interfering RNA and neutralizing antibody of ICAM-1 were used to assess the effect of ICAM-1 on macrophage phagocytosis. TLR4 gene knockout mouse and cytoplasmic and mitochondrial ROS scavenger were used for the regulation of ICAM-1 expression. ROS was determined using flow cytometry. RESULTS In this study, we reported that macrophage can be stimulated to increase both the protein and cell surface expression of ICAM-1 by LPS. Macrophage ICAM-1 expression was correlated with enhanced macrophage phagocytosis. We found that using ICAM-1 neutralizing antibody or ICAM-1 silencing to attenuate the function or expression of ICAM-1 could decrease LPS-induced macrophage phagocytosis. Furthermore, we found that knocking out of TLR4 led to inhibited cytoplasmic and mitochondrial ROS production, which in turn, attenuated ICAM-1 expression at both the protein and cell surface levels. CONCLUSION This study demonstrates that the mechanism of ICAM-1-mediated macrophage phagocytosis is depending on TLR4-mediated ROS production and provides significant light on macrophage ICAM-1 in endotoxemia.
Collapse
Affiliation(s)
- Hanhui Zhong
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Haitao Lin
- Health Management Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Qiongni Pang
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Jinling Zhuang
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
- The Department of Anesthesiology, Nanfang Hospital, SouthernMedicalUniversity, Guangzhou, 510515, Guangdong, China
| | - Xiaolei Liu
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Xiaolian Li
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China
| | - Jinghua Liu
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Jing Tang
- Guangdong Provincial Key Laboratory of Proteomics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- The Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, Guangdong, China.
| |
Collapse
|
7
|
Li N, Liu S, Zhang Y, Yu L, Hu Y, Wu T, Fang M, Xu Y. Transcriptional Activation of Matricellular Protein Spondin2 (SPON2) by BRG1 in Vascular Endothelial Cells Promotes Macrophage Chemotaxis. Front Cell Dev Biol 2020; 8:794. [PMID: 32974343 PMCID: PMC7461951 DOI: 10.3389/fcell.2020.00794] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
The matricellular protein SPON2 plays diverse roles in the development of cardiovascular diseases. SPON2 is expressed in endothelial cells, but its transcription regulation in the context of atherogenesis remains incompletely appreciated. Here we report that SPON2 expression was up-regulated by pro-atherogenic stimuli (oxLDL and TNF-α) in vascular endothelia cells. In addition, endothelial SPON2 was elevated in Apoe–/– mice fed on a Western diet compared to the control mice. Induction of SPON2 in endothelial cells by pro-atherogenic stimuli was mediated by BRG1, a chromatin remodeling protein, both in vitro and in vivo. Further analysis revealed that BRG1 interacted with the sequence-specific transcription factor Egr-1 to activate SPON2 transcription. BRG1 contributed to SPON2 trans-activation by modulating chromatin structure surrounding the SPON2 promoter. Functionally, activation of SPON2 transcription by the Egr-1/BRG1 complex provided chemoattractive cues for macrophage trafficking. SPON2 depletion abrogated the ability of BRG1 or Egr-1 to stimulate endothelial derived chemoattractive cue for macrophage migration. On the contrary, recombinant SPON2 rescued endothelial chemo-attractability in the absence of BRG1 or Egr-1. In conclusion, our data have identified a novel transcriptional cascade in endothelial cells that may potentially promote macrophage recruitment and vascular inflammation leading to atherogenesis.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shuai Liu
- Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research and Key Laboratory of Emergency and Trauma of Ministry of Education, Institute of Cardiovascular Research of the First Affiliated Hospital, Hainan Medical University, Haikou, China.,Department of Cardiology, Kaifeng People's Hospital, Kaifeng, China
| | - Yuanyuan Zhang
- Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Liming Yu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanjiang Hu
- Department of Cardiothoracic Surgery, Liyang People's Hospital, Liyang, China
| | - Teng Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Department of Clinical Medicine and Laboratory Center for Experimental Medicine, Jiangsu Health Vocational Institute, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| | - Yong Xu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Institute of Biomedical Research, Liaocheng University, Liaocheng, China
| |
Collapse
|
8
|
Cheng XS, Huo YN, Fan YY, Xiao CX, Ouyang XM, Liang LY, Lin Y, Wu JF, Ren JL, Guleng B. Mindin serves as a tumour suppressor gene during colon cancer progression through MAPK/ERK signalling pathway in mice. J Cell Mol Med 2020; 24:8391-8404. [PMID: 32614521 PMCID: PMC7412704 DOI: 10.1111/jcmm.15332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Mindin is important in broad spectrum of immune responses. On the other hand, we previously reported that mindin attenuated human colon cancer development by blocking angiogenesis through Egr-1-mediated regulation. However, the mice original mindin directly suppressed the syngenic colorectal cancer (CRC) growth in our recent study and we aimed to further define the role of mindin during CRC development in mice. We established the mouse syngeneic CRC CMT93 and CT26 WT cell lines with stable mindin knock-down or overexpression. These cells were also subcutaneously injected into C57BL/6 and BALB/c mice as well as established a colitis-associated colorectal cancer (CAC) mouse model treated with lentiviral-based overexpression and knocked-down of mindin. Furthermore, we generated mindin knockout mice using a CRISPR-Cas9 system with CAC model. Our data showed that overexpression of mindin suppressed cell proliferation in both of CMT93 and CT26 WT colon cancer cell lines, while the silencing of mindin promoted in vitro cell proliferation via the ERK and c-Fos pathways and cell cycle control. Moreover, the overexpression of mindin significantly suppressed in vivo tumour growth in both the subcutaneous transplantation and the AOM/DSS-induced CAC models. Consistently, the silencing of mindin reversed these in vivo observations. Expectedly, the tumour growth was promoted in the CAC model on mindin-deficient mice. Thus, mindin plays a direct tumour suppressive function during colon cancer progression and suggesting that mindin might be exploited as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Yan-Yun Fan
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Chuan-Xing Xiao
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Lai-Ying Liang
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Jian-Feng Wu
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, China.,School of Medicine, Cancer Research Center & Institute of Microbial Ecology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, China
| |
Collapse
|
9
|
Yang K, Li W, Bai T, Xiao Y, Yu W, Luo P, Cheng F. Mindin deficiency alleviates renal fibrosis through inhibiting NF-κB and TGF-β/Smad pathways. J Cell Mol Med 2020; 24:5740-5750. [PMID: 32253812 PMCID: PMC7214143 DOI: 10.1111/jcmm.15236] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
Renal fibrosis acts as a clinical predictor in patients with chronic kidney disease and is characterized by excessive extracellular matrix (ECM) accumulation. Our previous study suggested that mindin can function as a mediator for liver steatosis pathogenesis. However, the role of mindin in renal fibrosis remains obscure. Here, tumour necrosis factor (TGF)‐β‐treated HK‐2 cells and global mindin knockout mouse were induced with renal ischaemia reperfusion injury (IRI) to test the relationship between mindin and renal fibrosis. In vitro, mindin overexpression promoted p65—the hub subunit of the NF‐κB signalling pathway—translocation from the cytoplasm into the nucleus, resulting in NF‐κB pathway activation in TGF‐β‐treated HK‐2 cells. Meanwhile, mindin activated the TGF‐β/Smad pathway, thereby causing fibrotic‐related protein expression in vitro. Mindin−/− mice exhibited less kidney lesions than controls, with small renal tubular expansion, inflammatory cell infiltration, as well as collagen accumulation, following renal IRI. Mechanistically, mindin−/− mice suppressed p65 translocation and deactivated NF‐κB pathway. Simultaneously, mindin disruption inhibited the TGF‐β/Smad pathway, alleviating the expression of ECM‐related proteins. Hence, mindin may be a novel target of renal IRI in the treatment of renal fibrogenesis.
Collapse
Affiliation(s)
- Kang Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Li
- Department of Anesthesia, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tao Bai
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yusha Xiao
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weimin Yu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengcheng Luo
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Abstract
Phagocytosis is a pivotal immunological process, and its discovery by Elia Metchnikoff in 1882 was a step toward the establishment of the innate immune system as a separate branch of immunology. Elia Metchnikoff received the Nobel Prize in physiology and medicine for this discovery in 1908. Since its discovery almost 140 years before, phagocytosis remains the hot topic of research in immunology. The phagocytosis research has seen a great advancement since its first discovery. Functionally, phagocytosis is a simple immunological process required to engulf and remove pathogens, dead cells and tumor cells to maintain the immune homeostasis. However, mechanistically, it is a very complex process involving different mechanisms, induced and regulated by several pattern recognition receptors, soluble pattern recognition molecules, scavenger receptors (SRs) and opsonins. These mechanisms involve the formation of phagosomes, their maturation into phagolysosomes causing pathogen destruction or antigen synthesis to present them to major histocompatibility complex molecules for activating an adaptive immune response. Any defect in this mechanism may predispose the host to certain infections and inflammatory diseases (autoinflammatory and autoimmune diseases) along with immunodeficiency. The article is designed to discuss its mechanistic complexity at each level, varying from phagocytosis induction to phagolysosome resolution.
Collapse
Affiliation(s)
- Vijay Kumar
- Faculty of Medicine, Children's Health Queensland Clinical Unit, School of Clinical Medicine, Mater Research, University of Queensland, ST Lucia, Brisbane, Queensland, Australia.,Faculty of Medicine, School of Biomedical Sciences, University of Queensland, St Lucia, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Le Y, Wang Y, Zhou L, Xiong J, Tian J, Yang X, Gai X, Sun Y. Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages. J Cell Mol Med 2020; 24:1319-1331. [PMID: 31769590 PMCID: PMC6991703 DOI: 10.1111/jcmm.14789] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/25/2019] [Accepted: 10/04/2019] [Indexed: 12/17/2022] Open
Abstract
High-mobility group box 1 (HMGB1) shows pro-inflammatory activity in various inflammatory diseases and has been found up-regulated in chronic obstructive pulmonary disease (COPD). Lung macrophages play an important role in airway inflammation and lung destruction in COPD, yet whether HMGB1 is involved in cigarette smoke (CS)-induced lung macrophage dysfunction is unknown. We sought to evaluate the intracellular localization and release of HMGB1 in lung macrophages from COPD patients and CS-exposed mice, and to investigate the role of HMGB1 in regulating autophagy in CS extract (CSE)-treated lung macrophages (MH-S cells). Our results showed that HMGB1 was highly expressed in lung tissues and sera of COPD patients and CS-exposed mice, along with predominantly cytoplasmic exporting from nuclei in lung macrophages. In vitro experiments revealed that CSE promoted the expression, nucleocytoplasmic translocation and release of HMGB1 partly via the nicotinic acetylcholine receptor (nAChR). Blockade of HMGB1 with chicken anti-HMGB1 polyclonal antibody (anti-HMGB1) or glycyrrhizin (Gly) attenuated the increase of LC3B-II and Beclin1, migration and p65 phosphorylation, suggesting the involvement of HMGB1 in autophagy, migration and NF-κB activation of lung macrophages. Hydroxychloroquine (CQ), an autophagy inhibitor, enhanced the increase of LC3B-II but not Beclin1 in CSE or rHMGB1-treated MH-S cells, and inhibition of autophagy by CQ and 3-methyladenine (3-MA) abrogated the migration and p65 phosphorylation of CSE-treated cells. These results indicate that CS-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages, providing novel evidence for HMGB1 as a potential target of intervention in COPD.
Collapse
Affiliation(s)
- Yanqing Le
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yanhong Wang
- Department of Respiratory MedicineZhongshan City People's HospitalZhongshanChina
| | - Lu Zhou
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jing Xiong
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Jieyu Tian
- Hematology Oncology CenterBeijing Children's HospitalCapital Medical UniversityBeijingChina
| | - Xia Yang
- Department of Respiratory MedicineTianjin Medical University General HospitalTianjingChina
| | - Xiaoyan Gai
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| | - Yongchang Sun
- Department of Respiratory and Critical Care MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
12
|
Chiarelli N, Ritelli M, Zoppi N, Colombi M. Cellular and Molecular Mechanisms in the Pathogenesis of Classical, Vascular, and Hypermobile Ehlers‒Danlos Syndromes. Genes (Basel) 2019; 10:E609. [PMID: 31409039 PMCID: PMC6723307 DOI: 10.3390/genes10080609] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/30/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
The Ehlers‒Danlos syndromes (EDS) constitute a heterogenous group of connective tissue disorders characterized by joint hypermobility, skin abnormalities, and vascular fragility. The latest nosology recognizes 13 types caused by pathogenic variants in genes encoding collagens and other molecules involved in collagen processing and extracellular matrix (ECM) biology. Classical (cEDS), vascular (vEDS), and hypermobile (hEDS) EDS are the most frequent types. cEDS and vEDS are caused respectively by defects in collagen V and collagen III, whereas the molecular basis of hEDS is unknown. For these disorders, the molecular pathology remains poorly studied. Herein, we review, expand, and compare our previous transcriptome and protein studies on dermal fibroblasts from cEDS, vEDS, and hEDS patients, offering insights and perspectives in their molecular mechanisms. These cells, though sharing a pathological ECM remodeling, show differences in the underlying pathomechanisms. In cEDS and vEDS fibroblasts, key processes such as collagen biosynthesis/processing, protein folding quality control, endoplasmic reticulum homeostasis, autophagy, and wound healing are perturbed. In hEDS cells, gene expression changes related to cell-matrix interactions, inflammatory/pain responses, and acquisition of an in vitro pro-inflammatory myofibroblast-like phenotype may contribute to the complex pathogenesis of the disorder. Finally, emerging findings from miRNA profiling of hEDS fibroblasts are discussed to add some novel biological aspects about hEDS etiopathogenesis.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| |
Collapse
|
13
|
Liu YS, Wang LF, Cheng XS, Huo YN, Ouyang XM, Liang LY, Lin Y, Wu JF, Ren JL, Guleng B. The pattern-recognition molecule mindin binds integrin Mac-1 to promote macrophage phagocytosis via Syk activation and NF-κB p65 translocation. J Cell Mol Med 2019; 23:3402-3416. [PMID: 30869196 PMCID: PMC6484411 DOI: 10.1111/jcmm.14236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022] Open
Abstract
Mindin has a broad spectrum of roles in the innate immune system, including in macrophage migration, antigen phagocytosis and cytokine production. Mindin functions as a pattern‐recognition molecule for microbial pathogens. However, the underlying mechanisms of mindin‐mediated phagocytosis and its exact membrane receptors are not well established. Herein, we generated mindin‐deficient mice using the CRISPR‐Cas9 system and show that peritoneal macrophages from mindin‐deficient mice were severely defective in their ability to phagocytize E coli. Phagocytosis was enhanced when E coli or fluorescent particles were pre‐incubated with mindin, indicating that mindin binds directly to bacteria or non‐pathogen particles and promotes phagocytosis. We defined that 131I‐labelled mindin binds with integrin Mac‐1 (CD11b/CD18), the F‐spondin (FS)‐fragment of mindin binds with the αM‐I domain of Mac‐1 and that mindin serves as a novel ligand of Mac‐1. Blockade of the αM‐I domain of Mac‐1 using either a neutralizing antibody or si‐Mac‐1 efficiently blocked mindin‐induced phagocytosis. Furthermore, mindin activated the Syk and MAPK signalling pathways and promoted NF‐κB entry into the nucleus. Our data indicate that mindin binds with the integrin Mac‐1 to promote macrophage phagocytosis through Syk activation and NF‐κB p65 translocation, suggesting that the mindin/Mac‐1 axis plays a critical role during innate immune responses.
Collapse
Affiliation(s)
- Yuan-Sheng Liu
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Li-Fen Wang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China.,The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao-Shen Cheng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Ya-Ni Huo
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Xiao-Mei Ouyang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Lai-Ying Liang
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Ying Lin
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Jian-Feng Wu
- State Key Laboratory of Cellular Stress Biology, School of life sciences, Xiamen University, Xiamen, China
| | - Jian-Lin Ren
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China
| | - Bayasi Guleng
- Department of Gastroenterology, Zhongshan Hospital affiliated to Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of life sciences, Xiamen University, Xiamen, China.,Faculty of Clinical Medicine & Institute of Microbial Ecology, Medical College of Xiamen University, Xiamen, China
| |
Collapse
|