1
|
Console L, Tolomeo M, Travo L, Giudice D, Nisco A, Barile M, Indiveri C. Production of the recombinant human riboflavin transporters SLC52A1, 3 and functional assay in proteoliposomes. Arch Biochem Biophys 2025; 766:110327. [PMID: 39914677 DOI: 10.1016/j.abb.2025.110327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/26/2025] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Riboflavin, the FMN and FAD precursor, is a crucial vitamin in cell metabolism. Its adsorption and tissue distribution are mediated by tree membrane transporters namely RFVT1-3. Mutations of their genes are associated with Riboflavin Transporter Deficiency. Moreover, derangements of the level of these transporters have been found in several human cancers. To obtain a suitable experimental tool for studying the function of the single proteins, for testing the effect of pathological mutations and for validating predicted ligands as candidate drugs, we have set up a proteoliposome system harbouring the functional RFVT1 or RFVT3. RFVT proteins have been produced in E. coli and purified to the homogeneity by affinity chromatography. The purified proteins show an apparent molecular mass of 45.6 or 48.4 kDa, which are very close to the theoretical mass of RFVT1 or RFVT3, respectively. The purified transporters have been reconstituted into proteoliposomes using a methodology previously pointed out for RFVT2. The transport of riboflavin shows cooperative kinetics with K0.5 values of 0.86 or 1.13 μM and Hill coefficients of 1.19 or 1.3 for RFVT1 or RFVT3, respectively. The K0.5 data of both the transporters are similar the Km reported in intact cell studies. The transporters are inhibited by the riboflavin analogues FMN and lumiflavin in agreement with the molecular docking simulations.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Maria Tolomeo
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| | - Luciana Travo
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Deborah Giudice
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Alessia Nisco
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Maria Barile
- Department of Biosciences, Biotechnologies, and Environment, University of Bari Aldo Moro, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia e Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy; CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy.
| |
Collapse
|
2
|
Yang R, Yang M, Wu Z, Liu B, Zheng M, Lu L, Wu S. Tespa1 deficiency reduces the antitumour immune response by decreasing CD8 +T cell activity in a mouse Lewis lung cancer model. Int Immunopharmacol 2023; 124:110865. [PMID: 37660596 DOI: 10.1016/j.intimp.2023.110865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/05/2023]
Abstract
Thymocyte-expressed, positive selection-associated 1 (Tespa1) is a key molecule in T-cell development and has been linked to immune diseases. However, its role in antitumour CD8+T cell immunity remains unclear. Here, we demonstrated that Tespa1 plays an important role in antitumour CD8+T cell immunity. First, compared with wild-type (WT) mice, Lewis lung cancer cells grew faster in Tespa1 knockout (Tespa1-/-) mice, with reduced apoptosis, and decreased CD8+T cells in peripheral blood and tumor tissues. Second, the proportion of CD8+T and Th1 cells in the splenocytes of Tespa1-/- mice was lower than that in WT mice. Third, Tespa1-/- CD8+ tumor-infiltrating lymphocytes (TILs) showed weakened proliferation, invasion, cytotoxicity, and protein expression of IL-2 signalling pathway components compared to WT CD8+TILs. Furthermore, PD-1 expression in CD8+TILs was higher in Tespa1-/- than in WT mice. Lastly, CD8+TILs in WT mice improved the antitumour ability of Tespa1-/- mice. In conclusion, these findings suggest that Tespa1 plays a critical role in the tumor immune system by regulating CD8+T cells.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou 318000, China; Department of Pharmacology, Lishui University School of Medicine, Lishui 323000, China
| | - Mingyue Yang
- The First Clinical Department, China Medical University, Shenyang 110122, China
| | - Zehua Wu
- Faculty of Science and Engineering, University of Nottingham, Ningbo, 315000, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, 318000, China
| | - Mingzhu Zheng
- Department of Pathogenic Biology and Immunology, School of Medicine, Southeast University, Nanjing, 210003, China
| | - Linrong Lu
- Institute of Immunology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui 323000, China.
| |
Collapse
|
3
|
Yang R, Liu B, Yang M, Xu F, Wu S, Zhao S. Lumiflavin Reduces Cisplatin Resistance in Cancer Stem-Like Cells of OVCAR-3 Cell Line by Inducing Differentiation. Front Oncol 2022; 12:859275. [PMID: 35669418 PMCID: PMC9163659 DOI: 10.3389/fonc.2022.859275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ovarian cancer stem-like cells (CSCs) play a vital role in drug resistance and recurrence of ovarian cancer. Inducing phenotypic differentiation is an important strategy to enhance the effects of chemotherapy and reduce the drug resistance of CSCs. This study found that lumiflavin, a riboflavin decomposition product, reduced the development of CSC resistance and enhanced the chemotherapy effect of cisplatin (DDP) on CSCs in DDP-resistant ovarian cancer OVCAR-3 cell line (CSCs/DDP) and was related to the induction of CSC phenotypic differentiation. Results showed that the development of DDP-resistant OVCAR-3 cells was related to the increase in the proportion of CSCs/DDP, and the treatment with lumiflavin reduced the DDP-resistance levels of OVCAR-3 cells and proportion of CSCs/DDP. Further investigation found that lumiflavin synergistic with DDP increased apoptosis, decreased mitochondrial membrane potential, and inhibited the clonal formation of CSCs/DDP. Meanwhile, in vivo experiments showed that lumiflavin dose-dependently enhanced the chemotherapy effect of DDP on tumor-bearing nude mice inoculated by CSCs/DDP. Lumiflavin treatment also reduced the ratio of CD133+/CD177+ to CD44+/CD24 cells, which is the identification of CSCs, in CSCs/DDP. In addition, transcriptome sequencing results suggested that the role of lumiflavin was related to the notch and stem cell pathway, and Western blot analysis showed that lumiflavin inhibited the protein expression of notch signaling pathway in CSCs/DDP. In conclusion, lumiflavin reduces the development of the drug resistance of OVCAR-3 cell and increases the sensitivity of CSCs/DDP to DDP by inducing phenotypic differentiation, which may have a potential role in the chemotherapy treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ruhui Yang
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
- Department of Pharmacology, Lishui University School of Medicine, Lishui, China
| | - Bingjin Liu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Mingyue Yang
- Clinical Department, China Medical University, Shenyang, China
| | - Feng Xu
- School of Medicine and Pharmaceutical Engineering, Taizhou Vocational and Technical College, Taizhou, China
| | - Songquan Wu
- Department of Immunology, Lishui University School of Medicine, Lishui, China
| | - Shufang Zhao
- Molecular Biology Laboratory, Lishui University School of Medicine, Lishui, China
| |
Collapse
|
4
|
Giaccherini M, Gentiluomo M, Fornili M, Lucenteforte E, Baglietto L, Campa D. Association between telomere length and mitochondrial copy number and cancer risk in humans: A meta-analysis on more than 300,000 individuals. Crit Rev Oncol Hematol 2021; 167:103510. [PMID: 34695574 DOI: 10.1016/j.critrevonc.2021.103510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
In the last decades the association of leukocyte telomere length (LTL) and mitochondrial copy number (mtDNAcn) with cancer risk has been the focus of many reports, however the relation is not yet completely understood. A meta-analysis of 112 studies including 64,184 cancer cases and 278,641 controls that analysed LTL and mtDNAcn in relation to cancer risk has been conducted to further our understanding of the topic. Stratified analyses for tumor type were also performed. Overall, no association was observed for all cancer combined neither for LTL nor mtDNAcn. Significant associations were detected for these biomarkers and specific cancer type; however, a large degree of heterogeneity was present, even within the same tumor type. Alternatives approaches based on polymorphic variants, such as polygenic risk scores and mendelian randomization, could be adopted to unravel the causal correlation of telomere length and mitochondrial copy number with cancer risk.
Collapse
Affiliation(s)
| | | | - Marco Fornili
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Ersilia Lucenteforte
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Laura Baglietto
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy.
| | - Daniele Campa
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|
5
|
Jin C, Yonezawa A. Recent advances in riboflavin transporter RFVT and its genetic disease. Pharmacol Ther 2021; 233:108023. [PMID: 34662687 DOI: 10.1016/j.pharmthera.2021.108023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022]
Abstract
Riboflavin (vitamin B2) is essential for cellular growth and function. It is enzymatically converted to flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), which participate in the metabolic oxidation-reduction reactions of carbohydrates, amino acids, and lipids. Human riboflavin transporters RFVT1, RFVT2, and RFVT3 have been identified and characterized since 2008. They are highly specific transporters of riboflavin. RFVT3 has functional characteristics different from those of RFVT1 and RFVT2. RFVT3 contributes to absorption in the small intestine, reabsorption in the kidney, and transport to the fetus in the placenta, while RFVT2 mediates the tissue distribution of riboflavin from the blood. Several mutations in the SLC52A2 gene encoding RFVT2 and the SLC52A3 gene encoding RFVT3 were found in patients with a rare neurological disorder known as Brown-Vialetto-Van Laere syndrome. These patients commonly present with bulbar palsy, hearing loss, muscle weakness, and respiratory symptoms in infancy or later in childhood. A decrease in plasma riboflavin levels has been observed in several cases. Recent studies on knockout mice and patient-derived cells have advanced the understanding of these mechanisms. Here, we summarize novel findings on RFVT1-3 and their genetic diseases and discuss their potential as therapeutic drugs.
Collapse
Affiliation(s)
- Congyun Jin
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
6
|
Wu Y, Wang T, Xia L, Zhang M. LncRNA WDFY3-AS2 promotes cisplatin resistance and the cancer stem cell in ovarian cancer by regulating hsa-miR-139-5p/SDC4 axis. Cancer Cell Int 2021; 21:284. [PMID: 34051810 PMCID: PMC8164817 DOI: 10.1186/s12935-021-01993-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is a high-mortality gynecological cancer that is typically treated with cisplatin, although such treatment often results in chemoresistance. Ovarian cancer resistance is usually related to cell stemness. Herein, we explored the function of lncRNA WDFY3-AS2 in OC cell resistance to cisplatin (DDP). METHODS Cisplatin resistant OC A2780 cell lines (A2780-DDP) were established by long-term exposure to cisplatin. CCK-8 assay were performed to evaluate the viability of A2780, and A2780-DDP cells. Quantitative RT-PCR was used to examine the expression of lncRNA WDFY3-AS2, miR-139-5p, and SDC4 in A2780-DDP cell lines. After treatment with cisplatin, cell apoptosis and CD44+CD166+-positive cells were measured by flow cytometry. The transwell assays were employed to measure the effect of WDFY3-AS2 on cell migration, and invasion. In addition, tumorsphere formation assay was used to enrich OC cancer stem cells (CSCs) from A2780-DDP cells. The expression of CSC markers (SOX2, OCT4, and Nanog) was detected by western blotting. The regulatory mechanism was confirmed by RNA pull down, and luciferase reporter assays. Furthermore, xenograft tumor in nude mice was used to assess the impact of WDFY3-AS2 on cisplatin resistance in OC in vivo. RESULTS WDFY3-AS2 was highly expressed in OC A2780-DDP cells, and silencing WDFY3-AS2 significantly inhibited proliferation, migration and invasion but increased apoptosis in OC A2780-DDP cells. Additionally, WDFY3-AS2 significantly promoted the A2780-DDP cells tumorspheres. WDFY3-AS2 was predicted to impact OC by sponging miR-139-5p and regulating SDC4. The xenografts inoculated with A2780-DDP cells additionally confirmed that tumor growth in vivo was reduced by si-WDFY3-AS2 transfection. MiR-139-5p inhibitor or SDC4 overexpression could restore the suppressive influence of silenced WDFY3-AS2 on tumor growth. CONCLUSIONS Together, WDFY3-AS2 may lead to change of cisplatin resistance by the expression of miR-139-5p/SDC4 in the OC A2870-DDP cells both in vitro and in vivo. Our finding may provide a drug target for the drug resistance of OC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Integrated Chinese and Western Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Ting Wang
- Department of Integrated Chinese and Western Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei, 230032, China
| | - Lin Xia
- Graduate School of Anhui, University of Traditional Chinese Medicine, Hefei, 230012, Anhui, China
| | - Mei Zhang
- Department of Integrated Chinese and Western Medicine Oncology, The First Affiliated Hospital of Anhui Medical University, No. 218, Jixi Road, Hefei, 230022, Anhui, China.
- The Traditional and Western Medicine (TCM)-Integrated Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
7
|
Yang R, Wei Z, Wu S. Lumiflavin increases the sensitivity of ovarian cancer stem-like cells to cisplatin by interfering with riboflavin. J Cell Mol Med 2019; 23:5329-5339. [PMID: 31187586 PMCID: PMC6652702 DOI: 10.1111/jcmm.14409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/11/2022] Open
Abstract
Here, we used lumiflavin, an inhibitor of riboflavin, as a new potential therapeutic chemosensitizer to ovarian cancer stem‐like cells (CSCs). This study demonstrates that the enrichment of riboflavin in CSCs is an important cause of its resistance to chemotherapy. Lumiflavin can effectively reduce the riboflavin enrichment in CSCs and sensitize the effect of cisplatin Diamminedichloroplatinum (DDP) on CSCs. In this study, CSCs of human ovarian cancer cell lines HO8910 were separated using a magnetic bead (CD133+). We also show the overexpression of the mRNA and protein of riboflavin transporter 2 and the high content of riboflavin in CSCs compared to non‐CSCs (NON‐CSCs). Moreover, CSCs were less sensitive to DDP than NON‐CSCs, whereas, the synergistic effect of lumiflavin and DDP on CSCs was more sensitive than NON‐CSCs. Further research showed that lumiflavin had synergistic effects with DDP on CSCs in increasing mitochondrial function damage and apoptosis rates and decreasing clonic function. In addition, we found that the combination of DDP and lumiflavin therapy in vivo has a synergistic cytotoxic effect on an ovarian cancer nude mice model by enhancing the DNA‐damage response and increasing the apoptotic protein expression. Notably, the effect of lumiflavin is associated with reduced riboflavin concentration, and riboflavin could reverse the effect of DDP in vitro and in vivo. Accordingly, we conclude that lumiflavin interfered with the riboflavin metabolic pathways, resulting in a significant increase in tumour sensitivity to DDP therapy. Our study suggests that lumiflavin may be a novel treatment alternative for ovarian cancer and its recurrence.
Collapse
Affiliation(s)
- Ruhui Yang
- Department of Pharmacology, College of Medicine and Health, Lishui University, Lishui, China
| | - Zhe Wei
- Department of Rehabilitation Medicine, College of Medicine and Health, Lishui University, Lishui, China
| | - Songquan Wu
- Department of Immunology, College of Medicine and Health, Lishui University, Lishui, China
| |
Collapse
|