1
|
Li S, He P, Liu J, Zang S, Luo J, Luo Y, Zhu S, Zang L. Ferulic acid protects against stress-induced myocardial injury in mice. Toxicol Appl Pharmacol 2025; 498:117309. [PMID: 40120650 DOI: 10.1016/j.taap.2025.117309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Excessive stress is a known contributor to cardiovascular diseases (CVD), and ferulic acid (FA), a natural phenolic compound, has demonstrated significant antioxidant and anti-inflammatory properties. This study investigates the protective effects of FA against stress-induced myocardial injury (SIMI) and elucidates the underlying mechanisms. An acute SIMI model was established in mice using low-temperature water immersion restraint. Cardiac function was assessed via cardiac index and histopathological analysis. Serum levels of corticosterone (CORT), lactate dehydrogenase (LDH), and brain natriuretic peptide (BNP) were quantified using enzyme-linked immunosorbent assay (ELISA), along with inflammatory markers TNF-α and IL-1β. The oxidative stress parameters, including malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and reactive oxygen species (ROS), were analyzed using colorimetric methods and fluorescent probes. Immunohistochemistry (IHC) and Western Blot were used to analyze the expression of proteins related to TNF, MAPK, PPAR-α/PGC-1α, and Nrf2 signaling pathways. Results indicated that FA pretreatment improved cardiac index, myocardial structural integrity, and reduced inflammatory cell infiltration. Serum levels of LDH, BNP, CORT, TNF-α, and IL-1β were significantly decreased in FA-treated SIMI mice. Elevated MDA and ROS levels, along with decreased GSH and SOD levels in the SIMI group, were reversed by FA pretreatment, likely through activation of the PPARα/PGC-1α and Nrf2 signaling pathways. Additionally, FA inhibited the TNF-α/TNFR1 and ERK/JNK MAPK pathways, contributing to its protective effects. In conclusion, FA mitigates SIMI by alleviating oxidative stress and inflammatory responses.
Collapse
Affiliation(s)
- Siyong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Peiyi He
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahe Liu
- The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | | | - Jiahao Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yi Luo
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shuguang Zhu
- The First Affiliated Hospital cardiothoracic surgery department, Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Linquan Zang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zhang K, Li H, Wang T, Li F, Xie Z, Luo H, Zhu X, Kang P, Kang Q, Fei Z, Peng W. Mechanisms of bone regeneration repair and potential and efficacy of small molecule drugs. Biomed Pharmacother 2025; 187:118070. [PMID: 40262235 DOI: 10.1016/j.biopha.2025.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Bone regeneration and repair is a complex physiological process of bone formation. To date, existing research has greatly enhanced our understanding of bone regeneration and repair, achieving significant success in treating bone injuries. However, extensive bone defects, bone nonunion, and metabolic bone diseases remain incompletely solved challenges in modern medicine. With the emergence of High-Throughput Screening (HTS) technology, previous studies have identified numerous small molecule compounds with potential for inducing bone formation and enhancing bone metabolism. However, the effects of these small molecules on bone regeneration and repair through related signaling pathways have not been systematically elaborated. Therefore, in this literature review, we focus on summarizing the classical signaling pathways affecting bone regeneration and repair, as well as the research progress and applications of related small molecule drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zhihong Xie
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hong Luo
- Department of Orthopedics,The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou 550018, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Pengde Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Fei
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Wuxun Peng
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
3
|
Jalali A, Kabiri M, Hashemi S, Abdi Ardekani A, Zarshenas MM. Medicinal plants or bioactive components with antioxidant/anti-apoptotic effects as a potential therapeutic approach in heart failure prevention and management: a literature review. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:275-291. [PMID: 39576713 DOI: 10.1080/10286020.2024.2414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/24/2024]
Abstract
Heart failure is described as a complicated syndrome, which is estimated that 56.2 million people were living with HF globally in 2019. Oxidative stress and apoptosis play a major role on HF development via targeting several signaling pathways in cardiac cells. This study investigated medicinal plants or their bioactive components with positive effects on HF management. In this research, keywords "heart failure," "plant," "antioxidant" or "radical scavenging," "herbal" and "apoptosis" were synchronously searched through popular databases from 1990 up to 2023. Finally, the role of oxidative stress and apoptosis in HF development was searched and related signaling pathways were investigated.
Collapse
Affiliation(s)
- Atefeh Jalali
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
| | - Maryam Kabiri
- Arnold and Marie Schwarts College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, USA
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| | - Shima Hashemi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Ramsar Campus, Ramsar 4847193698, Iran
| | - Alireza Abdi Ardekani
- Department of Cardiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
- Anesthesiology and Critical Care Research Center, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Mohammad M Zarshenas
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil 56189-85991, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345-1583, Iran
| |
Collapse
|
4
|
Tang J, Li X, Yu X, Wang D, Huang K, Pu H, Yu J, Li S, Wang W, Liu B, Guo S. Downregulation of cardiac inflammation via the CaMKII δ/NF-κB pathway in heart failure by Lonicerae Japonicae Flos and Angelicae Sinensis Radix. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156326. [PMID: 39706063 DOI: 10.1016/j.phymed.2024.156326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 11/16/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Inflammation serves an essential function in the occurrence and progression of heart failure (HF), especially in the early stage. Lonicerae japonicae Flos (LJF), Angelicae sinensis Radix (ASR), and their compatibility (LJF+ASR) can inhibit excessive inflammation and have significant cardioprotective effects. However, the primary active ingredients and mechanism of LJF and ASR in anti-inflammatory and anti-HF effect remain to be elucidated. PURPOSE This study aimed to evaluate the influence of LJF, ASR, and LJF+ASR on early inflammation and subsequent cardiac function in HF mice and to identify the primary pharmacologically active components of these compounds. METHODS LJF, ASR, and LJF+ASR components entering the plasma and heart were identified via UPLC-LTQ-Orbitlaps-MSn. The cardioprotective effects of LJF, ASR, and LJF+ASR after 8 weeks of treatment were validated in transverse aortic constriction (TAC)-induced HF mice via echocardiography, HE staining, and cardiac indices. The anti-inflammatory effects of these treatments after 1 week of TAC induction, as well as the cardioprotective and anti-inflammatory effects of the primary component chlorogenic acid (CGA), were confirmed in H9c2 cardiomyocytes through flow cytometry, Western blot, and siRNA transfection. RESULTS LJF, ASR and LJF+ASR enhanced cardiac contractile function and ameliorated cardiac pathological remodeling induced by TAC. Moreover, these compounds inhibited platelet-granulocyte aggregation, platelet-monocyte aggregation, the calmodulin-dependent protein kinase II delta (CaMKII δ)/nuclear factor-kappaB (NF-κB) signaling pathway and proinflammatory factor levels in early-stage HF to different extents. Moreover, 9 potentially effective components were identified in the aqueous extract and blood-absorbed components of LJF+ASR, and CGA inhibited the CaMKII δ/NF-κB signaling pathway and decreased proinflammatory factor levels in vitro. CONCLUSION LJF, ASR, LJF+ASR and CGA inhibit the CaMKII δ/NF-κB signaling pathway and are potentially novel therapeutics for mitigating early inflammation and improving late cardiac function of HF.
Collapse
Affiliation(s)
- Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiang Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xue Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Dong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kai Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haiyin Pu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiang Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shuai Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Medicine Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Bin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; Chinese Medicine Syndrome and Formula, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
5
|
Zhao Y, Zhang J, Lu F, Xu W, Ma Q, Hu J. The therapeutic potential of Honeysuckle in cardiovascular disease: an anti-inflammatory intervention strategy. Am J Transl Res 2024; 16:7262-7277. [PMID: 39822489 PMCID: PMC11733370 DOI: 10.62347/njmj7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/21/2024] [Indexed: 01/19/2025]
Abstract
Honeysuckle is a conventional Chinese medicine with several therapeutic applications. With the advancement of modern scientific technologies, Honeysuckle's pharmacological effects and medicinal properties have been investigated more thoroughly. Studies demonstrate that the bioactive compounds in Honeysuckle possess anti-inflammatory effects via several mechanisms, protecting the cardiovascular system. This article provides a reference for the clinical use of Honeysuckle by reviewing research on the therapeutic impact of Honeysuckle and its active constituents on cardiovascular diseases, such as coronary atherosclerotic heart disease (CHD), myocardial ischemia-reperfusion (MI/R), acute myocardial infarction (AMI), hypertension, arrhythmia, and heart failure, through the inhibition of inflammatory responses.
Collapse
Affiliation(s)
- Yue Zhao
- Changchun University of Chinese MedicineChangchun, Jilin, China
| | - Jiale Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Fei Lu
- The Second Affiliated Hospital of Liaoning University of Traditional Chinese MedicineShenyang, Liaoning, China
| | - Weiming Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- China Science and Technology Development Center of Chinese MedicineBeijing, China
| | - Qingxiao Ma
- China National Health Development Research CenterBeijing, China
| | - Jingqing Hu
- Changchun University of Chinese MedicineChangchun, Jilin, China
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical SciencesBeijing, China
- Tianjin University of Traditional Chinese MedicineTianjin, China
| |
Collapse
|
6
|
Lopes CR, Cunha RA. Impact of coffee intake on human aging: Epidemiology and cellular mechanisms. Ageing Res Rev 2024; 102:102581. [PMID: 39557300 DOI: 10.1016/j.arr.2024.102581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024]
Abstract
The conception of coffee consumption has undergone a profound modification, evolving from a noxious habit into a safe lifestyle actually preserving human health. The last 20 years also provided strikingly consistent epidemiological evidence showing that the regular consumption of moderate doses of coffee attenuates all-cause mortality, an effect observed in over 50 studies in different geographic regions and different ethnicities. Coffee intake attenuates the major causes of mortality, dampening cardiovascular-, cerebrovascular-, cancer- and respiratory diseases-associated mortality, as well as some of the major causes of functional deterioration in the elderly such as loss of memory, depression and frailty. The amplitude of the benefit seems discrete (17 % reduction) but nonetheless corresponds to an average increase in healthspan of 1.8 years of lifetime. This review explores evidence from studies in humans and human tissues supporting an ability of coffee and of its main components (caffeine and chlorogenic acids) to preserve the main biological mechanisms responsible for the aging process, namely genomic instability, macromolecular damage, metabolic and proteostatic impairments with particularly robust effects on the control of stress adaptation and inflammation and unclear effects on stem cells and regeneration. Further studies are required to detail these mechanistic benefits in aged individuals, which may offer new insights into understanding of the biology of aging and the development of new senostatic strategies. Additionally, the safety of this lifestyle factor in the elderly prompts a renewed attention to recommending the maintenance of coffee consumption throughout life as a healthy lifestyle and to further exploring who gets the greater benefit with what schedules of which particular types and doses of coffee.
Collapse
Affiliation(s)
- Cátia R Lopes
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal
| | - Rodrigo A Cunha
- CNC-Center for Neuroscience and Cell Biology, Portugal; Faculty of Medicine, Portugal; MIA-Portugal, Multidisciplinary Institute of Aging, University of Coimbra, Portugal; Centro de Medicina Digital P5, Escola de Medicina da Universidade do Minho, Braga, Portugal.
| |
Collapse
|
7
|
Yin W, Chen Y, Wang W, Guo M, Tong L, Zhang M, Wang Z, Yuan H. Macrophage-mediated heart repair and remodeling: A promising therapeutic target for post-myocardial infarction heart failure. J Cell Physiol 2024; 239:e31372. [PMID: 39014935 DOI: 10.1002/jcp.31372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 07/18/2024]
Abstract
Heart failure (HF) remains prevalent in patients who survived myocardial infarction (MI). Despite the accessibility of the primary percutaneous coronary intervention and medications that alleviate ventricular remodeling with functional improvement, there is an urgent need for clinicians and basic scientists to further reveal the mechanisms behind post-MI HF as well as investigate earlier and more efficient treatment after MI. Growing numbers of studies have highlighted the crucial role of macrophages in cardiac repair and remodeling following MI, and timely intervention targeting the immune response via macrophages may represent a promising therapeutic avenue. Recently, technology such as single-cell sequencing has provided us with an updated and in-depth understanding of the role of macrophages in MI. Meanwhile, the development of biomaterials has made it possible for macrophage-targeted therapy. Thus, an overall and thorough understanding of the role of macrophages in post-MI HF and the current development status of macrophage-based therapy will assist in the further study and development of macrophage-targeted treatment for post-infarction cardiac remodeling. This review synthesizes the spatiotemporal dynamics, function, mechanism and signaling of macrophages in the process of HF after MI, as well as discusses the emerging bio-materials and possible therapeutic agents targeting macrophages for post-MI HF.
Collapse
Affiliation(s)
- Wenchao Yin
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Yong Chen
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wenjun Wang
- Department of Intensive Care Unit, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Mengqi Guo
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Lingjun Tong
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Chinese Ministry of Education and Chinese Ministry of Public Health, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Zhaoyang Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
8
|
Chakraborty P, Dewanjee S. Unrevealing the mechanisms behind the cardioprotective effect of wheat polyphenolics. Arch Toxicol 2024; 98:3543-3567. [PMID: 39215839 DOI: 10.1007/s00204-024-03850-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases pose a major threat to both life expectancy and quality of life worldwide, and a concerning level of disease burden has been attained, particularly in middle- and low-income nations. Several drugs presently in use lead to multiple adverse events. Thus, it is urgently needed to develop safe, affordable, and effective management of cardiovascular diseases. Emerging evidence reveals a positive association between polyphenol consumption and cardioprotection. Whole wheat grain and allied products are good sources of polyphenolic compounds bearing enormous cardioprotective potential. Polyphenolic extract of the entire wheat grain contains different phenolic compounds viz. ferulic acid, caffeic acid, chlorogenic acid, p-coumaric acid, sinapic acid, syringic acid, vanillic acid, apigenin, quercetin, luteolin, etc. which exert cardioprotection by reducing oxidative stress and interfering with different toxicological processes. The antioxidant capacity has been thought to exert the cardioprotective mechanism of wheat grain polyphenolics, which predominantly suppresses oxidative stress, inflammation and fibrosis by downregulating several pathogenic signaling events. However, the combined effect of polyphenolics appears to be more prominent than that of a single molecule, which might be attained due to the synergy resulting in multimodal cardioprotective benefits from multiple phenolics. The current article covers the bioaccessibility and possible effects of wheat-derived polyphenolics in protecting against several cardiovascular disorders. This review discusses the mechanistic pharmacology of individual wheat polyphenols on the cardiovascular system. It also highlights the comparative superiority of polyphenolic extracts over a single phenolic.
Collapse
Affiliation(s)
- Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
Du C, Wang S, Shi X, Jing P, Wang H, Wang L. Identification of senescence related hub genes and potential therapeutic compounds for dilated cardiomyopathy via comprehensive transcriptome analysis. Comput Biol Med 2024; 179:108901. [PMID: 39029429 DOI: 10.1016/j.compbiomed.2024.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a common cause of heart failure. However, the role of cellular senescence in DCM has not been fully elucidated. Here, we aimed to investigate senescence in DCM, identify senescence related characteristic genes, and explore the potential small molecule compounds for DCM treatment. METHODS DCM-associated datasets and senescence-related genes were respectively obtained from Gene Expression Omnibus (GEO) database and CellAge database. The characteristic genes were identified through methods including weighted gene co-expression network analysis (WGCNA), least absolute shrinkage and selection operator (LASSO), and random forest. The expression of characteristic genes was verified in the mouse DCM model. Moreover, the CIBERSORT algorithm was applied to analyze immune characteristics of DCM. Finally, several therapeutic compounds were predicted by CMap analysis, and the potential mechanism of chlorogenic acid (CGA) was investigated by molecular docking and molecular dynamics simulation. RESULTS Three DCM- and senescence-related characteristic genes (MME, GNMT and PLA2G2A) were ultimately identified through comprehensive transcriptome analysis, and were experimentally verified in the doxorubicin induced mouse DCM. Meanwhile, the established diagnostic model, derived from dataset analysis, showed ideal diagnostic performance for DCM. Immune cell infiltration analysis suggested dysregulation of inflammation in DCM, and the characteristic genes were significantly associated with invasive immune cells. Finally, based on the specific gene expression profile of DCM, several potential therapeutic compounds were predicted through CMap analysis. In addition, molecular docking and molecular dynamics simulations suggested that CGA could bind to the active pocket of MME protein. CONCLUSION Our study presents three characteristic genes (MME, PLA2G2A, and GNMT) and a novel senescence-based diagnostic nomogram, and discusses potential therapeutic compounds, providing new insights into the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Chong Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sibo Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Xinying Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Jing
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Diao L, Fan X, Yu J, Huang K, Nice EC, Liu C, Li D, Guo S. TCM-HIN2Vec: A strategy for uncovering biological basis of heart qi deficiency pattern based on network embedding and transcriptomic experiment. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2024; 11:264-274. [DOI: 10.1016/j.jtcms.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
11
|
Ping P, Yang T, Ning C, Zhao Q, Zhao Y, Yang T, Gao Z, Fu S. Chlorogenic acid attenuates cardiac hypertrophy via up-regulating Sphingosine-1-phosphate receptor1 to inhibit endoplasmic reticulum stress. ESC Heart Fail 2024; 11:1580-1593. [PMID: 38369950 PMCID: PMC11098655 DOI: 10.1002/ehf2.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 10/06/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024] Open
Abstract
AIMS Cardiac hypertrophy, an adaptive response of the heart to stress overload, is closely associated with heart failure and sudden cardiac death. This study aimed to investigate the therapeutic effects of chlorogenic acid (CGA) on cardiac hypertrophy and elucidate the underlying mechanisms. METHODS AND RESULTS To simulate cardiac hypertrophy, myocardial cells were exposed to isoproterenol (ISO, 10 μM). A rat model of ISO-induced cardiac hypertrophy was also established. The expression levels of cardiac hypertrophy markers, endoplasmic reticulum stress (ERS) markers, and apoptosis markers were measured using quantitative reverse transcription PCR and western blotting. The apoptosis level, size of myocardial cells, and heart tissue pathological changes were determined by terminal deoxynucleotidyl transferase dUTP nick-end labelling staining, immunofluorescence staining, haematoxylin and eosin staining, and Masson's staining. We found that CGA treatment decreased the size of ISO-treated H9c2 cells. Moreover, CGA inhibited ISO-induced up-regulation of cardiac hypertrophy markers (atrial natriuretic peptide, brain natriuretic peptide, and β-myosin heavy chain), ERS markers (C/EBP homologous protein, glucose regulatory protein 78, and protein kinase R-like endoplasmic reticulum kinase), and apoptosis markers (bax and cleaved caspase-12/9/3) but increased the expression of anti-apoptosis marker bcl-2 in a dose-dependent way (0, 10, 50, and 100 μM). Knockdown of sphingosine-1-phosphate receptor 1 (S1pr1) reversed the protective effect of CGA on cardiac hypertrophy, ERS, and apoptosis in vitro (P < 0.05). CGA also restored ISO-induced inhibition on the AMP-activated protein kinase (AMPK)/sirtuin 1 (SIRT1) signalling in H9c2 cells, while S1pr1 knockdown abolished these CGA-induced effects (P < 0.05). CGA (90 mg/kg/day, for six consecutive days) protected rats against cardiac hypertrophy in vivo (P < 0.05). CONCLUSIONS CGA treatment attenuated ISO-induced ERS and cardiac hypertrophy by activating the AMPK/SIRT1 pathway via modulation of S1pr1.
Collapse
Affiliation(s)
- Ping Ping
- General Station for Drug and Instrument Supervision and ControlJoint Logistic Support Force of Chinese People's Liberation ArmyBeijingChina
| | - Ting Yang
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Chaoxue Ning
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Qingkai Zhao
- Department of Health and MedicineHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Yali Zhao
- Central LaboratoryHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Tao Yang
- Department of OncologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
| | - Zhitao Gao
- School of Laboratory MedicineXinxiang Medical UniversityXinxiangChina
| | - Shihui Fu
- Department of CardiologyHainan Hospital of Chinese People's Liberation Army General HospitalSanyaChina
- Department of Geriatric CardiologyChinese People's Liberation Army General HospitalBeijingChina
| |
Collapse
|
12
|
Wu Z, Shi R, Yan S, Zhang S, Lu B, Huang Z, Ji L. Integrating network pharmacology, experimental validation and molecular docking to reveal the alleviation of Yinhuang granule on idiopathic pulmonary fibrosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155368. [PMID: 38498951 DOI: 10.1016/j.phymed.2024.155368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 03/20/2024]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is a chronic disease characterized by the abnormal proliferation of fibroblast and excessive deposition of extracellular matrix (ECM), accompanied by inflammation and ultimately respiratory failure. Yinhuang granule (YHG), with clinical properties of clearing heat, detoxifying and anti-inflammation, is commonly used to heal upper respiratory diseases in China for decades. PURPOSE To explore the improvement of YHG on bleomycin (BLM)-induced IPF in mice and its possible engaged mechanism. METHODS The mortality rate was recorded, lung function was determined and hematoxylin-eosin (H&E) staining was carried out to explore the alleviation of YHG on BLM-caused IPF in mice. Hydroxyproline, collagen I and collagen III contents were detected, and Sirius red and Masson staining were conducted to evaluate YHG's alleviation on lung fibrosis. The underlying mechanism was predicted by network pharmacology, and confirmed by Real-time polymerase chain reaction (RT-PCR), Western-blot (WB) and enzyme linked immunosorbent assay (ELISA). The binding affinity between related key proteins and active compounds in YHG was calculated by using molecular docking, and further validated by cellular thermal shift assay (CESTA). RESULTS YHG (400, 800 mg/kg) weakened lung damage and pulmonary fibrosis in mice induced by BLM. Network pharmacology and experimental validation displayed that inflammation and angiogenesis participated in the YHG-provided improvement on IPF, and key involved molecules included tumor necrosis factor-α (TNFα), vascular endothelial growth factor-A (VEGFA), interleukine-6 (IL-6), etc. The data of molecular docking presented that some main active compounds from YHG had a high binding affinity with TNFR1 or VEGFR2, and some of them were further validated by CESTA. CONCLUSION YHG effectively improved the BLM-induced IPF in mice via reducing inflammation and angiogenesis.
Collapse
Affiliation(s)
- Zeqi Wu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ruijia Shi
- School of Basic Medical Science of Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shihao Yan
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai,200123, China
| | - Shaobo Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Xie L, Ma C, Li X, Chen H, Han P, Lin L, Huang W, Xu M, Lu H, Du Z. Efficacy of Glycyrrhetinic Acid in the Treatment of Acne Vulgaris Based on Network Pharmacology and Experimental Validation. Molecules 2024; 29:2345. [PMID: 38792208 PMCID: PMC11123902 DOI: 10.3390/molecules29102345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Glycyrrhetinic acid (GA) is a saponin compound, isolated from licorice (Glycyrrhiza glabra), which has been wildly explored for its intriguing pharmacological and medicinal effects. GA is a triterpenoid glycoside displaying an array of pharmacological and biological activities, including anti-inflammatory, anti-bacterial, antiviral and antioxidative properties. In this study, we investigated the underlying mechanisms of GA on acne vulgaris through network pharmacology and proteomics. After the intersection of the 154 drug targets and 581 disease targets, 37 therapeutic targets for GA against acne were obtained. A protein-protein interaction (PPI) network analysis highlighted TNF, IL1B, IL6, ESR1, PPARG, NFKB1, STAT3 and TLR4 as key targets of GA against acne, which is further verified by molecular docking. The experimental results showed that GA inhibited lipid synthesis in vitro and in vivo, improved the histopathological damage of skin, prevented mast cell infiltration and decreased the level of pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6. This study indicates that GA may regulate multiple pathways to improve acne symptoms, and the beneficial effects of GA against acne vulgaris might be through the regulation of sebogenesis and inflammatory responses.
Collapse
Affiliation(s)
- Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Congwei Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Xinyu Li
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Huixiong Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
- Chemistry of RNA, Nucleosides, Peptides and Heterocycles, CNRS UMR8601, Université Paris Cité, 45 Rue des Saints-Pères, CEDEX 06, 75270 Paris, France
| | - Ping Han
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Li Lin
- Foshan Allan Conney Biotechnology Co., Ltd., Foshan 528231, China; (P.H.); (L.L.)
| | - Weiqiang Huang
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Menglu Xu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Hailiang Lu
- Shenzhen Liran Cosmetics Co., Ltd., Shenzhen 518000, China (W.H.); (M.X.)
| | - Zhiyun Du
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; (L.X.); (C.M.); (H.C.)
| |
Collapse
|
14
|
Nguyen V, Taine EG, Meng D, Cui T, Tan W. Chlorogenic Acid: A Systematic Review on the Biological Functions, Mechanistic Actions, and Therapeutic Potentials. Nutrients 2024; 16:924. [PMID: 38612964 PMCID: PMC11013850 DOI: 10.3390/nu16070924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Chlorogenic acid (CGA) is a type of polyphenol compound found in rich concentrations in many plants such as green coffee beans. As an active natural substance, CGA exerts diverse therapeutic effects in response to a variety of pathological challenges, particularly conditions associated with chronic metabolic diseases and age-related disorders. It shows multidimensional functions, including neuroprotection for neurodegenerative disorders and diabetic peripheral neuropathy, anti-inflammation, anti-oxidation, anti-pathogens, mitigation of cardiovascular disorders, skin diseases, diabetes mellitus, liver and kidney injuries, and anti-tumor activities. Mechanistically, its integrative functions act through the modulation of anti-inflammation/oxidation and metabolic homeostasis. It can thwart inflammatory constituents at multiple levels such as curtailing NF-kB pathways to neutralize primitive inflammatory factors, hindering inflammatory propagation, and alleviating inflammation-related tissue injury. It concurrently raises pivotal antioxidants by activating the Nrf2 pathway, thus scavenging excessive cellular free radicals. It elevates AMPK pathways for the maintenance and restoration of metabolic homeostasis of glucose and lipids. Additionally, CGA shows functions of neuromodulation by targeting neuroreceptors and ion channels. In this review, we systematically recapitulate CGA's pharmacological activities, medicinal properties, and mechanistic actions as a potential therapeutic agent. Further studies for defining its specific targeting molecules, improving its bioavailability, and validating its clinical efficacy are required to corroborate the therapeutic effects of CGA.
Collapse
Affiliation(s)
- Vi Nguyen
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
| | | | - Dehao Meng
- Applied Physics Program, California State University San Marcos, San Marcos, CA 92096, USA
| | - Taixing Cui
- Dalton Cardiovascular Research Center, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65211, USA;
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA;
- Department of Biomedical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
15
|
Harwansh RK, Bhati H, Deshmukh R. Recent Updates on the Therapeutics Benefits, Clinical Trials, and Novel Delivery Systems of Chlorogenic Acid for the Management of Diseases with a Special Emphasis on Ulcerative Colitis. Curr Pharm Des 2024; 30:420-439. [PMID: 38299405 DOI: 10.2174/0113816128295753240129074035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
Ulcerative colitis (UC) is a multifactorial disorder of the large intestine, especially the colon, and has become a challenge globally. Allopathic medicines are primarily available for the treatment and prevention of UC. However, their uses are limited due to several side effects. Hence, an alternative therapy is of utmost importance in this regard. Herbal medicines are considered safe and effective for managing human health problems. Chlorogenic acid (CGA), the herbal-derived bioactive, has been reported for pharmacological effects like antiinflammatory, immunomodulatory, antimicrobial, hepatoprotective, antioxidant, anticancer, etc. This review aims to understand the antiinflammatory and chemopreventive potential of CGA against UC. Apart from its excellent therapeutic potential, it has been associated with low absorption and poor oral bioavailability. In this context, colon-specific novel drug delivery systems (NDDS)are pioneering to overcome these problems. The pertinent literature was compiled from a thorough search on various databases such as ScienceDirect, PubMed, Google Scholar, etc., utilizing numerous keywords, including ulcerative colitis, herbal drugs, CGA, pharmacological activities, mechanism of actions, nanoformulations, clinical updates, and many others. Relevant publications accessed till now were chosen, whereas non-relevant papers, unpublished data, and non-original articles were excluded. The present review comprises recent studies on pharmacological activities and novel drug delivery systems of CGA for managing UC. In addition, the clinical trials of CGA against UC have been discussed.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Hemant Bhati
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
16
|
Ekowati J, Tejo BA, Maulana S, Kusuma WA, Fatriani R, Ramadhanti NS, Norhayati N, Nofianti KA, Sulistyowaty MI, Zubair MS, Yamauchi T, Hamid IS. Potential Utilization of Phenolic Acid Compounds as Anti-Inflammatory Agents through TNF-α Convertase Inhibition Mechanisms: A Network Pharmacology, Docking, and Molecular Dynamics Approach. ACS OMEGA 2023; 8:46851-46868. [PMID: 38107968 PMCID: PMC10720000 DOI: 10.1021/acsomega.3c06450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Inflammation is a dysregulated immune response characterized by an excessive release of proinflammatory mediators, such as cytokines and prostanoids, leading to tissue damage and various pathological conditions. Natural compounds, notably phenolic acid phytocompounds from plants, have recently garnered substantial interest as potential therapeutic agents to bolster well-being and combat inflammation recently. Based on previous research, the precise molecular mechanism underlying the anti-inflammatory activity of phenolic acids remains elusive. Therefore, this study aimed to predict the molecular mechanisms underpinning the anti-inflammatory properties of selected phenolic acid phytocompounds through comprehensive network pharmacology, molecular docking, and dynamic simulations. Network pharmacology analysis successfully identified TNF-α convertase as a potential target for anti-inflammatory purposes. Among tested compounds, chlorogenic acid (-6.90 kcal/mol), rosmarinic acid (-6.82 kcal/mol), and ellagic acid (-5.46 kcal/mol) exhibited the strongest binding affinity toward TNF-α convertase. Furthermore, phenolic acid compounds demonstrated molecular binding poses similar to those of the native ligand, indicating their potential as inhibitors of TNF-α convertase. This study provides valuable insights into the molecular mechanisms that drive the anti-inflammatory effects of phenolic compounds, particularly through the suppression of TNF-α production via TNF-α convertase inhibition, thus reinforcing their anti-inflammatory attributes.
Collapse
Affiliation(s)
- Juni Ekowati
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Bimo Ario Tejo
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Chemistry, Faculty of Science,, Universiti
Putra Malaysia, Serdang 43400, Malaysia
| | - Saipul Maulana
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Wisnu Ananta Kusuma
- Department
of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor 16680, Indonesia
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | - Rizka Fatriani
- Tropical
Biopharmaca Research Center, IPB University, Bogor 16128, Indonesia
| | | | - Norhayati Norhayati
- Magister
Programe Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Kholis Amalia Nofianti
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Melanny Ika Sulistyowaty
- Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Sulaiman Zubair
- Department
of Pharmacy, Faculty of Mathematics and Natural Sciences, Tadulako University, Palu 94148, Indonesia
| | - Takayasu Yamauchi
- Faculty
of Pharmaceutical Sciences, Hoshi University, Tokyo 142-8501, Japan
| | - Iwan Sahrial Hamid
- Faculty
of Veterinary Medicine,Universitas Airlangga, Surabaya 60115, Indonesia
| |
Collapse
|
17
|
Fang J, Jin X, Xu B, Nan L, Liu S, Wang J, Niu N, Wu Z, Chen F, Liu J. Chlorogenic acid releasing microspheres enhanced electrospun conduits to promote peripheral nerve regeneration. Biomater Sci 2023; 11:7909-7925. [PMID: 37909068 DOI: 10.1039/d3bm00920c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chlorogenic acid (CGA) has been confirmed as a polyphenol, and existing research has suggested the high bioactivity of CGA for therapeutic effects on a wide variety of diseases. Despite the existing reports of anti-inflammatory, antioxidant, and neuroprotective effects of CGA, the role and mechanism of CGA in facilitating the regeneration of peripheral nerve defects have been rarely investigated. Herein, a biodegradable polycaprolactone (PCL) conduit with embedded CGA-releasing GelMA microspheres (CGM/PCL) was successfully prepared and used for repairing a rate model with sciatic nerve defects. CGM and CGM/PCL conduits displayed high in vitro biocompatibility and can support the growth of cells for nerve regeneration. Furthermore, CGM/PCL conduits displayed high performance which is close to that of autologous nerve grafts in promoting in vivo PNI regeneration, compared with PCL conduits. The sciatic nerve functional index analysis, electrophysiological examination, and immunological analysis performed to evaluate the functional recovery of the injurious sciatic nerve of rats have indeed proved the favorable effects of CGM/PCL conduits. The result of this study not only aimed to explore CGA's contribution to nerve regeneration but also provided a new strategy for designing and preparing functional NGCs for PNI treatment.
Collapse
Affiliation(s)
- Jiaqi Fang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Xuehan Jin
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Bo Xu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Liping Nan
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Shuhao Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Jianguang Wang
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Na Niu
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhong Wu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Feng Chen
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Junjian Liu
- Department of Orthopaedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
18
|
Huang J, Xie M, He L, Song X, Cao T. Chlorogenic acid: a review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front Pharmacol 2023; 14:1218015. [PMID: 37781708 PMCID: PMC10534970 DOI: 10.3389/fphar.2023.1218015] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Chlorogenic acid is a bioactive compound ubiquitously present in the natural realm, lauded for its salient anti-inflammatory and antioxidant attributes. It executes its anti-inflammatory function by moderating the synthesis and secretion of inflammatory mediators, namely, TNF-α, IL-1β, IL-6, IL-8, NO, and PGE2. Concurrently, it modulates key signaling pathways and associated factors, including NF-κB, MAPK, Nrf2, and others, bestowing protection upon cells and tissues against afflictions such as cardio-cerebrovascular and diabetes mellitus. Nevertheless, the inherent low bioavailability of chlorogenic acid poses challenges in practical deployments. To surmount this limitation, sophisticated delivery systems, encompassing liposomes, micelles, and nanoparticles, have been devised, accentuating their stability, release mechanisms, and bioactivity. Given its innate anti-inflammatory prowess and safety profile, chlorogenic acid stands as a promising contender for advanced biomedical investigations and translational clinical endeavors.
Collapse
Affiliation(s)
- Jianhuan Huang
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Graduate School, Guilin Medical University, Guilin, Guangxi, China
| | - Mingxiang Xie
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang He
- Department of Anesthesiology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiaoping Song
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tianze Cao
- Breast Surgery, Central Laboratory, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Yu S, Li D, Shi A, Long Y, Deng J, Ma Y, Li X, Wen J, Hu Y, He X, Wu Y, Li N, Zhao M. Multidrug-loaded liposomes prevent ischemic stroke through intranasal administration. Biomed Pharmacother 2023; 162:114542. [PMID: 36989725 DOI: 10.1016/j.biopha.2023.114542] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Baicalin (BA), a multi-target neuroprotective agent, has poor solubility resulting in low bioavailability. In this study, multidrug-loaded liposomes were prepared by encapsulating BA, borneol (BO) and cholic acid (CA) to prevent ischemic stroke. BBC-LP were administered intranasally (i.n.) to deliver into the brain for neuroprotection. Finally, potential mechanism of BBC treating ischemic stroke (IS) was explored by network pharmacology. In this study, BBC-LP was prepared by reverse evaporation method, and the encapsulation efficiency (EE) of the optimized liposomes was 42.69% and the drug loading (DL) was 6.17%. The liposomes had low mean particle size (156.62 ± 2.96 nm), polydispersity index (PDI) (0.195) and zeta potential (-0.99 mv). Compared to BBC, pharmacodynamic studies revealed that BBC-LP significantly improved neurological deficits, brain infarct volume, and cerebral pathology in MCAO rats. Toxicity studies showed that BBC-LP was not irritating to the nasal mucosa. These results suggest that BBC-LP can safely and effectively ameliorate IS injury by i.n. administration. Moreover, it's neuroprotective function may be related to the anti-apoptotic and anti-inflammatory effects exerted by phosphatidylinositol-3-kinase (PI3K)/Akt signaling pathway and mitogen-activated protein kinase (MAPK) signaling pathway.
Collapse
|
20
|
Chen M, Wu Q. Roles and mechanisms of natural drugs on sinus node dysfunction. Biomed Pharmacother 2023; 164:114777. [PMID: 37229801 DOI: 10.1016/j.biopha.2023.114777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023] Open
Abstract
Sinus node dysfunction is a common arrhythmia disorder with a high incidence and significant social and economic burden. Currently, there are no effective drugs for treating chronic sinus node dysfunction. The disease is associated with ion channel disturbances caused by aging, fibrosis, inflammation, oxidative stress, and autonomic dysfunction. Natural active substances and Chinese herbal medicines have been widely used and extensively studied in the medical community for the treatment of arrhythmias. Multiple studies have demonstrated that various active ingredients and Chinese herbal medicines, such as astragaloside IV, quercetin, and ginsenosides, exhibit antioxidant effects, reduce fibrosis, and maintain ion channel stability, providing promising drugs for treating sinus node dysfunction. This article summarizes the research progress on natural active ingredients and Chinese herbal formulas that regulate sick sinoatrial node function, providing valuable references for the treatment of sinus node dysfunction.
Collapse
Affiliation(s)
- Meilian Chen
- Quanzhou Hospital of Traditional Chinese Medicine, Fujian 362000, China
| | - Qiaomin Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
21
|
Sari DS, Pujiastuti P, Fatmawati DWA, Mardiyana MA, Wulandari AT, Arina YMD. Inhibiting the growth of periopathogenic bacteria and accelerating bone repair processes by using robusta coffee bean extract. Saudi Dent J 2023; 35:322-329. [DOI: 10.1016/j.sdentj.2023.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
|
22
|
Zhu K, Bao X, Wang Y, Lu T, Zhang L. Human induced pluripotent stem cell (hiPSC)-derived cardiomyocyte modelling of cardiovascular diseases for natural compound discovery. Biomed Pharmacother 2023; 157:113970. [PMID: 36371854 DOI: 10.1016/j.biopha.2022.113970] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/11/2022] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death worldwide. Natural compounds extracted from medicinal plants characterized by diverse biological activities and low toxicity or side effects, are increasingly taking center stage in the search for new drugs. Currently, preclinical evaluation of natural products relies mainly on the use of immortalized cell lines of human origin or animal models. Increasing evidence indicates that cardiomyopathy models based on immortalized cell lines do not recapitulate pathogenic phenotypes accurately and a substantial physiological discrepancy between animals and humans casts doubt on the clinical relevance of animal models for these studies. The newly developed human induced pluripotent stem cell (hiPSC) technology in combination with highly-efficient cardiomyocyte differentiation methods provides an ideal tool for modeling human cardiomyopathies in vitro. Screening of drugs, especially screening of natural products, based on these models has been widely used and has shown that evaluation in such models can recapitulate important aspects of the physiological properties of drugs. The purpose of this review is to provide information on the latest developments in this area of research and to help researchers perform screening of natural products using the hiPSC-CM platform.
Collapse
Affiliation(s)
- Keyang Zhu
- Zhejiang Key Laboratory of Pathophysiology, School of Public Health, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiaoming Bao
- Department of Cardiology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China; Department of Global Health, Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yingchao Wang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ting Lu
- Clinical Research Center of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Ling Zhang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, PR China.
| |
Collapse
|
23
|
Surma S, Romańczyk M, Filipiak KJ, Lip GYH. Coffee and cardiac arrhythmias: Up-date review of the literature and clinical studies. Cardiol J 2022; 30:654-667. [PMID: 35912715 PMCID: PMC10508080 DOI: 10.5603/cj.a2022.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Coffee, next to water, is the most consumed drink in the world. Coffee contains over 1000 chemical compounds, the most popular of which are caffeine, chlorogenic acid, kahweol, cafestol and trigonelline. Numerous studies have shown the beneficial effects of coffee on the cardiovascular system, nervous system, digestive system and kidneys. Due to the high incidence of cardiac arrhythmias, especially atrial fibrillation, the influence of coffee consumption on arrhythmogenesis remains a controversial and clinically important issue. Many mechanisms by which coffee can increase and decrease the risk of arrhythmias have been described. Habitual consumption of moderate amounts of coffee seems to lead to less arrhythmias, which is reflected in the results of many clinical trials and meta-analyzes. This review summarizes the mechanisms of coffee action on the heart muscle and the results of the most recent important clinical trials assessing the impact of coffee consumption on the risk of various cardiac arrhythmias.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdansk, Poland
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, Poland.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
24
|
Mulberry Leaf and Neochlorogenic Acid Alleviates Glucolipotoxicity-Induced Oxidative Stress and Inhibits Proliferation/Migration via Downregulating Ras and FAK Signaling Pathway in Vascular Smooth Muscle Cell. Nutrients 2022; 14:nu14153006. [PMID: 35893859 PMCID: PMC9331252 DOI: 10.3390/nu14153006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/16/2022] [Accepted: 07/19/2022] [Indexed: 11/25/2022] Open
Abstract
Mulberry leaf (Morus alba L.) has been used as a health food and in traditional medicine to treat several metabolic diseases, including diabetes, hypertension, and hyperlipidemia. However, the mechanism by which mulberry leaf and its functional components mediate atherosclerosis remains unclear. This study aimed to determine the effect of mulberry leaf extract (MLE) and its major component, neochlorogenic acid (nCGA), on the proliferation and migration of rat aortic vascular smooth muscle cells (VSMCs, A7r5 cell line) under diabetic cultured conditions (oleic acid and high glucose, OH). Our findings showed that MLE and nCGA significantly inhibited cell proliferation and migration in A7r5 cells as determined by a scratch wound assay and a Transwell assay. Furthermore, we observed MLE and nCGA inhibited cell proliferation and migration, such as reducing the phosphoinositide 3-kinases (PI3K)/protein kinase B (Akt), focal adhesion kinase (FAK), and small GTPase proteins using Western blot analysis. In conclusion, we confirmed the anti-atherosclerotic effects of MLE and nCGA in reducing vascular smooth muscle cell (VSMC) migration and proliferation under diabetic cultured conditions via inhibition of FAK/small GTPase proteins, PI3K/Akt, and Ras-related signaling.
Collapse
|
25
|
Artichoke Leaf Extract-Mediated Neuroprotection against Effects of Aflatoxin in Male Rats. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4421828. [PMID: 35909495 PMCID: PMC9325642 DOI: 10.1155/2022/4421828] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/10/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
Attenuation of adverse effects of aflatoxin (AFB1) in brains of B1 rats by extracts of leaves of artichoke was studied. The active ingredients in extracts of leaves of artichoke, Cynara scolymus L., were determined by HPLC analysis. In the 42-day experiment, rats were exposed to either sterile water, 4% DMSO, 100 mg artichoke leaf extract/kg body mass, 72 μg aflatoxin B1/kg body mass, or AFB1 plus artichoke leaf extract. Neurotoxicity of AFB1 was determined by an increase in profile of lipids, augmentation of plasmatic glucose and concentrations of insulin, oxidative stress, increased activities of cholinergic enzymes, and a decrease in activities of several antioxidant enzymes and pathological changes in brain tissue. Extracts of artichoke leaf significantly reduced adverse effects caused by AFB1, rescuing most of the parameters to values similar to unexposed controls, which demonstrated that adverse, neurotoxic effects caused by aflatoxin B1 could be significantly reduced by simultaneous dietary supplementation with artichoke leaf extract, which itself is not toxic.
Collapse
|
26
|
Rashidi R, Rezaee R, Shakeri A, Hayes AW, Karimi G. A review of the protective effects of chlorogenic acid against different chemicals. J Food Biochem 2022; 46:e14254. [PMID: 35609009 DOI: 10.1111/jfbc.14254] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/17/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Chlorogenic acid (CGA) is a naturally occurring non-flavonoid polyphenol found in green coffee beans, teas, certain fruits, and vegetables, that exerts antiviral, antitumor, antibacterial, and antioxidant effects. Several in vivo and in vitro studies have demonstrated that CGA can protect against toxicities induced by chemicals of different classes such as fungal/bacterial toxins, pharmaceuticals, metals, pesticides, etc., by preservation of cell survival via reducing overproduction of nitric oxide and reactive oxygen species and suppressed pro-apoptotic signaling. CGA antioxidant effects mediated through the Nrf2-heme oxygenase-1 signaling pathway were shown to enhance the levels of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferases, glutathione peroxidase, and glutathione reductase as well as glutathione content. Also, CGA could suppress inflammation via inhibition of toll-like receptor 4 and MyD88, and the phosphorylation of inhibitor of kappa B and p65 subunit of NF-κB, resulting in diminished levels of downstream inflammatory factors including interleukin (IL)-1 β, IL-6, tumor necrosis factor-α, macrophage inflammatory protein 2, cyclooxygenase-2, and prostaglandin E2. Moreover, CGA inhibited apoptosis by reducing Bax, cytochrome C, and caspase 3 and 9 expression while increasing Bcl-2 levels. The present review discusses several mechanisms through which CGA may exert its protective role against such agents. Chemical and natural toxic agents affect human health. Phenolic antioxidant compounds can suppress free radical production and combat these toxins. Chlorogenic acid is a plant polyphenol present in the human diet and exerts strong antioxidant properties that can effectively help in the treatment of various toxicities.
Collapse
Affiliation(s)
- Roghayeh Rashidi
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
The Improvement of Cardiac and Endothelial Functions of Xue-Fu-Zhu-Yu Decoction for Patients with Acute Coronary Syndrome: A Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2671343. [PMID: 35186096 PMCID: PMC8853789 DOI: 10.1155/2022/2671343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/04/2022] [Accepted: 01/17/2022] [Indexed: 11/18/2022]
Abstract
Background Xue-Fu-Zhu-Yu decoction (XFZYD) is a traditional Chinese prescription that has been used to treat patients with blood stasis in China for many years. The present study aimed to evaluate the improvement of cardiac and endothelial functions of XFZYD for patients with acute coronary syndrome (ACS) through a systematic review and meta-analysis. Methods Six databases were searched to collect RCTs related to the treatment of XFZYD for ACS. The primary outcomes were cardiac and endothelial functions, including the levels of left ventricular ejection fraction (LVEF), left ventricular end-diastolic diameter (LVEDD), and left ventricular end-systolic diameter (LVESD) in echocardiography, as well as the changes in the levels of nitric oxide (NO), endothelin-1 (ET-1), intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in the serum. The secondary outcomes were the blood levels of oxidative damage markers (including superoxide dismutase (SOD) and malondialdehyde (MDA)), C-reactive protein (CRP), brain natriuretic peptide (BNP), creatine kinase-MB (CK-MB), and cardiac troponin I (cTnI) as well as the incidence of adverse drug reactions (ADRs). Weighted mean difference (WMD) was estimated for all the outcomes with the random effects model. This type of analysis was conducted in the subgroups of the ACS subtypes, and the methodological quality was assessed using the handbook of Cochrane Collaboration. Results A total of 1,658 records were identified, and 16 randomized controlled trials (1,171 patients) were included. The primary outcomes suggested that XFZYD combined with routine treatment improved LVEF, reduced LVEDD and LVESD, and also improved the serum levels of NO, and reduced the levels of ET-1 and ICAM-1. XFZYD combination therapy significantly ameliorated the blood levels of SOD, MDA, BNP, CK-MB, and cTnI. However, the results indicated no significant difference between XFZYD plus routine treatment and routine treatment for the levels of VCAM-1 and CRP. Moreover, all the ADRs reported in the included studies were slight and the patients recovered soon. Conclusions The present study suggested that XFZYD may improve the cardiac and endothelial functions of ACS patients without serious ADRs. However, based on the mediocre methodological quality, the aforementioned conclusion should be confirmed in a multicenter, large-scale, and accurately designed clinical trial.
Collapse
|
28
|
NaF-induced neurotoxicity via activation of the IL-1β/JNK signaling pathway. Toxicology 2022; 469:153132. [DOI: 10.1016/j.tox.2022.153132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 01/23/2023]
|
29
|
Li R, Zhou Y, Zhang S, Li J, Zheng Y, Fan X. The natural (poly)phenols as modulators of microglia polarization via TLR4/NF-κB pathway exert anti-inflammatory activity in ischemic stroke. Eur J Pharmacol 2022; 914:174660. [PMID: 34863710 DOI: 10.1016/j.ejphar.2021.174660] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/04/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022]
Abstract
Increasing evidences suggest that inflammation plays a key role in the pathogenesis of stroke, a devastating disease second only to cardiac ischemia as a cause of death worldwide. Microglia are the first non-neuronal cells on the scene during the innate immune response to acute ischemic stroke. Microglia respond to acute brain injury by activating and developing classic M1-like (pro-inflammatory) or alternative M2-like (anti-inflammatory) phenotypes. M1 microglia produce pro-inflammatory cytokines to exacerbate neural death, astrocyte apoptosis, and blood brain barrier (BBB) disruption, while M2 microglia play the opposite role. NF-κB, a central regulator of the inflammatory response, was responsible for microglia M1 and M2 polarization. NF-κB p65 and p50 form a heterodimer to initiate a pro-inflammatory cytokine response, which enhances M1 activation and impair M2 response of microglia. TLR4, expressed on the surface of microglia, plays an important role in activating NF-κB, ultimately causing the M1 response of microglia. Therefore, modulation of microglial phenotypes via TLR4/NF-κB signaling pathway may be a promising therapeutic approach for ischemic stroke. Dietary (poly)phenols are present in various foods, which have shown promising protective effects on ischemic stroke. In vivo studies strongly suggest that many (poly)phenols have a pronounced impact on ischemic stroke, as demonstrated by lower neuroinflammation. Thus, this review focuses on the anti-inflammatory properties of dietary (poly)phenols and discusses their effects on the polarization of microglia through modulating TLR4/NF-κB signaling pathway in the ischemic stroke.
Collapse
Affiliation(s)
- Ruoqi Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yuan Zhou
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Shanshan Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jieying Li
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingyi Zheng
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China; Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
30
|
Nwafor EO, Lu P, Zhang Y, Liu R, Peng H, Xing B, Liu Y, Li Z, Zhang K, Zhang Y, Liu Z. Chlorogenic acid: Potential source of natural drugs for the therapeutics of fibrosis and cancer. Transl Oncol 2021; 15:101294. [PMID: 34861551 PMCID: PMC8640119 DOI: 10.1016/j.tranon.2021.101294] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Fibrosis and cancer is described by some epidemiological studies as chronic stages of different disease conditions typically characterized by uncontrolled accumulation of extra-cellular matrix (ECM), thereby leading to inflammation of tissues and organ (lungs, heart, liver and kidney) dysfunction. It is highly prevalent, and contributes to increased mortality rate worldwide. Currently, the therapeutical approaches involving selected medications (bemcentinib, pirfenidone and nintedanib) obtained synthetically, and used in clinical practices for fibrosis and cancer management and treatment has shown to be unsatisfactorily, especially during progressive stages of the disease. With regards to finding a more potent, effective, and promising curative for fibrosis and cancer, there is need for continuous experimental studies universally. However, phytochemical constituents’ particularly phenolic compounds [Chlorogenic acid (CGA)] obtained from coffee, and coffee beans have been predominantly utilized in experimental studies, due to its multiple pharmacological properties against various disease forms. Considering its natural source alongside minimal toxicity level, CGA, a major precursor of coffee have gained considerable attention nowadays from researchers worldwide, owing to its wide, efficacious and beneficial action against fibrosis and cancer. Interestingly, the safety of CGA has been proven. Furthermore, numerous experimental studies have also deduced massive remarkable outcomes in the use of CGA clinically, as a potential drug candidate against treatment of fibrosis and cancer. In the course of this review article, we systematically discussed the beneficial contributions of CGA with regards to its source, absorption, metabolism, mechanistic effects, and molecular mechanisms against different fibrosis and cancer categorization, which might be a prospective remedy in the future. Moreover, we also highlighted CGA (in vitro and in vivo analytical studies) defensive effects against various disorders.
Collapse
Affiliation(s)
- Ebuka-Olisaemeka Nwafor
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Peng Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ying Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Rui Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Hui Peng
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Bin Xing
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yiting Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Ziwei Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Kuibin Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Yukun Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China
| | - Zhidong Liu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10 Tuanbo New Town West District, Poyang Lake Road, Jinghai District, Tianjin 301617, China; Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin 301617, China.
| |
Collapse
|
31
|
Li WW, Li D, Qin Y, Sun CX, Wang YL, Gao L, Ling-Hu L, Zhang F, Cai W, Zhu L, Wang G. Cardioprotective effects of Amentoflavone by suppression of apoptosis and inflammation on an in vitro and vivo model of myocardial ischemia-reperfusion injury. Int Immunopharmacol 2021; 101:108296. [PMID: 34794889 DOI: 10.1016/j.intimp.2021.108296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
Inflammation modulation is currently considered a promising therapeutic strategy to counteract the burden of cardiovascular disease. Amentoflavone (AME) is a natural biflavone with two apigenin molecules that, possess promising anti-inflammatory, anti-oxidative, and anti-cancer properties. In the present study, we aimed to investigate the effects of AME on myocardial ischemia-reperfusion injury in vivo and in vitro, and to elucidate the underlying mechanism. Our results showed that AME significantly reduced the levels of LDH, CK-MB, IL-6, IL-1β, and TNF-α after hypoxia (H) 12 h/reoxygenation (R) 4 h treatment, and significantly increased the cell survival rate of H9c2 cardiomyocytes induced by H/R and inhibited their apoptosis rate. AME (25, 50, 100 mg·kg-1·d-1, i.g.) or a positive control drug diltiazem (DIZ) (16 mg·kg-1·d-1, i.g.) was used as pretreatment for 7 days; the myocardial ischemia-reperfusion(I/R) model was established. TTC staining results showed that the infarct volume was significantly reduced after AME and DIZ treatment. Oral administration of AME dose-dependently ameliorated I/R injury-induced increase in pro-inflammatory factors (IL-6, IL-1β, and TNF-α) and levels of LDH and CK-MB. Results of TUNEL and HE staining showed that the I/R model had more induced apoptosis, but could be effectively reduced by pretreatment with AME. After surgery, the heart of the rat was examined via western blotting to detect inflammation-related proteins. Compared with the sham group, the p-AKT in the I/R group was significantly reduced and the content of p-NF-κBp65 was significantly increased. However, these changes could be reversed by AME treatment. DIZ treatment exerted similar beneficial effects in I/R rats as the high dose of AME did. This study highlights the excellent therapeutic potential of AME for managing myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Wei-Wei Li
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Dan Li
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yao Qin
- Department of Cardiovascular Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Cheng-Xin Sun
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Yong-Ling Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lei Gao
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lang Ling-Hu
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Feng Zhang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Wen Cai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Lei Zhu
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| | - Gang Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou 563000, China; Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563000, China.
| |
Collapse
|
32
|
Lee KH, Do HK, Kim DY, Kim W. Impact of chlorogenic acid on modulation of significant genes in dermal fibroblasts and epidermal keratinocytes. Biochem Biophys Res Commun 2021; 583:22-28. [PMID: 34715497 DOI: 10.1016/j.bbrc.2021.10.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/25/2022]
Abstract
Chlorogenic acid is one of the most abundant polyphenols found in human diet. It is well-documented that chlorogenic acid has a significant impact on human cells, especially in the regulation of inflammation and metabolic processes. However, its role in regulating skin functions, especially with respect to the dermal collagen network or epidermal skin barrier, has not yet been elucidated. Here, we report that chlorogenic acid treatment can induce production of procollagen type I in human dermal fibroblast, Hs68 cell lines. Moreover, this treatment can stimulate upregulation of skin barrier genes, including the ones encoding filaggrin (FLG), involucrin (IVL), and envoplakin (EVPL), in epidermal keratinocytes. Chlorogenic acid also triggered a multifaceted response in the cytokine profile of keratinocytes. Therefore, we suggest that chlorogenic acid can be used to restore the impaired dermal matrix network as well as the epidermal skin barrier.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Department of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan, 38610, South Korea
| | - Hwan-Kwon Do
- Department of Physical Medicine and Rehabilitation, Inje University College of Medicine, Haeundae Paik Hospital, Busan, 48108, South Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, 41940, South Korea
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, 52727, South Korea.
| |
Collapse
|
33
|
Zhao H, Zeng S, Chen L, Sun Q, Liu M, Yang H, Ren S, Ming T, Meng X, Xu H. Updated pharmacological effects of Lonicerae japonicae flos, with a focus on its potential efficacy on coronavirus disease-2019 (COVID-19). Curr Opin Pharmacol 2021; 60:200-207. [PMID: 34461565 PMCID: PMC8402937 DOI: 10.1016/j.coph.2021.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/28/2021] [Accepted: 07/28/2021] [Indexed: 12/24/2022]
Abstract
Lonicerae japonicae flos (LJF), known as Jin Yin Hua in Chinese, is one of the most commonly used traditional Chinese herbs and nutraceuticals. Nowadays, LJF is broadly applied in an array of afflictions, such as fever, sore throat, flu infection, cough, and arthritis, with the action mechanism to be elucidated. Here, we strove to summarize the main phytochemical components of LJF and review its updated pharmacological effects, including inhibition of inflammation, pyrexia, viruses, and bacteria, immunoregulation, and protection of the liver, nervous system, and heart, with a focus on the potential efficacy of LJF on coronavirus disease–2019 based on network pharmacology so as to fully underpin the utilization of LJF as a medicinal herb and a favorable nutraceutical in daily life.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Sha Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiang Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
34
|
Modulations of Cardiac Functions and Pathogenesis by Reactive Oxygen Species and Natural Antioxidants. Antioxidants (Basel) 2021; 10:antiox10050760. [PMID: 34064823 PMCID: PMC8150787 DOI: 10.3390/antiox10050760] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/03/2021] [Accepted: 05/08/2021] [Indexed: 01/11/2023] Open
Abstract
Homeostasis in the level of reactive oxygen species (ROS) in cardiac myocytes plays a critical role in regulating their physiological functions. Disturbance of balance between generation and removal of ROS is a major cause of cardiac myocyte remodeling, dysfunction, and failure. Cardiac myocytes possess several ROS-producing pathways, such as mitochondrial electron transport chain, NADPH oxidases, and nitric oxide synthases, and have endogenous antioxidation mechanisms. Cardiac Ca2+-signaling toolkit proteins, as well as mitochondrial functions, are largely modulated by ROS under physiological and pathological conditions, thereby producing alterations in contraction, membrane conductivity, cell metabolism and cell growth and death. Mechanical stresses under hypertension, post-myocardial infarction, heart failure, and valve diseases are the main causes for stress-induced cardiac remodeling and functional failure, which are associated with ROS-induced pathogenesis. Experimental evidence demonstrates that many cardioprotective natural antioxidants, enriched in foods or herbs, exert beneficial effects on cardiac functions (Ca2+ signal, contractility and rhythm), myocytes remodeling, inflammation and death in pathological hearts. The review may provide knowledge and insight into the modulation of cardiac pathogenesis by ROS and natural antioxidants.
Collapse
|
35
|
Hu X, Wang L, He Y, Wei M, Yan H, Zhu H. Chlorogenic Acid Promotes Osteogenic Differentiation of Human Dental Pulp Stem Cells Through Wnt Signaling. Stem Cells Dev 2021; 30:641-650. [PMID: 33789447 DOI: 10.1089/scd.2020.0193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Periodontal disease (PD) is one of the main causes of periodontal bone resorption and tooth loss in adults. How to repair the alveolar bone effectively has always been a challenge. This study was designed to clarify the effects and the underlying molecular mechanisms of chlorogenic acid (CGA) on osteogenic differentiation of human dental pulp stem cells (hDPSCs). In this study, we used CGA to treat hDPSCs. The osteogenic experiment showed that CGA can promote hDPSCs osteogenic differentiation. RNA-Seq and quantitative real-time polymerase chain reaction showed that CGA treatment enhanced the expression of the osteogenesis genes for frizzled-related protein (FRZB) and pyruvate dehydrogenase kinase 4 (PDK4) and inhibit the expression of the osteoclastogenesis genes such as those for asporin (ASPN) and cytokine-like 1 (CYTL1). Western blot analysis showed that besides FRZB, CGA treatment also caused reduction of both active and total β-catenin, while increased the total calcium/calmodulin-dependent kinase II (CamKII), the phosphorylated CamKII (pCamKII) and the phosphorylated cAMP-response element-binding protein (pCREB). Likely, the increased osteogenesis was associated with reduced canonical Wnt/β-catenin signaling but increased noncanonical Wnt/Ca2+ signaling. The results suggested that CGA can promote the osteogenic differentiation of hDPSCs by regulating Wnt signaling. These findings will serve as a foundation for further studies on how to repair defective alveolar bone for the patients with PD.
Collapse
Affiliation(s)
- Xiaoping Hu
- The Key Laboratory of Oral Biomedicine, Affiliated Stomatological Hospital of Nanchang University, Nanchang, P.R. China
| | - Li Wang
- Affiliated Stomatological Hospital of Nanchang University, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Yuanqiao He
- Department of Laboratory Animal Science, Nanchang University, Nanchang, P.R. China.,Jiangxi Province Key Laboratory of Laboratory Animal Nanchang Royo Biotech Co., Ltd., Nanchang, P.R. China
| | - Minli Wei
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Huilin Yan
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Jiangxi Medical College of Nanchang University, Nanchang, P.R. China
| | - Hongshui Zhu
- The Key Laboratory of Oral Biomedicine, Affiliated Stomatological Hospital of Nanchang University, Nanchang, P.R. China
| |
Collapse
|
36
|
Chlorogenic acid inhibits proliferation in human hepatoma cells by suppressing noncanonical NF-κB signaling pathway and triggering mitochondrial apoptosis. Mol Biol Rep 2021; 48:2351-2364. [PMID: 33738723 DOI: 10.1007/s11033-021-06267-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/24/2022]
Abstract
Chlorogenic acid (CGA), a phenylpropanoid derived from Eucommia ulmoides Oliver, has been shown to exhibit potent cytotoxic and anti-proliferative activities against several human cancers. However, the effects of CGA on hepatocellular carcinoma (HCC) and the underlying mechanisms have not been intensively studied. In this study, the CGA treatment effects on the viability of human hepatoma cells were investigated by MTT assay. Our data showed that CGA could dose-dependently inhibit the activity of human hepatoma cells Hep-G2 and Huh-7, but did not affect the activity and growth of normal human hepatocyte QSG-7701. The genes and pathways influenced by CGA treatment were explored by RNA sequencing and bioinformatics analysis, which identified 323 differentially expressed genes (DEGs) involved in multiple pharmacological signaling pathways such as MAPK, NF-κB, apoptosis and TGF-β signaling pathways. Further analyses by real-time quantitative PCR, Western blot and flow cytometry revealed that CGA effectually suppressed the noncanonical NF-κB signaling pathway, meanwhile it activated the mitochondrial apoptosis of HCC by upregulation of the BH3-only protein Bcl-2 binding component 3 (BBC3). Our findings demonstrated the potential of CGA in suppressing human hepatoma cells and provided a new insight into the anti-cancer mechanism of CGA.
Collapse
|
37
|
Protective Role of Polyphenols in Heart Failure: Molecular Targets and Cellular Mechanisms Underlying Their Therapeutic Potential. Int J Mol Sci 2021; 22:ijms22041668. [PMID: 33562294 PMCID: PMC7914665 DOI: 10.3390/ijms22041668] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) is a leading cause of death in the United States, with a 5-year mortality rate of 50% despite modern pharmacological therapies. Plant-based diets are comprised of a diverse polyphenol profile, which lends to their association with reduced cardiovascular disease risk. Whether a polyphenol-rich diet can slow the progression of or reverse HF in humans is not known. To date, in vitro and in vivo studies have reported on the protective role of polyphenols in HF. In this review, we will discuss the major mechanisms by which polyphenols mitigate HF in vitro and in vivo, including (1) reduced cardiac inflammation and oxidative stress, (2) reduced mitochondrial dysfunction, (3) improved Ca2+ homeostasis, (4) increased survival signaling, and (5) increased sirtuin 1 activity.
Collapse
|
38
|
Luo J, He W, Li X, Ji X, Liu J. Anti-acne vulgaris effects of chlorogenic acid by anti-inflammatory activity and lipogenesis inhibition. Exp Dermatol 2021; 30:865-871. [PMID: 33433016 DOI: 10.1111/exd.14277] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
Chlorogenic acid (CGA) exhibits substantial biological function in antioxidant, antibacterial, anti-lipogenesis and anti-inflammatory activities. Increased sebum production and inflammation are considered important for the development of acne. However, the therapeutic effects of CGA on acne vulgaris remain unexplored. In this study, to assess the effects and underlying mechanisms of CGA on acne, a model of skin inflammation in ears of ICR mouse induced by living Propionibacterium acnes was used. 24 hours after 1.0 × 107 CFU, P. acnes were intradermally injected into the ears of the ICR mouse. 1, 5 and 10 mg of CGA mixed with vaseline were applied to the surface of the skin every 12 hours for 3 days. Then, skin inflammation in the ears was assessed and the change of SREBP1 and TNF-α expression was analysed after CGA treatment. The mechanisms of CGA in anti-inflammatory activity and lipogenesis were also studied in primary sebocytes and HaCaT cells. We found that CGA treatment effectively rescued ear swelling, redness and erythema skin in ears of ICR mouse induced by P. acnes and significantly downregulated the expression of inflammatory cytokines by reducing the activity of the NF-κB signalling pathway. Furthermore, CGA could inhibit lipogenesis at the protein secretion and transcription level by decreasing the AKT/mTOR/SREBP signalling pathway. Our findings suggest that CGA could become a potential alternative drug for the treatment of acne vulgaris.
Collapse
Affiliation(s)
- Jiao Luo
- Institute for Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiyi He
- School of Public Health, Health Science Center, Shenzhen University, Shenzhen, China
| | - Xuan Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,Department of Gerontology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xunmin Ji
- Guangdong Provincial Institute of Biological Products and Materia, Guangzhou, Guangdong, China
| | - Jiabang Liu
- Institute for Translational Medicine, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
| |
Collapse
|
39
|
Ohishi T, Fukutomi R, Shoji Y, Goto S, Isemura M. The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules 2021; 26:molecules26020453. [PMID: 33467101 PMCID: PMC7830344 DOI: 10.3390/molecules26020453] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Several epidemiological studies and clinical trials have reported the beneficial effects of green tea, coffee, wine, and curry on human health, with its anti-obesity, anti-cancer, anti-diabetic, and neuroprotective properties. These effects, which have been supported using cell-based and animal studies, are mainly attributed to epigallocatechin gallate found in green tea, chlorogenic acid in coffee, resveratrol in wine, and curcumin in curry. Polyphenols are proposed to function via various mechanisms, the most important of which is related to reactive oxygen species (ROS). These polyphenols exert conflicting dual actions as anti- and pro-oxidants. Their anti-oxidative actions help scavenge ROS and downregulate nuclear factor-κB to produce favorable anti-inflammatory effects. Meanwhile, pro-oxidant actions appear to promote ROS generation leading to the activation of 5′-AMP-activated protein kinase, which modulates different enzymes and factors with health beneficial roles. Currently, it remains unclear how these polyphenols exert either pro- or anti-oxidant effects. Similarly, several human studies showed no beneficial effects of these foods, and, by extension polyphenols, on obesity. These inconsistencies may be attributed to different confounding study factors. Thus, this review provides a state-of-the-art update on these foods and their principal polyphenol components, with an assumption that it prevents obesity.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka 410-0301, Japan
- Correspondence: ; Tel.: +81-55-924-0601
| | - Ryuuta Fukutomi
- Quality Management Div. Higuchi Inc., Minato-ku, Tokyo 108-0075, Japan;
| | - Yutaka Shoji
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| | - Shingo Goto
- Division of Citrus Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), Shimizu, Shizuoka 424-0292, Japan;
| | - Mamoru Isemura
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; (Y.S.); (M.I.)
| |
Collapse
|
40
|
Study on Medication Rules of Traditional Chinese Medicine against Antineoplastic Drug-Induced Cardiotoxicity Based on Network Pharmacology and Data Mining. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7498525. [PMID: 33281914 PMCID: PMC7688357 DOI: 10.1155/2020/7498525] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/16/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Methods The targets of antineoplastic drugs with cardiotoxicity were obtained from the National Center for Biotechnology Information (NCBI) database, China national knowledge infrastructure (CNKI) database, and Swiss Target Prediction platform. Then, the cardiotoxicity-related targets were derived from the Gene Cards, Disgenet, OMIM, and DrugBank databases, as well as the drug of current clinical guidelines. The targets both in these two sets were regarded as potential targets to alleviate ADIC. Then, candidate compounds and herbs were matched via Traditional Chinese Medicine Systems Pharmacology (TCMSP) platform. Cytoscape3.7.1 was used to set up the target-compound-herb network. Molecular docking between core targets and compounds was performed with AutodockVina1.1.2. The rules of herbs were summarized by analyzing their property, flavor, and channel tropism. Results Twenty-one potential targets, 332 candidate compounds, and 400 kinds of herbs were obtained. Five core targets including potassium voltage-gated channel subfamily H member 2 (KCNH2), cyclin-dependent kinase 1 (CDK1), matrix metalloproteinase 2 (MMP2), mitogen-activated protein kinase1 (MAPK1), and tumor protein p53 (TP53) and 29 core compounds (beta-sitosterol, quercetin, kaempferol, etc.) were collected. Five core herbs (Yanhusuo, Gouteng, Huangbai, Lianqiao, and Gancao) were identified. Also, the TCM against ADIC were mainly bitter and acrid in taste, warm in property, and distributed to the liver and lung meridians. Conclusion TCM against ADIC has great potential. Our study provides a new method and ideas for clinical applications of integrated Chinese and western medicine in treating ADIC.
Collapse
|
41
|
Li L, Chen X, Su C, Wang Q, Li R, Jiao W, Luo H, Tian Y, Tang J, Li X, Liu B, Wang W, Zhang D, Guo S. Si-Miao-Yong-An decoction preserves cardiac function and regulates GLC/AMPK/NF-κB and GLC/PPARα/PGC-1α pathways in diabetic mice. Biomed Pharmacother 2020; 132:110817. [DOI: 10.1016/j.biopha.2020.110817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
|
42
|
Cheng F, Jiang W, Xiong X, Chen J, Xiong Y, Li Y. Ethanol Extract of Chinese Hawthorn (Crataegus pinnatifida) Fruit Reduces Inflammation and Oxidative Stress in Rats with Doxorubicin-Induced Chronic Heart Failure. Med Sci Monit 2020; 26:e926654. [PMID: 33232307 PMCID: PMC7697658 DOI: 10.12659/msm.926654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). Material/Methods Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor-α). The IL-1β, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. Results Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1β and tumor necrosis factor-α and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. Conclusions HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.
Collapse
Affiliation(s)
- Fangzhou Cheng
- Department of Cardiology, Shenzhen Yantian People's Hospital, ShenzhenShenzhen, Guangdong, China (mainland)
| | - Wenlong Jiang
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xiaoshuan Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Juan Chen
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yunzhi Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yinghong Li
- The Central Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
43
|
Chlorogenic acid abates male reproductive dysfunction in arsenic-exposed mice via attenuation of testicular oxido-inflammatory stress and apoptotic responses. Chem Biol Interact 2020; 333:109333. [PMID: 33242462 DOI: 10.1016/j.cbi.2020.109333] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
Arsenic, a major environmental pollutant of global concern, is well-known for its reproductive toxicity. In this study, the protective potential of chlorogenic acid (CGA), a caffeoylquinic acid isomer abundantly found in many plants, was investigated against sodium arsenite (NaAsO2)-induced testicular dysfunctions. Adult male Swiss mice were either administered NaAsO2 alone at 5 mg kg-1 or co-treated with CGA at 100 mg kg-1 or 200 mg kg-1 body weight for 4 weeks. Results showed that NaAsO2-treated mice exhibited marked declines in testes weight, sperm count, and viability accompanied by decreases in sexual hormonal levels. Moreover, NaAsO2 toxicity evoked exhaustion of antioxidant markers (SOD, CAT, GPx, GR, and GSH), down-regulation of Nrf2 (nuclear factor erythroid 2-related factor 2) gene expression level, and elevations in malondialdehyde. Further, elevations in inflammatory cytokines (IL-1, TNF-α, and IL-6) together with the up-regulation of pro-apoptotic biomarkers (Bax and caspase- 3) and down-regulation of anti-apoptotic Bcl-2 were observed in NaAsO2 intoxication. Immunohistochemical analysis of testis sections of NaAsO2-treated mice showed high caspase-3 expression. These findings were well supported with testicular histopathological examination. However, pretreatment of mice with CGA resulted in noteworthy improvements in testicular damage induced by arsenic in a dose-dependent manner possibly mediated by the Nrf2 signaling pathway. Conclusively, CGA counteracted arsenic-induced testicular injury through its antioxidant, anti-inflammatory, and anti-apoptotic properties. Therefore, CGA could serve as a favorable intervention in the alleviation of arsenic-induced reproductive toxicity.
Collapse
|
44
|
Zhang W, Man R, Yu X, Yang H, Yang Q, Li J. Hydroxytyrosol enhances cisplatin-induced ototoxicity: Possible relation to the alteration in the activity of JNK and AIF pathways. Eur J Pharmacol 2020; 887:173338. [PMID: 32781170 DOI: 10.1016/j.ejphar.2020.173338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
Abstract
Hydroxytyrosol (HT), a polyphenol widely contained as an ester in olive fruits and olive leaves, exhibits a broad spectrum of effectiveness. The present study was designed to investigate the effect of HT alone as well as in the combination with cisplatin on the House Ear Institute-Organ of Corti 1 cells (HEI-OC1) and C57BL/6 cochlear hair cells in vitro. The cell viability was measured by cell counting kit-8 (CCK8) assay. The levels of reactive oxygen species were evaluated by Dichloro-dihydro-fluorescein diacetate (DCFH-DA) staining. The expression of phosphorylated Jun N-terminal kinase (p-JNK) and cleaved-caspase 3 was assessed by Western blotting. The apoptosis was detected by terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) staining. The distribution of apoptosis inducing factor (AIF) was determined by immunofluorescent staining. HT alleviated the levels of reactive oxygen species in both untreated state and after cisplatin stimulus. However, HT at concentration of 100 μM decreased the cell viability of HEI-OC1 from 100 ± 17.38% in control group to 50.17 ± 1.89% and increased the expression of p-JNK and c-caspase 3 from 0.62 ± 0.10, 0.20 ± 0.050 in the control group to 1.24 ± 0.18, 0.85 ± 0.18 in the group treated with 30 μM cisplatin, as well as to 1.64 ± 0.14, 1.44 ± 0.12 in the group with 30 μM cisplatin +100 μM HT, respectively. Meanwhile, HT triggered AIF transferring to nuclei and, also, led to cochlear HCs arranging disorderly and missing. Moreover, HT elevated the expression of p-JNK and c-caspase 3 from 1.00 ± 0.27, 1.00 ± 0.26 in the control group to 2.23 ± 0.24, 22.87 ± 3.80 in the group with 30 μM cisplatin, and to 2.75 ± 0.23, 31.56 ± 3.86 in the group with 30 μM cisplatin+100 μM HT correspondingly. Taken together, data from this work reveal that HT itself possesses toxic effect on HCs mainly thorough AIF-dependent apoptosis, while, it aggravates the ototoxicity-caused by cisplatin via both JNK and AIF pathways related apoptosis. Findings from this work offer clear evidence that that HT might not be recommended to utilize for preventing cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Department of Otorhinolaryngology Head and Neck Surgery, Tengzhou Central People's Hospital, Tengzhou, Shandong, PR China
| | - Rongjun Man
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Department of Otolaryngology Head and Neck Surgery, Zibo Central Hospital, Zibo, Shandong, PR China
| | - Xiaoyu Yu
- Department of Otolaryngology-Head and Neck Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Huiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China
| | - Qianqian Yang
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, PR China
| | - Jianfeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, PR China; Institute of Eye and ENT, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.
| |
Collapse
|
45
|
Li L, Su C, Chen X, Wang Q, Jiao W, Luo H, Tang J, Wang W, Li S, Guo S. Chlorogenic Acids in Cardiovascular Disease: A Review of Dietary Consumption, Pharmacology, and Pharmacokinetics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6464-6484. [PMID: 32441927 DOI: 10.1021/acs.jafc.0c01554] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chlorogenic acids (CGAs) have gained considerable attention as pervasive human dietary constituents with potential cardiovascular-preserving effects. The main sources include coffee, yerba mate, Eucommia ulmodies leaves, and Lonicerae Japonicae Flos. CGA consumption can reduce the risks of hypertension, atherosclerosis, heart failure, myocardial infarction, and other factors associated with cardiovascular risk, such as obesity and type 2 diabetes. This review recapitulates recent advances of CGAs in the cardiovascular-preserving effects, pharmacokinetics, sources, and safety. Emerging evidence indicates that CGAs exhibit circulatory guarding properties through the suppression of oxidative stress, leukocyte infiltration, platelet aggregation, platelet-leukocyte interactions, vascular remodeling, and apoptosis as well as the regulation of glucose and lipid metabolism and vasodilatory action in the cardiovascular system. CGAs exert these effects by acting on complex signaling networks, but the global mechanisms are still not clear. The oral bioavailability of CGA is poor, and there is a potential sensitization concern about CGA. The bioactive metabolites, systematic toxicity, and optimized structure are needed for further identification.
Collapse
Affiliation(s)
- Lin Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Congping Su
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiangyang Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, People's Republic of China
| | - Qing Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenchao Jiao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jiayang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wei Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Sen Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shuzhen Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
46
|
Balestra AC, Sandy CM, Ramalho F, Júnior AAJ, Contini SHT, Crevelin EJ, Carmona F, Pereira AMS, Borges MC. Aqueous Pyrostegia venusta (Ker Gawl.) Miers extract attenuates allergen-induced asthma in a mouse model via an antioxidant mechanism. J Asthma 2020; 58:808-818. [PMID: 32043903 DOI: 10.1080/02770903.2020.1728768] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Objective: Pyrostegia venusta (Ker-Gawl.) Miers (Bignoniaceae) is a perennial invasive vine, distributed worldwide. In folk medicine, its parts are used for the treatment of inflammatory respiratory diseases. Extracts of P. venusta have antioxidant, antimicrobial, and antinociceptive properties. The aim of this study was to evaluate the effects of two extracts (aqueous and hydroethanolic) of P. venusta in the treatment of asthma in an animal model.Methods: Balb/c mice were sensitized twice with ovalbumin (OVA) intraperitoneally (ip), one week apart, and after one week, challenged with OVA intranasally on four alternate days. Mice were treated ip with 300 mg/kg of aqueous or hydroethanolic extracts for seven consecutive days. Control groups received saline on the same days. Bronchial hyperresponsiveness, production of Th1 and Th2 cytokines, lung and airway inflammation, and antioxidant activity in lung tissue were assessed.Results: Treatment with aqueous extract significantly decreased bronchial hyperresponsiveness, measured by total and tissue resistance and elastance. The administration of hydroethanolic extract did not reduce bronchial hyperresponsiveness. In addition, both extracts significantly reduced total cell and eosinophil counts in bronchoalveolar lavage. Both extracts did not change significantly IL-4, IL-5, IL-9, IL-13, IFN-gamma, and TGF-beta levels. Of note, only the aqueous extract significantly increased the total antioxidant activity and reduced lung inflammation.Conclusion: Aqueous extract of P. venusta reduced bronchial hyperresponsiveness, lung and airway inflammation, probably via an antioxidant mechanism. These results demonstrate that P. venusta may have potential for asthma treatment.
Collapse
Affiliation(s)
- Andiamira Cagnoni Balestra
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Camila Mira Sandy
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fernando Ramalho
- Department of Pathology and Legal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alceu Afonso Jordão Júnior
- Department of Health Sciences, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Eduardo José Crevelin
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabio Carmona
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Ana Maria S Pereira
- Department of Vegetal Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Marcos C Borges
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
47
|
Tian L, Su C, Wang Q, Wu F, Bai R, Zhang H, Liu J, Lu W, Wang W, Lan F, Guo S. Chlorogenic acid: A potent molecule that protects cardiomyocytes from TNF-α-induced injury via inhibiting NF-κB and JNK signals. J Cell Mol Med 2019; 23:4666-4678. [PMID: 31033175 PMCID: PMC6584503 DOI: 10.1111/jcmm.14351] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/16/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
The traditional Chinese herb Lonicerae Japonicae Flos has shown significant clinical benefits in the treatment of heart failure, but the mechanism remains unclear. As the main active ingredient found in the plasma after oral administration of Lonicerae Japonicae Flos, chlorogenic acid (CGA) has been reported to possess anti-inflammatory, anti-oxidant and anti-apoptosis function. We firstly confirmed the cardioprotective effects of CGA in transverse aortic constriction (TAC)-induced heart failure mouse model, through mitigating the TNF-α-induced toxicity. We further used TNF-α-induced cardiac injury in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to elucidate the underlying mechanisms. CGA pre-treatment could reverse TNF-α-induced cellular injuries, including improved cell viability, increased mitochondrial membrane potential and inhibited cardiomyocytes apoptosis. We then examined the NF-κB/p65 and major mitogen-activated protein kinases (MAPKs) signalling pathways involved in TNF-α-induced apoptosis of hiPSC-CMs. Importantly, CGA can directly inhibit NF-κB signal by suppressing the phosphorylation of NF-κB/p65. As for the MAPKs, CGA suppressed the activity of only c-Jun N-terminal kinase (JNK), but enhanced extracellular signal-regulated kinase1/2 (ERK1/2) and had no effect on p38. In summary, our study revealed that CGA has profound cardioprotective effects through inhibiting the activation of NF-κB and JNK pathway, providing a novel therapeutic alternative for prevention and treatment of heart failure.
Collapse
Affiliation(s)
- Lei Tian
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Cong‐Ping Su
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Qing Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Fu‐Jian Wu
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Rui Bai
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Hui‐Min Zhang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Jin‐Ying Liu
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Wen‐Jing Lu
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Wei Wang
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| | - Feng Lan
- Beijing Laboratory for Cardiovascular Precision MedicineAnzhen Hospital, Capital Medical UniversityBeijingChina
| | - Shu‐Zhen Guo
- School of Traditional Chinese MedicineBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|