1
|
Ahamad S, Saquib M, Hussain MK, Bhat SA. Targeting Wnt signaling pathway with small-molecule therapeutics for treating osteoporosis. Bioorg Chem 2025; 156:108195. [PMID: 39864370 DOI: 10.1016/j.bioorg.2025.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/29/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025]
Abstract
Small molecules are emerging as potential candidates for treating osteoporosis by activating canonical Wnt signaling. These candidates work either by inhibiting DKK-1, sclerostin, SFRP-1, NOTUM, and S1P lyase or by preventing β-catenin degradation through inhibition of GSK-3β, or by targeting Dvl-CXXC5 and axin/β-catenin interactions. While many of these anti-osteoporotic small molecules are in preclinical development, the paucity of FDA-approved small molecules, or promising candidates, that have progressed to clinical trials for treating bone disorders through this mechanism poses a challenge. Despite advancements in computer-aided drug design, it is rarely employed for designing Wnt signaling activators to treat osteoporosis, and high-throughput screen (HTS) remains the primary method for discovering initial hits. Acknowledging the promising therapeutic potential of these compounds in addressing bone diseases, this review underscores the need for further mechanistic elucidation to enhance our understanding of their applications. Additionally, caution must be exercised in the design of small molecule-based Wnt activators due to their association with oncological risks.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University Aligarh 202002 India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad) 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad) 211010, UP, India
| | | | - Shahnawaz Ali Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
2
|
Xu H, Zhou Z, Wen F, Sun H, Hou J. Inhibiting autophagy further promotes Ginkgolide B's anti-osteoclastogenesis ability. Bone 2025; 192:117348. [PMID: 39617111 DOI: 10.1016/j.bone.2024.117348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Excessive osteoclast activity could cause skeletal diseases including osteoporosis. Additionally, autophagy plays an initial role in osteoclast differentiation and function. Ginkgolide B (GB), a key compound in Ginkgo biloba, improves bone mass and suppresses mature osteoclast formation in vitro. This study examines the role of GB role in regulating osteoclast formation via autophagy. Using murine bone marrow-derived macrophages in vitro, we explored GB's effects on autophagy and osteoclast formation. We also assessed bone loss prevention in an ovariectomized (OVX) mouse model using GB combined with an autophagy inhibitor. Tartrate-resistant acid phosphatase staining was used to observe osteoclast formation. Autophagy-related proteins and intracellular microtubule associated protein 1 light chain 3 beta puncta were observed using western blotting and immunofluorescence. The impact of GB on OVX mice was evaluated using micro-computed tomography and hematoxylin and eosin staining. GB directly promoted autophagy in osteoclast precursors (OCPs), but inhibited osteoclast differentiation by reducing receptor activator of nuclear factor kappa B ligand (RANKL)-induced autophagy. GB inhibits the phosphorylation of RANKL downstream signaling pathways, such as Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). Anisomycin (ANI), a JNK activator, reversed GB's inhibitory effects on RANKL-induced autophagy and osteoclastogenesis. Inhibiting autophagy using 3-Methyladenine (3-MA) or small interfering RNA significantly suppressed osteoclast differentiation both in vitro and in vivo. Our findings suggested that GB inhibits osteoclast formation by decreasing JNK phosphorylation and autophagy under RANKL stimulation. Interestingly, GB also directly promotes autophagy in OCPs. Thus, GB markedly reduces osteoclast differentiation and prevents bone loss, with its anti-osteoclastogenesis effect being enhanced by 3-MA. Accordingly, inhibiting GB-induced direct autophagy could further increase its therapeutic effect on bone disease resulting from excessive osteoclast activity.
Collapse
Affiliation(s)
- Haoying Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China; Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Zijie Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou 350001, China; Department of Orthopedics, Orthopedic and Sports Medicine Center, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Fuli Wen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China
| | - Hong Sun
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China.
| | - Jianming Hou
- Department of Endocrinology, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, Fuzhou 350001, China.
| |
Collapse
|
3
|
Lee CW, Wang BYH, Wong SH, Chen YF, Cao Q, Hsiao AWT, Fung SH, Chen YF, Wu HH, Cheng PY, Chou ZH, Lee WYW, Tsui SKW, Lee OKS. Ginkgolide B increases healthspan and lifespan of female mice. NATURE AGING 2025; 5:237-258. [PMID: 39890935 DOI: 10.1038/s43587-024-00802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/20/2024] [Indexed: 02/03/2025]
Abstract
Various anti-aging interventions show promise in extending lifespan, but many are ineffective or even harmful to healthspan. Ginkgolide B (GB), derived from Ginkgo biloba, reduces aging-related morbidities such as osteoporosis, yet its effects on healthspan and longevity have not been fully understood. In this study, we found that continuous oral administration of GB to female mice beginning at 20 months of age extended median survival and median lifespan by 30% and 8.5%, respectively. GB treatment also decreased tumor incidence; enhanced muscle quality, physical performance and metabolism; and reduced systemic inflammation and senescence. Single-nucleus RNA sequencing of skeletal muscle tissue showed that GB ameliorated aging-associated changes in cell type composition, signaling pathways and intercellular communication. GB reduced aging-induced Runx1+ type 2B myonuclei through the upregulation of miR-27b-3p, which suppresses Runx1 expression. Using functional analyses, we found that Runx1 promoted senescence and cell death in muscle cells. Collectively, these findings suggest the translational potential of GB to extend healthspan and lifespan and to promote healthy aging.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan.
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan.
| | - Belle Yu-Hsuan Wang
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Shing Hei Wong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Fan Chen
- Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Master Program in Clinical Genomics and Proteomics, School of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Qin Cao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Allen Wei-Ting Hsiao
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Sin-Hang Fung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Chen
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Engineering, China Medical University, Taichung, Taiwan
| | - Hao-Hsiang Wu
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Po-Yu Cheng
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Zong-Han Chou
- Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Wayne Yuk-Wai Lee
- Center for Neuromusculoskeletal Restorative Medicine, CUHK InnoHK Centres, Hong Kong Science Park, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Stephen Kwok Wing Tsui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
4
|
Jeong SY, Lee KH, Kim SH, Yang MH, Lee G, Kim KH. ( aS)-Glucosciadopitysin, a New Biflavonoid Glycoside from the Leaves of Ginkgo biloba and Osteogenic Activity of Bioflavonoids. PLANTS (BASEL, SWITZERLAND) 2025; 14:261. [PMID: 39861614 PMCID: PMC11768450 DOI: 10.3390/plants14020261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
The leaves of Ginkgo biloba have been used in treating freckles and effectively reducing cough and sputum in folk medicines. Recently, investigations into the correlation between ginkgo leaves and the proliferative activity of osteogenic differentiation have been conducted. However, bioactive compounds that enhance osteogenesis or exhibit osteoporosis prevention from G. biloba have not been fully identified. Phytochemical investigation of the MeOH extract of G. biloba leaves led to the isolation and identification of a new biflavonoid glycoside, (aS)-glucosciadopitysin (1), along with five flavonoids (2-6), through LC/MS-guided isolation approach. The structure of the new compound 1 was elucidated by the spectroscopic methods, including 1D and 2D NMR analysis, as well as HR-ESIMS. The absolute configuration of sugar moiety was established through acid hydrolysis, followed by chemical derivatization reaction and the axial chirality arising from the biaryl system with substituents was determined by electronic circular dichroism (ECD) calculations. The isolated flavonoids (1-6) were tested for their effects on mesenchymal stem cell (MSC) differentiation at 20 μM using Oil Red O and alkaline phosphatase (ALP) staining. Ginkgetin (2) was further evaluated for osteogenic activity on C3H10T1/2 cells at concentrations of 1, 2.5, 5, and 10 μM for 10 days. ALP staining and RT-PCR assessed the gene expression of osteogenic markers ALP and osteopontin (OPN). Ginkgetin (2) demonstrated the strongest osteogenic activity, significantly increasing the expression of ALP (12.5-fold) and OPN (4.0-fold) at 10 μM, comparable to the positive control, oryzativol A. Ginkgetin (2) shows potential as a therapeutic agent for osteopenia by promoting osteogenesis in MSCs, suggesting its promising role in treating osteoporosis.
Collapse
Affiliation(s)
- Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| | - Kwang Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| | - Seon Hee Kim
- Research Institute, Sungkyun Biotech Co., Ltd., Anyang 14118, Republic of Korea;
| | - Min Hye Yang
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Gakyung Lee
- Department of Integrative Biological Sciences and Industry, Sejong University, Seoul 05006, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea; (S.Y.J.); (K.H.L.)
| |
Collapse
|
5
|
Wang X, Qu Z, Zhao S, Luo L, Yan L. Wnt/β-catenin signaling pathway: proteins' roles in osteoporosis and cancer diseases and the regulatory effects of natural compounds on osteoporosis. Mol Med 2024; 30:193. [PMID: 39468464 PMCID: PMC11520425 DOI: 10.1186/s10020-024-00957-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
Osteoblasts are mainly derived from mesenchymal stem cells in the bone marrow. These stem cells can differentiate into osteoblasts, which have the functions of secreting bone matrix, promoting bone formation, and participating in bone remodeling. The abnormality of osteoblasts can cause a variety of bone-related diseases, including osteoporosis, delayed fracture healing, and skeletal deformities. In recent years, with the side effects caused by the application of PTH drugs, biphosphonate drugs, and calmodulin drugs, people have carried out more in-depth research on the mechanism of osteoblast differentiation, and are actively looking for natural compounds for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway is considered to be one of the important pathways of osteoblast differentiation, and has become an important target for the treatment of osteoporosis. The Wnt/β-catenin signaling pathway, whether its activation is enhanced or its expression is weakened, will cause a variety of diseases including tumors. This review will summarize the effect of Wnt/β-catenin signaling pathway on osteoblast differentiation and the correlation between the related proteins in the pathway and human diseases. At the same time, the latest research progress of natural compounds targeting Wnt/β-catenin signaling pathway against osteoporosis is summarized.
Collapse
Affiliation(s)
- Xiaohao Wang
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an Medical University, Xi'an, China
| | - Zechao Qu
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Lei Luo
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liang Yan
- Department of Spinal Surgery, Honghui Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
6
|
Chen H, Weng Z, Kalinowska M, Xiong L, Wang L, Song H, Xiao J, Wang F, Shen X. Anti-osteoporosis effect of bioactives in edible medicinal plants: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-17. [PMID: 39093554 DOI: 10.1080/10408398.2024.2386449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Current treatments for osteoporosis include a calcium-rich diet, adequate exercise, and medication. Many synthetic drugs, although fast-acting, can cause a range of side effects for patients when taken over a long period, such as irritation of the digestive tract and a burden on the kidneys. As the world's population ages, the prevalence of osteoporosis is increasing, and the development of safe and effective treatments is urgently needed. Active compounds in edible and medicinal homologous plants have been used for centuries to improve bone quality. It is possible to employ them as dietary supplements to prevent osteoporosis. In this review, we analyze the influencing factors of osteoporosis and systematically summarize the research progress on the anti-osteoporosis effects of active compounds in edible and medicinal homologous plants. The literature suggests that some naturally occurring active compounds in edible and medicinal homologous plants can inhibit bone loss, prevent the degeneration of bone cell microstructure, and reduce bone fragility through alleviating oxidative stress, regulating autophagy, anti-inflammation, improving gut flora, and regulating estrogen level with little side effects. Our review provides useful guidance for the use of edible and medicinal homologous plants and the development of safer novel anti-osteoporosis dietary supplements.
Collapse
Affiliation(s)
- Huiling Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Zebin Weng
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Monika Kalinowska
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Bialystok, Poland
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jianbo Xiao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Department of Analytical Chemistry and Food Science, Instituto de Agroecoloxía e Alimentación (IAA) - CITEXVI, Universidade de Vigo, Nutrition and Bromatology Group, Vigo, Spain
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, Massachusetts, USA
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
7
|
Mohammadi Zonouz A, Ghasemzadeh Rahbardar M, Hosseinzadeh H. The molecular mechanisms of ginkgo (Ginkgo biloba) activity in signaling pathways: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 126:155352. [PMID: 38342017 DOI: 10.1016/j.phymed.2024.155352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND One of the most unique plants that have ever grown on the planet is Ginkgo biloba L., a member of the Ginkgoaceae family with no close living relatives. The existence of several differently structured components of G. biloba has increased the chemical variety of herbal therapy. Numerous studies that investigated the biochemical characteristics of G. biloba suggest this plant as a potential treatment for many illnesses. PURPOSE Review the molecular mechanisms involved in the signaling pathways of G. biloba activity in varied circumstances and its potential as a novel treatment for various illnesses. METHODS Studies focusing on the molecular processes and signaling pathways of compounds and extracts of G. biloba were found and summarized using the proper keywords and operators from Google Scholar, PubMed, Web of Science, and Scopus without time restrictions. RESULTS G. biloba exerts its effects through its anti-inflammatory, anti-apoptotic, anti-cancer, neuroprotective, cardioprotective, hepatoprotective, antiviral, antibacterial, pulmoprotective, renoprotective, anti-osteoporosis, anti-melanogenic, retinoprotective, otoprotective, adipogenic, and anti-adipogenic properties. The most important mechanisms involved in these actions are altering the elevation of ROS formation, inhibiting NADPH oxidases activation, altering the expression of antioxidant enzymes, downregulating MAPKs (p38 MAPK and ERK, and JNK) and AP-1, increasing cAMP, inactivating Stat5, activating the AMPK signaling pathway, affecting Stat3/JAK2, NF-κB, Nrf-2, mTOR, HGF/c-Met, Wnt/β-catenin and BMP signaling pathways, and changing the mitochondrial transmembrane potential, the Bax/Bcl-2 ratio, the release of Cyc from mitochondria to cytosol, the protein cleavage of caspases 3, 7, 8, 9, and 12, poly (ADP-ribose) polymerase, and MMPs levels. CONCLUSIONS G. biloba and its components have gained attention in recent years for their therapeutic benefits, such as their anti-inflammatory, antioxidant, anti-apoptotic, and apoptotic effects. By understanding their molecular mechanisms and signaling pathways, potential novel medicines might be developed in response to the rising public desire for new therapies.
Collapse
Affiliation(s)
| | | | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Arya PN, Saranya I, Selvamurugan N. Crosstalk between Wnt and bone morphogenetic protein signaling during osteogenic differentiation. World J Stem Cells 2024; 16:102-113. [PMID: 38455105 PMCID: PMC10915952 DOI: 10.4252/wjsc.v16.i2.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024] Open
Abstract
Mesenchymal stem cells (MSCs) originate from many sources, including the bone marrow and adipose tissue, and differentiate into various cell types, such as osteoblasts and adipocytes. Recent studies on MSCs have revealed that many transcription factors and signaling pathways control osteogenic development. Osteogenesis is the process by which new bones are formed; it also aids in bone remodeling. Wnt/β-catenin and bone morphogenetic protein (BMP) signaling pathways are involved in many cellular processes and considered to be essential for life. Wnt/β-catenin and BMPs are important for bone formation in mammalian development and various regulatory activities in the body. Recent studies have indicated that these two signaling pathways contribute to osteogenic differentiation. Active Wnt signaling pathway promotes osteogenesis by activating the downstream targets of the BMP signaling pathway. Here, we briefly review the molecular processes underlying the crosstalk between these two pathways and explain their participation in osteogenic differentiation, emphasizing the canonical pathways. This review also discusses the crosstalk mechanisms of Wnt/BMP signaling with Notch- and extracellular-regulated kinases in osteogenic differentiation and bone development.
Collapse
Affiliation(s)
- Pakkath Narayanan Arya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Iyyappan Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, India.
| |
Collapse
|
9
|
Sharma V, Sharma P, Singh TG. Wnt signalling pathways as mediators of neuroprotective mechanisms: therapeutic implications in stroke. Mol Biol Rep 2024; 51:247. [PMID: 38300425 DOI: 10.1007/s11033-023-09202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
A stroke is a complicated neurological illness that occurs when there is a disruption in the blood flow to the brain. This disruption results in the damage of neurons, which then leads to functional abnormalities. The Wnt signalling pathway, which is already well-known for its important function in development and tissue homeostasis, has recently been recognised as a critical factor in the pathophysiology of stroke. Recent studies have shown the Wnt pathway's roles in stroke-related events. The complex-interactions between the Wnt pathway and stroke emphasising the pathway's contributions to neuro-protection and synaptic plasticity. The Wnt pathway's influence on neuro-genesis and synaptic plasticity underscores its potential for driving stroke recovery and rehabilitation strategies. The current review discusses about the Wnt signalling pathway in brain pathophysiology and stroke with special emphasis on the various pathways involved in the positive and negative modulation of Wnt pathway namely Phosphoinositide 3-kinase (PI3-K), Glycogen synthase kinase-3β (GSK-3β), Mitogen-activated protein kinase (MAPK) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | | |
Collapse
|
10
|
Zhou C, Shen S, Zhang M, Luo H, Zhang Y, Wu C, Zeng L, Ruan H. Mechanisms of action and synergetic formulas of plant-based natural compounds from traditional Chinese medicine for managing osteoporosis: a literature review. Front Med (Lausanne) 2023; 10:1235081. [PMID: 37700771 PMCID: PMC10493415 DOI: 10.3389/fmed.2023.1235081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/15/2023] [Indexed: 09/14/2023] Open
Abstract
Osteoporosis (OP) is a systemic skeletal disease prevalent in older adults, characterized by substantial bone loss and deterioration of microstructure, resulting in heightened bone fragility and risk of fracture. Traditional Chinese Medicine (TCM) herbs have been widely employed in OP treatment owing to their advantages, such as good tolerance, low toxicity, high efficiency, and minimal adverse reactions. Increasing evidence also reveals that many plant-based compounds (or secondary metabolites) from these TCM formulas, such as resveratrol, naringin, and ginsenoside, have demonstrated beneficial effects in reducing the risk of OP. Nonetheless, the comprehensive roles of these natural products in OP have not been thoroughly clarified, impeding the development of synergistic formulas for optimal OP treatment. In this review, we sum up the pathological mechanisms of OP based on evidence from basic and clinical research; emphasis is placed on the in vitro and preclinical in vivo evidence-based anti-OP mechanisms of TCM formulas and their chemically active plant constituents, especially their effects on imbalanced bone homeostasis regulated by osteoblasts (responsible for bone formation), osteoclasts (responsible for bone resorption), bone marrow mesenchymal stem cells as well as bone microstructure, angiogenesis, and immune system. Furthermore, we prospectively discuss the combinatory ingredients from natural products from these TCM formulas. Our goal is to improve comprehension of the pharmacological mechanisms of TCM formulas and their chemically active constituents, which could inform the development of new strategies for managing OP.
Collapse
Affiliation(s)
- Chengcong Zhou
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Shuchao Shen
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Muxin Zhang
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Huan Luo
- Department of Pharmacy, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuliang Zhang
- Hangzhou Fuyang Hospital of TCM Orthopedics and Traumatology, Hangzhou, China
| | - Chengliang Wu
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| | - Lingfeng Zeng
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongfeng Ruan
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, China
| |
Collapse
|
11
|
Gong W, Li M, Zhao L, Wang P, Wang X, Wang B, Liu X, Tu X. Sustained release of a highly specific GSK3β inhibitor SB216763 in the PCL scaffold creates an osteogenic niche for osteogenesis, anti-adipogenesis, and potential angiogenesis. Front Bioeng Biotechnol 2023; 11:1215233. [PMID: 37576993 PMCID: PMC10419179 DOI: 10.3389/fbioe.2023.1215233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
The safe and effective use of Wnt signaling is a hot topic in developing osteogenic drugs. SB216763 (S33) is a widely used highly specific GSK3β inhibitor. Here, we show that S33 initiates canonical Wnt signaling by inhibiting GSK3β activity in the bone marrow stromal cell line ST2 and increases osteoblast marker alkaline phosphatase activity, osteoblast marker gene expression including Alpl, Col1α1, and Runx2, promoting osteogenic differentiation and mineralization of ST2 cells. In addition, S33 suppressed the expression of adipogenic transcription factors Pparg and Cebpa in ST2 cells to suppress adipogenesis. ICRT-14, a specific transcriptional inhibitor of Wnt signaling, reversed the effects of S33 on the differentiation of ST2 cells. S33 also increased the expression of osteoclast cytokines RANKL and Opg but decreased the RANKL/Opg ratio and had the potential to inhibit osteoclast differentiation. In addition, we printed the PSCI3D (polycaprolactone, S33, cell-integrated 3D) scaffolds using a newly established integrated 3D printing system for hard materials and cells. S33 sustained release in the hydrogel of the scaffold with 25.4% release on day 1% and 81.7% release over 7 days. Cells in the scaffolds had good cell viability. The ratio of live/dead cells remained above 94% for 7 days, while the cells in the scaffolds proliferated linearly, and the proliferative activity of the PSCI3D scaffold group increased 1.4-fold and 1.7-fold on days 4 and 7, respectively. Similarly, in PSCI3D scaffolds, osteogenic differentiation of st2 cells was increased. The alkaline phosphatase activity increased 1.4- and 4.0-fold on days 7 and 14, respectively, and mineralization increased 1.7-fold at 21 days. In addition, PSCI3D conditioned medium promoted migration and tubulogenesis of HUVECs, and S33 upregulated the expression of Vegfa, a key factor in angiogenesis. In conclusion, our study suggests that S33 functions in osteogenesis, anti-adipogenesis, and potential inhibition of osteoclast differentiation. And the sustained release of S33 in PSCI3D scaffolds creates a safe osteogenic niche, which promotes cell proliferation, osteogenesis, and angiogenesis and has application prospects.
Collapse
Affiliation(s)
- Weimin Gong
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Molin Li
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Lizhou Zhao
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Pengtao Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xiaofang Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Bo Wang
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xing Liu
- Department of Orthopedics, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaolin Tu
- Laboratory of Skeletal Development and Regeneration, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
12
|
Chen WST, Lin TY, Kuo CH, Hsieh DJY, Kuo WW, Liao SC, Kao HC, Ju DT, Lin YJ, Huang CY. Ginkgolide A improves the pleiotropic function and reinforces the neuroprotective effects by mesenchymal stem cell-derived exosomes in 6-OHDA-induced cell model of Parkinson's disease. Aging (Albany NY) 2023; 15:1358-1370. [PMID: 36863713 PMCID: PMC10042680 DOI: 10.18632/aging.204526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
Parkinson's disease (PD) is a common disorder attributed to the loss of midbrain dopamine (mDA) neurons and reduced dopamine secretion. Currently, the treatment regimes for PD comprise deep brain stimulations, however, it attenuates the PD progression marginally and does not improve neuronal cell death. We investigated the function of Ginkgolide A (GA) to reinforce Wharton's Jelly-derived mesenchymal stem cells (WJMSCs) for treating the in vitro model of PD. GA enhanced the self-renewal, proliferation, and cell homing function of WJMSCs as assessed by MTT and transwell co-culture assay with a neuroblastoma cell line. GA pre-treated WJMSCs can restore 6-hydroxydopamine (6-OHDA)-induced cell death in a co-culture assay. Furthermore, exosomes isolated from GA pre-treated WJMSCs significantly rescued 6-OHDA-induced cell death as determined by MTT assay, flow cytometry, and TUNEL assay. Western blotting showed that apoptosis-related proteins were decreased following GA-WJMSCs exosomal treatment which further improved mitochondrial dysfunction. We further demonstrated that exosomes isolated from GA-WJMSCs could restore autophagy using immunofluorescence staining and immunoblotting assay. Finally, we used the alpha-synuclein recombinant protein and found that exosomes derived from GA-WJMSCs led to the reduced aggregation of alpha-synuclein compared to that in control. Our results suggested that GA could be a potential candidate for strengthening stem cell and exosome therapy for PD.
Collapse
Affiliation(s)
- William Shao-Tsu Chen
- Department of Psychiatry, Tzu Chi General Hospital, Hualien 97004, Taiwan
- School of Medicine Tzu Chi University, Hualien 97004, Taiwan
| | - Tzu-Ying Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chia-Hua Kuo
- Laboratory of Exercise Biochemistry, University of Taipei, Taipei, Taiwan
| | - Dennis Jine-Yuan Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Shih-Chieh Liao
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Hui-Chuan Kao
- Department of Public Health, Tzu Chi University, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Jung Lin
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Chih-Yang Huang
- Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
- Department of Biological Science and Technology, Asia University, Taichung, Taiwan
- Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien 970, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
13
|
Zamai RS, Corrêa MG, Ribeiro FV, Cirano FR, Casati MZ, Messora MR, Pimentel SP. Does resveratrol favor peri-implant bone repair in rats with ovariectomy-induced osteoporosis? Gene expression, counter-torque and micro-CT analysis. Braz Oral Res 2023; 37:e003. [PMID: 36700588 DOI: 10.1590/1807-3107bor-2023.vol37.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 11/11/2020] [Indexed: 01/27/2023] Open
Abstract
This study investigated the influence of resveratrol on peri-implant repair and its effects on bone-related markers in ovariectomy-induced osteoporosis in rats. Animals were divided into: OVX+PLAC (n = 10): ovariectomized animals treated with placebo; OVX+RESV (n = 10): OVX treated with resveratrol; OVX+PLAC+ZOL (n = 10): OVX treated with PLAC and zoledronate; OVX+RESV+ZOL (n = 10): OVX treated with RESV and ZOL; and SHOVX+PLAC (n = 10): sham ovariectomy treated with PLAC. RESV and PLAC were administrated after ovariectomy and ZOL after six weeks after OVX, until the end of experiment. One implant was inserted in each tibiae of animals 18 weeks after ovariectomy. After 4 weeks, one implant was removed for counter-torque, and peri-implant tissue was collected for mRNA quantification of several osteogenic markers by PCR. The other tibia was submitted to micro-computed tomography analysis. Reduced counter-torque values, bone-implant contact (BIC) and bone volume fraction (BV/TV), and higher bone porosity (BP) were detected in OVX+PLAC group when compared to SHOVX+PLAC (p < 0.05). OVX+RESV rats presented lower BIC, BV/TV, and trabecular number (Tb.N), and augmented BP and trabecular spacing (Tb.Sp) when compared to SHOVX+PLAC (p < 0.05). Higher Tb.N and connectivity density (Conn.Dn) and reduced Tb.Sp were observed in OVX rats treated with ZOL, independently of RESV, when compared to OVX+PLAC and OVX+RESV groups (p < 0.05), whereas the combination ZOL+RESV promoted lower BP when compared to OVT+PLAC and OVX+RESV (p < 0.05). Gene expression was not influenced by RESV (p > 0.05), whereas ZOL promoted up-regulation of BMP-2 (p<0.05). RESV did not improve peri-implant bone repair in rats with ovariectomy-induced osteoporosis.
Collapse
Affiliation(s)
- Rodrigo Soler Zamai
- Universidade Paulista - UNIP, School of Dentistry , Dental Research Division , São Paulo , SP , Brazil
| | - Monica Grazieli Corrêa
- Universidade Paulista - UNIP, School of Dentistry , Dental Research Division , São Paulo , SP , Brazil
| | - Fernanda Vieira Ribeiro
- Universidade Paulista - UNIP, School of Dentistry , Dental Research Division , São Paulo , SP , Brazil
| | - Fabiano Ribeiro Cirano
- Universidade Paulista - UNIP, School of Dentistry , Dental Research Division , São Paulo , SP , Brazil
| | - Marcio Zaffalon Casati
- Universidade Paulista - UNIP, School of Dentistry , Dental Research Division , São Paulo , SP , Brazil
| | - Michel Reis Messora
- Universidade de São Paulo - USP, Ribeirão Preto School of Dentistry , Department of Surgery and Bucco-Maxillofacial Traumatology and Periodontology , Ribeirão Preto , SP , Brazil
| | - Suzana Peres Pimentel
- Universidade de São Paulo - USP, Ribeirão Preto School of Dentistry , Department of Surgery and Bucco-Maxillofacial Traumatology and Periodontology , Ribeirão Preto , SP , Brazil
| |
Collapse
|
14
|
Li C, Cui Z, Deng S, Chen P, Li X, Yang H. The potential of plant extracts in cell therapy. STEM CELL RESEARCH & THERAPY 2022; 13:472. [PMID: 36104798 PMCID: PMC9476258 DOI: 10.1186/s13287-022-03152-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 05/23/2022] [Indexed: 11/10/2022]
Abstract
Cell therapy is the frontier technology of biotechnology innovation and the most promising method for the treatment of refractory diseases such as tumours. However, cell therapy has disadvantages, such as toxicity and poor therapeutic effects. Plant extracts are natural, widely available, and contain active small molecule ingredients that are widely used in the treatment of various diseases. By studying the effect of plant extracts on cell therapy, active plant extracts that have positive significance in cell therapy can be discovered, and certain contributions to solving the current problems of attenuation and adjuvant therapy in cell therapy can be made. Therefore, this article reviews the currently reported effects of plant extracts in stem cell therapy and immune cell therapy, especially the effects of plant extracts on the proliferation and differentiation of mesenchymal stem cells and nerve stem cells and the potential role of plant extracts in chimeric antigen receptor T-cell immunotherapy (CAR-T) and T-cell receptor modified T-cell immunotherapy (TCR-T), in the hope of encouraging further research and clinical application of plant extracts in cell therapy.
Collapse
|
15
|
Chen J, Song D, Xu Y, Wu L, Tang L, Su Y, Xie X, Zhao J, Xu J, Liu Q. Anti-Osteoclast Effect of Exportin-1 Inhibitor Eltanexor on Osteoporosis Depends on Nuclear Accumulation of IκBα–NF-κB p65 Complex. Front Pharmacol 2022; 13:896108. [PMID: 36110547 PMCID: PMC9468713 DOI: 10.3389/fphar.2022.896108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis affects around 200 million people globally, with menopausal women accounting for the bulk of cases. In the occurrence and development of osteoporosis, a key role is played by osteoclasts. Excessive osteoclast-mediated bone resorption activity reduces bone mass and increases bone fragility, resulting in osteoporosis. Thus, considerable demand exists for designing effective osteoporosis treatments based on targeting osteoclasts. Eltanexor (Elt; KPT-8602) is a selective nuclear-export inhibitor that covalently binds to and blocks the function of the nuclear-export protein exportin-1 (XPO1), which controls the nucleus-to-cytoplasm transfer of certain critical proteins related to growth regulation and tumor suppression, such as p53, IκBα [nuclear factor-κB (NF-κB) inhibitor α] and FOXO1; among these proteins, IκBα, a critical component of the NF-κB signaling pathway that primarily governs NF-κB activation and transcription. How Elt treatment affects osteoclasts remains poorly elucidated. Elt inhibited the growth and activity of RANKL-induced osteoclasts in vitro in a dose-dependent manner, and Elt exerted no cell-killing effect within the effective inhibitory concentration. Mechanistically, Elt was found to trap IκBα in the nucleus and thus protect IκBα from proteasome degradation, which resulted in the blocking of the translocation of IκBα and NF-κB p65 and the consequent inhibition of NF-κB activity. The suppression of NF-κB activity, in turn, inhibited the activity of two transcription factors (NFATc1 and c-Fos) essential for osteoclast formation and led to the downregulation of genes and proteins related to bone resorption. Our study thus provides a newly identified mechanism for targeting in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Junchun Chen
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Dezhi Song
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Yang Xu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Liwei Wu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Lili Tang
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - YuanGang Su
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Xiaoxiao Xie
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-Constructed by the Province and Ministry, Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- *Correspondence: Qian Liu, ; Jiake Xu,
| | - Qian Liu
- Research Centre for Regenerative Medicine, Orthopaedic Department, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- *Correspondence: Qian Liu, ; Jiake Xu,
| |
Collapse
|
16
|
Bonnet C, Brahmbhatt A, Deng SX, Zheng JJ. Wnt signaling activation: targets and therapeutic opportunities for stem cell therapy and regenerative medicine. RSC Chem Biol 2021; 2:1144-1157. [PMID: 34458828 PMCID: PMC8341040 DOI: 10.1039/d1cb00063b] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/18/2022] Open
Abstract
Wnt proteins are secreted morphogens that play critical roles in embryonic development, stem cell proliferation, self-renewal, tissue regeneration and remodeling in adults. While aberrant Wnt signaling contributes to diseases such as cancer, activation of Wnt/β-catenin signaling is a target of interest in stem cell therapy and regenerative medicine. Recent high throughput screenings from chemical and biological libraries, combined with improved gene expression reporter assays of Wnt/β-catenin activation together with rational drug design, led to the development of a myriad of Wnt activators, with different mechanisms of actions. Among them, Wnt mimics, antibodies targeting Wnt inhibitors, glycogen-synthase-3β inhibitors, and indirubins and other natural product derivatives are emerging modalities to treat bone, neurodegenerative, eye, and metabolic disorders, as well as prevent ageing. Nevertheless, the creation of Wnt-based therapies has been hampered by challenges in developing potent and selective Wnt activators without off-target effects, such as oncogenesis. On the other hand, to avoid these risks, their use to promote ex vivo expansion during tissue engineering is a promising application.
Collapse
Affiliation(s)
- Clémence Bonnet
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- INSERM, UMRS1138, Team 17, From Physiopathology of Ocular Diseases to Clinical Development, Paris University, Centre de Recherche des Cordeliers, and Cornea Departement, Cochin Hospital, AP-HP F-75014 Paris France
| | - Anvi Brahmbhatt
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
| | - Sophie X Deng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| | - Jie J Zheng
- Stein Eye Institute, University of California Los Angeles CA USA +1-3107947906 +1-3102062173
- Molecular Biology Institute, University of California Los Angeles CA USA
| |
Collapse
|
17
|
Lee CW, Lin HC, Wang BYH, Wang AYF, Shin RLY, Cheung SYL, Lee OKS. Ginkgolide B monotherapy reverses osteoporosis by regulating oxidative stress-mediated bone homeostasis. Free Radic Biol Med 2021; 168:234-246. [PMID: 33781894 DOI: 10.1016/j.freeradbiomed.2021.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 01/06/2023]
Abstract
Osteoporosis is characterized by reductions in bone mass, which could be attributed to the dysregulation of bone homeostasis, such as the loss of balance between bone-resorbing osteoclasts and bone-forming osteoblasts. Elevated levels of oxidative stress increase bone resorption by promoting osteoclastogenesis and inhibiting the osteogenesis. Ginkgolide B (GB), a small natural molecule from Ginkgo biloba, has been reported to possess pharmacological activities by regulating reactive oxygen species (ROS) in aging-related degenerative diseases. Herein, we assessed the therapeutic effects of GB on the bone phenotypes of mice with osteoporosis induced by (I) aging, (II) ovariectomy, and (III) glucocorticoids. In all three animal models, oral gavage of GB significantly improved bone mass consistent with the increase in the OPG-to-RANKL ratio. In the in vitro experiments, GB promoted osteogenesis in aged mesenchymal stem cells (MSCs) and repressed osteoclastogenesis in aged macrophages by reducing ROS. The serum protein profile in GB-treated aged mice revealed moderate rejuvenating effects; signaling pathways associated with ROS were also regulated. The anabolic and anti-catabolic effects of GB were illustrated by the reduction in ROS. Our results indicate that GB is effective in treating osteoporosis. The use of GB in patients with osteoporosis is worthy of further clinical investigation.
Collapse
Affiliation(s)
- Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Hui-Chu Lin
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Belle Yu-Hsuan Wang
- Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Amanda Yu-Fan Wang
- Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Rita Lih-Ying Shin
- Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Stella Yee Lo Cheung
- Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China.
| | - Oscar Kuang-Sheng Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Department of Orthopedics and Traumatology, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, 999077, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, 999077, China; Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
18
|
Lee KH, Kim JK, Yu JS, Jeong SY, Choi JH, Kim JC, Ko YJ, Kim SH, Kim KH. Ginkwanghols A and B, osteogenic coumaric acid-aliphatic alcohol hybrids from the leaves of Ginkgo biloba. Arch Pharm Res 2021; 44:514-524. [PMID: 33929687 DOI: 10.1007/s12272-021-01329-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/24/2021] [Indexed: 12/01/2022]
Abstract
Ginkgo biloba (Ginkgoaceae), commonly known as "ginkgo", is called a living fossil, and it has been cultivated early in human history for various uses in traditional medicine and as a source of food. As part of ongoing research to explore the chemical diversity and biologically active compounds from natural resources, two new coumaric acid-aliphatic alcohol hybrids, ginkwanghols A (1) and B (2) were isolated from the leaves of G. biloba. The coumaric acid-aliphatic alcohol hybrids of natural products have rarely been reported. The structures of the new compounds were determined by extensive NMR spectroscopic analysis, HRESI-MS, and quantum chemical ECD calculations, and by comparing the experimental HRESI-MS/MS spectrum of chemically transformed compound 1a with the predicted HRESI-MS/MS spectra proposed from CFM-ID 3.0, a software tool for MS/MS spectral prediction and MS-based compound identification. Ginkwanghols A (1) and B (2) increased alkaline phosphatase (ALP) production in C3H10T1/2, a mouse mesenchymal stem cell line, in a dose-dependent manner. In addition, ginkwanghols A and B mediated the promotion of osteogenic differentiation as indicated by the induction of the mRNA expression of the osteogenic markers ALP and osteopontin (OPN).
Collapse
Affiliation(s)
- Kwang Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung Kyu Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Se Yun Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jin Hee Choi
- Sungkyun Biotech Co., Ltd., Suwon, 16419, Republic of Korea
| | - Jin-Chul Kim
- KIST Gangneung Institute of Natural Products, Natural Product Informatics Research Center, Gangneung, 25451, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seon-Hee Kim
- Sungkyun Biotech Co., Ltd., Suwon, 16419, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F, Tan L. Traditional Chinese Medicine Monomers: Novel Strategy for Endogenous Neural Stem Cells Activation After Stroke. Front Cell Neurosci 2021; 15:628115. [PMID: 33716673 PMCID: PMC7952516 DOI: 10.3389/fncel.2021.628115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Stem cell therapy, which has become a potential regenerative medical treatment and a promising approach for treating brain injuries induced by different types of cerebrovascular disease, has various application methods. Activation of endogenous neural stem cells (NSCs) can enable infarcted neuron replacement and promote neural networks’ regeneration without the technical and ethical issues associated with the transplantation of exogenous stem cells. Thus, NSC activation can be a feasible strategy to treat central nervous system (CNS) injury. The potential molecular mechanisms of drug therapy for the activation of endogenous NSCs have gradually been revealed by researchers. Traditional Chinese medicine monomers (TCMs) are active components extracted from Chinese herbs, and some of them have demonstrated the potential to activate proliferation and neurogenesis of NSCs in CNS diseases. Ginsenoside Rg1, astragaloside IV (AST), icariin (ICA), salvianolic acid B (Sal B), resveratrol (RES), curcumin, artesunate (ART), and ginkgolide B (GB) have positive effects on NSCs via different signaling pathways and molecules, such as the Wingless/integrated/β-catenin (Wnt/β-catenin) signaling pathway, the sonic hedgehog (Shh) signaling pathway, brain-derived neurotrophic factor (BDNF), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). This article may provide further motivation for researchers to take advantage of TCMs in studies on CNS injury and stem cell therapy.
Collapse
Affiliation(s)
- Ju Wang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Jun Hu
- Department of Neurology, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuezhu Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Xuejiao Lei
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Hua Feng
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China
| | - Feng Wan
- Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Liang Tan
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Military Medical University), Chongqing, China.,Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
20
|
Xiao H, Wen Y, Wu Z, Chen H, Magdalou J, Wang H, Chen L. Lentivirus-delivered ACE siRNA rescues the impaired peak bone mass accumulation caused by prenatal dexamethasone exposure in male offspring rats. Bone 2020; 141:115578. [PMID: 32791331 DOI: 10.1016/j.bone.2020.115578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/26/2020] [Accepted: 08/07/2020] [Indexed: 10/23/2022]
Abstract
Angiotensin I converting enzyme (ACE) is a major component of the renin-angiotensin system (RAS). Our previous study demonstrated that activated bone RAS was associated with low peak bone mass induced by prenatal dexamethasone exposure (PDE) in male offspring rats. However, we did not determine whether the inhibition of ACE expression could rescue PDE-induced low peak bone mass. In the present study, we treated pregnant Wistar rats with dexamethasone (0.2 mg/kg.d) on gestational days 9-20 and obtained eight weeks old male offspring rats. Some of the offspring rats from the PDE group were injected lentivirus delivered-ACE siRNA (LV-ACE siRNA) through the intra-bone marrow for 4 weeks. We found that the intra-bone marrow injection of LV-ACE siRNA rescued the impaired peak bone mass accumulation caused by PDE in male offspring rats. Moreover, LV-ACE siRNA ameliorated PDE-induced inhibition of osteogenesis and alleviated PDE-induced RAS activation in the bone tissues in vivo. Our in vitro findings further confirmed that LV-ACE siRNA reversed the suppressed osteogenic differentiation caused by dexamethasone, which can be attributed to alleviated RAS activation. In conclusion, LV-ACE siRNA rescued impaired peak bone mass accumulation caused by PDE through alleviation of local bone RAS activation in male offspring rats.
Collapse
Affiliation(s)
- Hao Xiao
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Zhixin Wu
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haitao Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | | | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
21
|
Sun NY, Liu XL, Gao J, Wu XH, Dou B. Astragaloside‑IV modulates NGF‑induced osteoblast differentiation via the GSK3β/β‑catenin signalling pathway. Mol Med Rep 2020; 23:19. [PMID: 33179111 PMCID: PMC7673321 DOI: 10.3892/mmr.2020.11657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 07/17/2020] [Indexed: 11/19/2022] Open
Abstract
Astragaloside (AST) is derived from the Chinese herb Astragalus membranaceus, and studies have demonstrated that it promotes differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). To the best of our knowledge, however, the functions of the component AST-IV in osteogenesis have not previously been elucidated. The present study aimed to verify the effects of AST-IV in osteogenesis. First, the proliferation and differentiation status of human BMSCs incubated with AST-IV were analysed and compared with a control (no AST-IV treatment). In order to determine the involvement of the glycogen synthase kinase (GSK)3β signalling pathway in AST-IV, overexpression and inhibition of GSK3β was induced during incubation of BMSCs with AST-IV. In order to investigate how neuronal growth factor (NGF) contributes to BMSCs differentiation, BMSCs were co-incubated with an anti-NGF antibody and AST IV, and then levels of osteogenesis markers were assessed. The results demonstrated for the first time that AST-IV contributed to BMSCs differentiation. Furthermore, the GSK3β/β-catenin signalling pathway was revealed to be involved in AST-IV-induced osteogenesis; moreover, AST-IV accelerated differentiation by enhancing the expression levels of NGF. In summary, the present study demonstrated that AST-IV promotes BMSCs differentiation, thus providing a potential target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Nan-Yang Sun
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Xiao-Lan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Juan Gao
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Xiao-Hui Wu
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| | - Ben Dou
- Department of Orthopedics, The Second Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
22
|
Xie C, Jiang J, Liu J, Yuan G, Zhao Z. Ginkgolide B attenuates collagen-induced rheumatoid arthritis and regulates fibroblast-like synoviocytes-mediated apoptosis and inflammation. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1497. [PMID: 33313242 PMCID: PMC7729381 DOI: 10.21037/atm-20-6420] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Rheumatoid arthritis (RA) is a systemic disease characterized by chronic synovial infiltration and proliferation, cartilage destruction, and joint injury. Ginkgolide B (GB) is an extract of the leaves of Ginkgo biloba, and pharmacological studies have shown that it has anti-inflammatory and anti-apoptotic activities. The purpose of this study was to investigate the anti-RA properties of GB. Methods In vivo, we established a collagen II-induced arthritis (CIA) mouse model. Mice were divided into five groups (n=10): sham, CIA, GB (10 µM), GB (20 µM), and GB (40 µM). We measured arthritis score, synovial histopathological change, and peripheral blood cytokine levels. In vitro, we used lipopolysaccharide (LPS)-induced-fibroblast-like synoviocytes (RA-FLSs) as the study subject. Cell viability, apoptosis, and inflammatory cytokines levels were detected by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay, flow cytometry, and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), respectively. Finally, the protein expression of wingless-type family member 5A (Wnt5a), c-Jun N-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65 were detected by Western blot. Results Arthritis scores, synovial hyperplasia, and cartilage and bone destruction were significantly ameliorated by GB. Additionally, GB decreased the serum levels of interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), and tumor necrosis factor alpha (TNF-α), matrix metalloproteinase (MMP)-3 and MMP-13, and increased IL-10. In vitro, we found that GB remarkably inhibited RA-FLSs viability at 24 or 48 h in a concentration-dependent manner. The apoptotic ratio was reduced by GB, and it increased the expression of cleaved-Caspase-3 and Bax while decreasing Bcl-2 expression in RA-FLSs. Furthermore, GB attenuated the progression of inflammation by mediating inflammatory cytokine release and MMPs gene expression. Meanwhile, GB inactivated the expression levels of Wnt5a, phosphorylated (p)-JNK, and p-P65 in the synovial tissues and RA-FLSs. Conclusions This study was the first to demonstrate that the anti-RA effect of GB is related to reducing articular cartilage and bone destruction, inducing RA-FLSs apoptosis, and regulating inflammatory cytokine release and the Wnt5a/JNK/NF-κB axis. All the findings highlight that GB might provide a novel treatment approach for RA.
Collapse
Affiliation(s)
- Chuanmei Xie
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jing Jiang
- Department of Gynecology and Obstetrics, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jianping Liu
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Guohua Yuan
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhenyi Zhao
- Department of Rheumatology, the Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
23
|
Effect of Active Ingredients of Chinese Herbal Medicine on the Rejuvenation of Healthy Aging: Focus on Stem Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:7307026. [PMID: 32724327 PMCID: PMC7366228 DOI: 10.1155/2020/7307026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/03/2020] [Accepted: 06/19/2020] [Indexed: 12/31/2022]
Abstract
Stem cells (SCs) are special types of cells with the ability of self-renewal and multidirectional differentiation. As the organism ages, the ability to maintain homeostasis and regeneration deteriorates and the number and activity of stem cells decline. Theoretically, the restoration of stem cells might reverse aging. However, due to their own aging, donor-derived immune rejection, and difficulties in stem cell differentiation control, a series of problems need to be solved to realize the potential for clinical application of stem cells. Chinese herbal medicine is a nature drug library which is suitable for the long-term treatment of aging-related diseases. Modern pharmacological studies have revealed that many active ingredients of Chinese herbal medicines with the effect of promoting stem cells growth and differentiation mainly belong to “reinforcing herbs.” In recent years, exploration of natural active ingredients from Chinese herbal medicines for delaying aging, improving the stem cell microenvironment, and promoting the proliferation and differentiation of endogenous stem cells has attracted substantial attention. This article will focus on active ingredients from Chinese herbs-mediated differentiation of stem cells into particular cell type, like neural cells, endothelial cells, cardiomyocytes, and osteoblasts. We will also discuss the effects of these small molecules on Wnt, Sonic Hedgehog, Notch, eNOS-cGMP, and MAP kinase signal transduction pathways, as well as reveal the role of estrogen receptor α and PPAR γ on selectively promoting or inhibiting stem cells differentiation. This review will provide new insights into the health aging strategies of active ingredients in Chinese herbal medicine in regenerative medicine.
Collapse
|
24
|
Blagodatski A, Klimenko A, Jia L, Katanaev VL. Small Molecule Wnt Pathway Modulators from Natural Sources: History, State of the Art and Perspectives. Cells 2020; 9:cells9030589. [PMID: 32131438 PMCID: PMC7140537 DOI: 10.3390/cells9030589] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023] Open
Abstract
The Wnt signaling is one of the major pathways known to regulate embryonic development, tissue renewal and regeneration in multicellular organisms. Dysregulations of the pathway are a common cause of several types of cancer and other diseases, such as osteoporosis and rheumatoid arthritis. This makes Wnt signaling an important therapeutic target. Small molecule activators and inhibitors of signaling pathways are important biomedical tools which allow one to harness signaling processes in the organism for therapeutic purposes in affordable and specific ways. Natural products are a well known source of biologically active small molecules with therapeutic potential. In this article, we provide an up-to-date overview of existing small molecule modulators of the Wnt pathway derived from natural products. In the first part of the review, we focus on Wnt pathway activators, which can be used for regenerative therapy in various tissues such as skin, bone, cartilage and the nervous system. The second part describes inhibitors of the pathway, which are desired agents for targeted therapies against different cancers. In each part, we pay specific attention to the mechanisms of action of the natural products, to the models on which they were investigated, and to the potential of different taxa to yield bioactive molecules capable of regulating the Wnt signaling.
Collapse
Affiliation(s)
- Artem Blagodatski
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
- Correspondence: (A.B.); (V.L.K.)
| | - Antonina Klimenko
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Vladimir L. Katanaev
- School of Biomedicine, Far Eastern Federal University, Vladivostok 690090, Russia;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China;
- Translational Research Center in Oncohaematology, Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (A.B.); (V.L.K.)
| |
Collapse
|
25
|
Abnormal expression of miR-135b-5p in bone tissue of patients with osteoporosis and its role and mechanism in osteoporosis progression. Exp Ther Med 2019; 19:1042-1050. [PMID: 32010267 PMCID: PMC6966120 DOI: 10.3892/etm.2019.8278] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Osteoporosis (OP) is an age-related bone disease occurring worldwide. Osteoporotic fracture is one of the leading causes of disability and death in elderly patients. MicroRNAs (miRNAs/miRs) are key molecular regulatory factors in bone remodeling processes. The present study investigated the expression and mechanism of miR-135b-5p in patients with osteoporosis. The present results suggested that miR-135b-5p was upregulated in bone tissue fragments of patients with osteoporosis compared with the control patients. MC3T3-E1 cells were used to perform osteogenic differentiation induction. Reverse transcription-quantitative PCR and western blot assay were used to detect the mRNA and protein expression levels of the osteogenic markers osteocalcin (OC), Osterix and alkaline phosphatase (ALP). A specific kit was used for detecting ALP activity. The present results indicated that the mRNA expression levels of OC, Osterix and ALP significantly increased on the 7 and 14th day after osteogenic differentiation induction compared with the control group. Protein expression levels of OC, Osterix and ALP also increased on the 7 and 14th day after induction. ALP assay showed that ALP activity was significantly increased on the 7 and 14th day after induction. In addition, the present study found that miR-135b-5p was downregulated in MC3T3-E1 cells 7 and 14 days after osteogenic differentiation induction. The results of TargetScan analysis and dual luciferase reporter gene assay indicated that runt-related transcription factor 2 (RUNX2) was a direct target gene of miR-135b-5p. RUNX2 was upregulated in MC3T3-E1 cells on the 7 and 14th day after induction. Moreover, the present study found that compared with the osteogenic differentiation induction group, miR-135b-5p mimic significantly decreased OC, Osterix and ALP expression, and reduced ALP activity in MC3T3-E1 cells. However, these reductions were reversed following overexpression of RUNX2. The present results showed that miR-135b-5p mimic significantly reduced cell viability in MC3T3-E1 cells and induced cell apoptosis, and these effects were significantly reversed following RUNX2 overexpression. In summary, the present results suggested that miR-135-5p participated in the occurrence and development of osteoporosis via inhibition of osteogenic differentiation and osteoblast growth by targeting RUNX2. The present study suggested a novel potential target that may faciliate the treatment of osteoporosis, and further study is required to examine this possibility.
Collapse
|
26
|
Zhu B, Xue F, Zhang C, Li G. Ginkgolide B promotes osteoblast differentiation via activation of canonical Wnt signalling and alleviates osteoporosis through a bone anabolic way. J Cell Mol Med 2019; 23:5782-5793. [PMID: 31225702 PMCID: PMC6653448 DOI: 10.1111/jcmm.14503] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022] Open
Abstract
Osteoporosis has become a worldwide problem as the population ages. Although many advances have been made in the treatment of osteoporosis in the past few years, the outcome are sometimes disturbing because of the adverse effects of these treatments. Further studies are still needed to identify novel alternate agents to improve the therapeutic effect. Ginkgolide B (GB), a derivative of Ginkgo biloba leaves, has numerous pharmacological effects, including anticancer and anti-inflammation activities. However, the effect of GB on the regulation of osteoblast activity and bone formation effect has not yet been investigated. In this study, we showed the in vitro and in vivo effects of GB on osteoblast differentiation and bone formation. We found that GB promotes osteoblast differentiation of Bone Mesenchymal Stem Cells (BMSCs) and MC3T3-E1 cells in vitro in a Wnt/β-catenin-dependent manner. In an in vivo study, we constructed a cranial defect model in rats and treated with GB. Histomorphometric and histological analyses confirmed that the usage of GB significantly promotes bone formation. Further study on ovariectomy (OVX) rats demonstrated that GB is capable of alleviating ovariectomy-induced bone loss by enhancing osteoblast activity. Our findings indicate that GB is a potential therapeutic agent of osteoporosis through an anabolic way in bone.
Collapse
Affiliation(s)
- Bin Zhu
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Xue
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guangyi Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|