1
|
Artusa V, De Luca L, Clerici M, Trabattoni D. Connecting the dots: Mitochondrial transfer in immunity, inflammation, and cancer. Immunol Lett 2025; 274:106992. [PMID: 40054017 DOI: 10.1016/j.imlet.2025.106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/15/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025]
Abstract
Mitochondria are more than mere energy generators; they are multifaceted organelles that integrate metabolic, signalling, and immune functions, making them indispensable players in maintaining cellular and systemic health. Mitochondrial transfer has recently garnered attention due to its potential role in several physiological and pathological processes. This process involves multiple mechanisms by which mitochondria, along with mitochondrial DNA and other components, are exchanged between cells. In this review, we examine the critical roles of mitochondrial transfer in health and disease, focusing on its impact on immune cell function, the resolution of inflammation, tissue repair, and regeneration. Additionally, we explore its implications in viral infections and cancer progression. We also provide insights into emerging therapeutic applications, emphasizing its potential to address unmet clinical needs.
Collapse
Affiliation(s)
- Valentina Artusa
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| | - Lara De Luca
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy
| | - Mario Clerici
- Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 12, 20122, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Via Capecelatro 66, 20148 Milan, Italy
| | - Daria Trabattoni
- Department of Biomedical and Clinical Sciences, University of Milan, Via Giovanni Battista Grassi 74, 20157 Milan, Italy.
| |
Collapse
|
2
|
Li M, Wu L, Si H, Wu Y, Liu Y, Zeng Y, Shen B. Engineered mitochondria in diseases: mechanisms, strategies, and applications. Signal Transduct Target Ther 2025; 10:71. [PMID: 40025039 PMCID: PMC11873319 DOI: 10.1038/s41392-024-02081-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/30/2024] [Accepted: 11/17/2024] [Indexed: 03/04/2025] Open
Abstract
Mitochondrial diseases represent one of the most prevalent and debilitating categories of hereditary disorders, characterized by significant genetic, biological, and clinical heterogeneity, which has driven the development of the field of engineered mitochondria. With the growing recognition of the pathogenic role of damaged mitochondria in aging, oxidative disorders, inflammatory diseases, and cancer, the application of engineered mitochondria has expanded to those non-hereditary contexts (sometimes referred to as mitochondria-related diseases). Due to their unique non-eukaryotic origins and endosymbiotic relationship, mitochondria are considered highly suitable for gene editing and intercellular transplantation, and remarkable progress has been achieved in two promising therapeutic strategies-mitochondrial gene editing and artificial mitochondrial transfer (collectively referred to as engineered mitochondria in this review) over the past two decades. Here, we provide a comprehensive review of the mechanisms and recent advancements in the development of engineered mitochondria for therapeutic applications, alongside a concise summary of potential clinical implications and supporting evidence from preclinical and clinical studies. Additionally, an emerging and potentially feasible approach involves ex vivo mitochondrial editing, followed by selection and transplantation, which holds the potential to overcome limitations such as reduced in vivo operability and the introduction of allogeneic mitochondrial heterogeneity, thereby broadening the applicability of engineered mitochondria.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Limin Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Haibo Si
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuangang Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuan Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi Zeng
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Bin Shen
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
3
|
Cao M, Zou J, Shi M, Zhao D, Liu C, Liu Y, Li L, Jiang H. A promising therapeutic: Exosome-mediated mitochondrial transplantation. Int Immunopharmacol 2024; 142:113104. [PMID: 39270344 DOI: 10.1016/j.intimp.2024.113104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Mitochondrial dysfunction has been identified as a trigger for cellular autophagy dysfunction and programmed cell death. Emerging studies have revealed that, in pathological contexts, intercellular transfer of mitochondria takes place, facilitating the restoration of mitochondrial function, energy metabolism, and immune homeostasis. Extracellular vesicles, membranous structures released by cells, exhibit reduced immunogenicity and enhanced stability during the transfer of mitochondria. Thus, this review provides a concise overview of mitochondrial dysfunction related diseases and the mechanism of mitochondrial dysfunction in diseases progression, and the composition and functions of the extracellular vesicles, along with elucidating the principal mechanisms underlying intercellular mitochondrial transfer. In this article, we will focus on the advancements in both animal models and clinical trials concerning the therapeutic efficacy of extracellular vesicle-mediated mitochondrial transplantation across various systemic diseases in neurodegenerative diseases and cardiovascular diseases. Additionally, the review delves into the multifaceted roles of extracellular vesicle-transplanted mitochondria, encompassing anti-inflammatory actions, promotion of tissue repair, enhancement of cellular function, and modulation of metabolic and immune homeostasis within diverse pathological contexts, aiming to provide novel perspectives for extracellular vesicle transplantation of mitochondria in the treatment of various diseases.
Collapse
Affiliation(s)
- Meiling Cao
- Department of Neonatology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Jiahui Zou
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Mingyue Shi
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Danyang Zhao
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Chang Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Yanshan Liu
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Lei Li
- Department of Orthopaedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Hongkun Jiang
- Department of Pediatrics, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
4
|
Wang Y, Liu N, Hu L, Yang J, Han M, Zhou T, Xing L, Jiang H. Nanoengineered mitochondria enable ocular mitochondrial disease therapy via the replacement of dysfunctional mitochondria. Acta Pharm Sin B 2024; 14:5435-5450. [PMID: 39807326 PMCID: PMC11725173 DOI: 10.1016/j.apsb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 01/16/2025] Open
Abstract
Leber's hereditary optic neuropathy (LHON) is an ocular mitochondrial disease that involves the impairment of mitochondrial complex I, which is an important contributor to blindness among young adults across the globe. However, the disorder has no available cures, since the approved drug idebenone for LHON in Europe relies on bypassing complex I defects rather than fixing them. Herein, PARKIN mRNA-loaded nanoparticle (mNP)-engineered mitochondria (mNP-Mito) were designed to replace dysfunctional mitochondria with the delivery of exogenous mitochondria, normalizing the function of complex I for treating LHON. The mNP-Mito facilitated the supplementation of healthy mitochondria containing functional complex I via mitochondrial transfer, along with the elimination of dysfunctional mitochondria with impaired complex I via an enhanced PARKIN-mediated mitophagy process. In a mouse model induced with a complex I inhibitor (rotenone, Rot), mNP-Mito enhanced the presence of healthy mitochondria and exhibited a sharp increase in complex I activity (76.5%) compared to the group exposed to Rot damage (29.5%), which greatly promoted the restoration of ATP generation and mitigation of ocular mitochondrial disease-related phenotypes. This study highlights the significance of nanoengineered mitochondria as a promising and feasible tool for the replacement of dysfunctional mitochondria and the repair of mitochondrial function in mitochondrial disease therapies.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Nahui Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lifan Hu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jingsong Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Mengmeng Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Tianjiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Hulin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
- College of Pharmacy, Yanbian University, Yanji 133002, China
| |
Collapse
|
5
|
Wang C, Xie C. Unveiling the power of mitochondrial transfer in cancer progression: a perspective in ovarian cancer. J Ovarian Res 2024; 17:233. [PMID: 39580453 PMCID: PMC11585251 DOI: 10.1186/s13048-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
Mitochondria are dynamic organelles integral to metabolic processes, coordination of essential biological pathways, and oncogenesis and tumor progression. Recent studies have revealed that mitochondria can be transferred between cells via multiple mechanisms, implicating their involvement in the pathogenesis and progression of ovarian cancer. This review provides a comprehensive analysis of intercellular mitochondrial transfer within the context of ovarian cancer and its tumor microenvironment. We also propose targeted pathways and therapeutic strategies that could be utilized to modulate diseases associated with mitochondrial transfer therapy. Finally, we examine recent advancements in this field and identify several unresolved questions.
Collapse
Affiliation(s)
- Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China
| | - Chuan Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, Sichuan Province, China.
| |
Collapse
|
6
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
7
|
Javadpour P, Abbaszadeh F, Ahmadiani A, Rezaei M, Ghasemi R. Mitochondrial Transportation, Transplantation, and Subsequent Immune Response in Alzheimer's Disease: An Update. Mol Neurobiol 2024; 61:7151-7167. [PMID: 38368286 DOI: 10.1007/s12035-024-04009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by memory impairment and a progressive decline in cognitive function. Mitochondrial dysfunction has been identified as an important contributor to the development of AD, leading to oxidative stress and energy deficits within the brain. While current treatments for AD aim to alleviate symptoms, there is an urgent need to target the underlying mechanisms. The emerging field of mitotherapy, which involves the transplantation of healthy mitochondria into damaged cells, has gained substantial attention and has shown promising results. However, research in the context of AD remains limited, necessitating further investigations. In this review, we summarize the mitochondrial pathways that contribute to the progression of AD. Additionally, we discuss mitochondrial transfer among brain cells and mitotherapy, with a focus on different administration routes, various sources of mitochondria, and potential modifications to enhance transplantation efficacy. Finally, we review the limited available evidence regarding the immune system's response to mitochondrial transplantation in damaged brain regions.
Collapse
Affiliation(s)
- Pegah Javadpour
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolhassan Ahmadiani
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Rezaei
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Rasoul Ghasemi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Jiao Q, Xiang L, Chen Y. Mitochondrial transplantation: A promising therapy for mitochondrial disorders. Int J Pharm 2024; 658:124194. [PMID: 38703929 DOI: 10.1016/j.ijpharm.2024.124194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 04/06/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
As a vital energy source for cellular metabolism and tissue survival, the mitochondrion can undergo morphological or positional change and even shuttle between cells in response to various stimuli and energy demands. Multiple human diseases are originated from mitochondrial dysfunction, but the curative succusses by traditional treatments are limited. Mitochondrial transplantation therapy (MTT) is an innovative therapeutic approach that is to deliver the healthy mitochondria either derived from normal cells or reassembled through synthetic biology into the cells and tissues suffering from mitochondrial damages and finally replace their defective mitochondria and restore their function. MTT has already been under investigation in clinical trials for cardiac ischemia-reperfusion injury and given an encouraging performance in animal models of numerous fatal critical diseases including central nervous system disorders, cardiovascular diseases, inflammatory conditions, cancer, renal injury, and pulmonary damage. This review article summarizes the mechanisms and strategies of mitochondrial transfer and the MTT application for types of mitochondrial diseases, and discusses the potential challenge in MTT clinical application, aiming to exhibit the good therapeutic prospects of MTTs in clinics.
Collapse
Affiliation(s)
- Qiangqiang Jiao
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China
| | - Li Xiang
- Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China
| | - Yuping Chen
- School of Pharmaceutical Sciences, University of South China, Hengyang, Hunan 410001, China; Hengyang Medical School, University of South China, Hengyang, Hunan 410001, China.
| |
Collapse
|
9
|
Duan D, Li H, Chai S, Zhang L, Fan T, Hu Z, Feng Y. The relationship between cardiac oxidative stress, inflammatory cytokine response, cardiac pump function, and prognosis post-myocardial infarction. Sci Rep 2024; 14:8985. [PMID: 38637598 PMCID: PMC11026494 DOI: 10.1038/s41598-024-59344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
This study delves into the potential connections between cardiac oxidative stress, inflammatory cytokine response, cardiac pump function, and prognosis in individuals following myocardial infarction. A total of 276 patients were categorized into two groups: the control group (n = 130) and the observation group (n = 146), based on the drug intervention strategies. The control group received standard drug treatment, while the observation group received early drug intervention targeting antioxidant and anti-inflammatory treatment in addition to standard treatment. Serum levels of inflammatory factors, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-9 (IL-6), were assessed using enzyme-linked immuno sorbent assay (ELISA) kits. The Forkhead Box Protein A2 (FOX2) reagent was used to determine the overall oxidation level. Left Ventricular End-Diastolic Diameter (LVEDD), Left Ventricular Ejection Fraction (LVEF), and End-Systolic Diameter (ESD) were measured using Doppler ultrasound. The observation group exhibited significantly reduced serum levels of TNF-α, IL-1β, and IL-6 compared to the control group (P < 0.05). Moreover, the observation group exerted lower total oxidation levels, OSI, EDD, and ESD compared to the control group (P < 0.05), while the LVEF and TAS levels in the observation group were higher than those in the control group (P < 0.05). Remarkably, the observation group experienced a significant reduction in the incidences of reinfarction, heart failure, arrhythmia, and abnormal valve function compared to the control group (P < 0.05). Decreased cardiac pump function and a more unfavorable prognosis were associated with elevated levels of cardiac oxidative stress and inflammatory factors (P < 0.05). Timely intervention with appropriate medications have a crucial effect in decreasing inflammatory marker levels, mitigating oxidative pressure, and enhancing cardiac pumping capacity and overall prognosis.
Collapse
Affiliation(s)
- Dongpeng Duan
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Hongjun Li
- Publicity and Development Department, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Shiyun Chai
- Departmentof Renaissance Orthopedics & Otolaryngology Head and Neck Surgery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Linlin Zhang
- Department of Infectious Diseases, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Tianfeng Fan
- Department of Emergency, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Zhenfeng Hu
- Department of General Suegery, Affiliated Hospital of Hebei Engineering University, Handan, Hebei, China
| | - Yan Feng
- Department of Critical Care Medicine, Affiliated Hospital of Hebei Engineering University, No.81 Congtai Road, Handan, 056000, Hebei, China.
| |
Collapse
|
10
|
Hassanpour P, Sadeghsoltani F, Haiaty S, Zakeri Z, Saghebasl S, Izadpanah M, Boroumand S, Mota A, Rahmati M, Rahbarghazi R, Talebi M, Rabbani S, Tafti SHA. Mitochondria-loaded alginate-based hydrogel accelerated angiogenesis in a rat model of acute myocardial infarction. Int J Biol Macromol 2024; 260:129633. [PMID: 38253146 DOI: 10.1016/j.ijbiomac.2024.129633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024]
Abstract
Here, mitochondria were isolated from mesenchymal stem cells (MSCs) after being treated with mitochondria-stimulating substrates, 50 μM metformin (Met), and 40 μM dichloroacetic acid (DCA). The isolated mitochondria (2 × 107 particles) were characterized and encapsulated inside 100 μl hydrogel composed of alginate (3 % w/v; Alg)/gelatin (Gel; 1 % w/v) enriched with 1 μM pyrrole (Pyr) solidified in the presence of 0.2 M FeCl3. The physicochemical properties and cytocompatibility of prepared hydrogels were assessed using FTIR, swelling, biodegradation, porosity assays, and scanning electron microscopy (SEM). The mitochondria-bearing hydrogel was injected into the ischemic area of rat hearts. FTIR absorption bands represented that the addition of FeCl3 led to polypyrrole (PPy) formation, polysaccharide oxidation, and interaction between Alg and Gel. SEM images exhibited porous structure and the size of pores was reduced in Alg/Gel + PPy group compared to Alg + PPy hydrogel. Based on the data, both Alg + PPy and Alg/Gel + PPy hydrogels can preserve the integrity and morphology of loaded mitochondria. It was noted that Alg/Gel + PPy hydrogel possessed a higher swelling ratio, degradation, and porosity compared to Alg + PPy group. Data confirmed that Alg/Gel + PPy hydrogel containing 1 μM Pyr yielded the highest survival rate compared to groups with 2 and 4 μM Pyr (p < 0.05). Injection of mitochondria-loaded Alg/Gel + PPy hydrogel yielded significant restoration of left ventricle thickness compared to the infarction, mitochondria, and Alg/Gel + PPy hydrogel groups 14 days post-injection (p < 0.05). Histological analyses revealed a significant increase of vWF+ capillaries and α-SMA+ arterioles in the mitochondria-loaded Alg/Gel + PPy hydrogel group (p < 0.05). Immunofluorescence imaging revealed the ability of rat cardiomyocytes to uptake mitochondria alone or after being loaded into Alg/Gel + PPy hydrogel. These effects were evident in the Alg/Gel + PPy group. Taken together, electroconductive Alg-based hydrogels are suitable platforms for the transplantation of cells and organelles and the regeneration of ischemic heart changes.
Collapse
Affiliation(s)
- Parisa Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ziba Zakeri
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Turkey
| | - Solmaz Saghebasl
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Melika Izadpanah
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safieh Boroumand
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Talebi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyed Hossein Ahmadi Tafti
- Research Center for Advanced Technologies In Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Yang W, Abe S, Tabata Y. Association with cationized gelatin nanospheres enhances cell internalization of mitochondria efficiency. Regen Ther 2023; 24:190-200. [PMID: 37483433 PMCID: PMC10359715 DOI: 10.1016/j.reth.2023.06.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023] Open
Abstract
The objective of this study is to confirm the methodological feasibility of cationized gelatin nanospheres (cGNS) to enhance the internalization efficiency of mitochondria (Mt) isolated to cells for their increasing functions. The cGNS were simply associated on the surface of Mt by the electrostatic interaction. Different sizes of cGNS were used to allow Mt to associate on the Mt surface (Mt-cGNS). As a control, cationized gelatin (cG) was used to modify the Mt surface (Mt-cG). The Mt-cG and Mt-cGNS prepared were cultured with H9c2 cells to examine their internalization. The internalization efficiency significantly increased by utilizing cGNS. However, there was no significant difference in the internalization efficiency among cGNS with different sizes. After incubation of Mt, Mt-cG, and Mt-cGNS, the superoxide amount and ATP generation were evaluated. Significantly lower superoxide amount and higher ATP amount were observed for the Mt-cGNS group compared with those of non-modified Mt group. It is conceivable that cGNS enhance the cellular internalization of Mt, leading to an improve mitochondrial functions in the recipient cells. In conclusion, cGNS are promising to improve the efficacy in mitochondria internalization.
Collapse
|
12
|
Liu Y, Fu T, Li G, Li B, Luo G, Li N, Geng Q. Mitochondrial transfer between cell crosstalk - An emerging role in mitochondrial quality control. Ageing Res Rev 2023; 91:102038. [PMID: 37625463 DOI: 10.1016/j.arr.2023.102038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Intercellular signaling and component conduction are essential for multicellular organisms' homeostasis, and mitochondrial transcellular transport is a key example of such cellular component exchange. In physiological situations, mitochondrial transfer is linked with biological development, energy coordination, and clearance of harmful components, remarkably playing important roles in maintaining mitochondrial quality. Mitochondria are engaged in many critical biological activities, like oxidative metabolism and biomolecular synthesis, and are exclusively prone to malfunction in pathological processes. Importantly, severe mitochondrial damage will further amplify the defects in the mitochondrial quality control system, which will mobilize more active mitochondrial transfer, replenish exogenous healthy mitochondria, and remove endogenous damaged mitochondria to facilitate disease outcomes. This review explores intercellular mitochondrial transport in cells, its role in cellular mitochondrial quality control, and the linking mechanisms in cellular crosstalk. We also describe advances in therapeutic strategies for diseases that target mitochondrial transfer.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tinglv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guorui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boyang Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guoqing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
13
|
Liu Q, Liu M, Yang T, Wang X, Cheng P, Zhou H. What can we do to optimize mitochondrial transplantation therapy for myocardial ischemia-reperfusion injury? Mitochondrion 2023; 72:72-83. [PMID: 37549815 DOI: 10.1016/j.mito.2023.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/20/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mitochondrial transplantation is a promising solution for the heart following ischemia-reperfusion injury due to its capacity to replace damaged mitochondria and restore cardiac function. However, many barriers (such as inadequate mitochondrial internalization, poor survival of transplanted mitochondria, few mitochondria colocalized with cardiac cells) compromise the replacement of injured mitochondria with transplanted mitochondria. Therefore, it is necessary to optimize mitochondrial transplantation therapy to improve clinical effectiveness. By analogy, myocardial ischemia-reperfusion injury is like a withered flower, it needs to absorb enough nutrients to recover and bloom. In this review, we present a comprehensive overview of "nutrients" (source of exogenous mitochondria and different techniques for mitochondrial isolation), "absorption" (mitochondrial transplantation approaches, mitochondrial transplantation dose and internalization mechanism), and "flowering" (the mechanism of mitochondrial transplantation in cardioprotection) for myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng Liu
- Comprehensive treatment area of Traditional Chinese Medicine, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese Medicine and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
14
|
Dave KM, Stolz DB, Manickam DS. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin Drug Deliv 2023; 20:1769-1788. [PMID: 37921194 DOI: 10.1080/17425247.2023.2279115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
15
|
Jiang D, Xu W, Peng F, Sun Y, Pan C, Yu J, Zheng Q, Chen W. Tunneling nanotubes-based intercellular mitochondrial trafficking as a novel therapeutic target in dry eye. Exp Eye Res 2023; 232:109497. [PMID: 37169281 DOI: 10.1016/j.exer.2023.109497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/08/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Cell-to-cell mitochondria transfer via tunneling nanotubes (TNTs) has recently been revealed as a spontaneous way to protect damaged cells. Previously, we have reported mesenchymal stem cells (MSCs) can rescue retinal ganglion cell and corneal epithelium through intercellular mitochondrial trafficking. Mitochondrial damage and oxidative stress in corneal epithelial cells are vital in dry eye disease (DED). However, whether intercellular mitochondrial transfer is involved in the pathological and repair process of DED is currently unknown. Therefore, in this study, we designed a coculture system to evaluate the role of intercellular mitochondrial transfer between human corneal epithelial cells (CEC) in DED. In addition, we successfully discovered the ROCK inhibitor, Y-27632 as an intensifier to improve the efficiency of intercellular mitochondrial transport. As expected, the enhanced mitochondrial transfer promotes the regeneration of CECs. Moreover, through further exploration of mechanisms, it was demonstrated that F-actin-mediated cell morphological changes and cytoskeletal remodeling may be potential mechanisms for Y-27632 to induce mitochondrial metastasis. In conclusion, we established a new method for cell repair in DED that healthy CEC offered mitochondria to damaged CEC, providing a new insight into the cellular mechanism of corneal epithelium homeostatic regenerative therapeutics in DED.
Collapse
Affiliation(s)
- Dan Jiang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Wei Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fangli Peng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yining Sun
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Chengjie Pan
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jinjie Yu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qinxiang Zheng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| | - Wei Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Zaninello M, Bean C. Highly Specialized Mechanisms for Mitochondrial Transport in Neurons: From Intracellular Mobility to Intercellular Transfer of Mitochondria. Biomolecules 2023; 13:938. [PMID: 37371518 DOI: 10.3390/biom13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The highly specialized structure and function of neurons depend on a sophisticated organization of the cytoskeleton, which supports a similarly sophisticated system to traffic organelles and cargo vesicles. Mitochondria sustain crucial functions by providing energy and buffering calcium where it is needed. Accordingly, the distribution of mitochondria is not even in neurons and is regulated by a dynamic balance between active transport and stable docking events. This system is finely tuned to respond to changes in environmental conditions and neuronal activity. In this review, we summarize the mechanisms by which mitochondria are selectively transported in different compartments, taking into account the structure of the cytoskeleton, the molecular motors and the metabolism of neurons. Remarkably, the motor proteins driving the mitochondrial transport in axons have been shown to also mediate their transfer between cells. This so-named intercellular transport of mitochondria is opening new exciting perspectives in the treatment of multiple diseases.
Collapse
Affiliation(s)
- Marta Zaninello
- Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Camilla Bean
- Department of Medicine, University of Udine, 33100 Udine, Italy
| |
Collapse
|
17
|
Sun M, Jiang W, Mu N, Zhang Z, Yu L, Ma H. Mitochondrial transplantation as a novel therapeutic strategy for cardiovascular diseases. J Transl Med 2023; 21:347. [PMID: 37231493 DOI: 10.1186/s12967-023-04203-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/13/2023] [Indexed: 05/27/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of noncommunicable disease-related death worldwide, and effective therapeutic strategies against CVD are urgently needed. Mitochondria dysfunction involves in the onset and development of CVD. Nowadays, mitochondrial transplantation, an alternative treatment aimed at increasing mitochondrial number and improving mitochondrial function, has been emerged with great therapeutic potential. Substantial evidence indicates that mitochondrial transplantation improves cardiac function and outcomes in patients with CVD. Therefore, mitochondrial transplantation has profound implications in the prevention and treatment of CVD. Here, we review the mitochondrial abnormalities that occur in CVD and summarize the therapeutic strategies of mitochondrial transplantation for CVD.
Collapse
Affiliation(s)
- Mingchu Sun
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710072, Shaanxi, P.R. China.
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
18
|
Clemente-Suárez VJ, Martín-Rodríguez A, Yáñez-Sepúlveda R, Tornero-Aguilera JF. Mitochondrial Transfer as a Novel Therapeutic Approach in Disease Diagnosis and Treatment. Int J Mol Sci 2023; 24:ijms24108848. [PMID: 37240194 DOI: 10.3390/ijms24108848] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondrial dysfunction is a hallmark of numerous diseases, including neurodegenerative disorders, metabolic disorders, and cancer. Mitochondrial transfer, the transfer of mitochondria from one cell to another, has recently emerged as a potential therapeutic approach for restoring mitochondrial function in diseased cells. In this review, we summarize the current understanding of mitochondrial transfer, including its mechanisms, potential therapeutic applications, and impact on cell death pathways. We also discuss the future directions and challenges in the field of mitochondrial transfer as a novel therapeutic approach in disease diagnosis and treatment.
Collapse
Affiliation(s)
| | | | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile
| | | |
Collapse
|
19
|
Feng Z, Jin M, Liang J, Kang J, Yang H, Guo S, Sun X. Insight into the effect of biomaterials on osteogenic differentiation of mesenchymal stem cells: A review from a mitochondrial perspective. Acta Biomater 2023; 164:1-14. [PMID: 36972808 DOI: 10.1016/j.actbio.2023.03.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: : • This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.
Collapse
Affiliation(s)
- Ziyi Feng
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China
| | - Junzhi Liang
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Junning Kang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping, Shenyang, 110004 Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, No. 155, Nanjing North Street, Heping District, Shenyang, 110002 Liaoning Province, China.
| | - Xiaoting Sun
- School of Forensic Medicine, China Medical University, No.77, Puhe Road, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
20
|
Geng J, Wang J, Wang H. Emerging Landscape of Cell-Penetrating Peptide-Mediated Organelle Restoration and Replacement. ACS Pharmacol Transl Sci 2023; 6:229-244. [PMID: 36798470 PMCID: PMC9926530 DOI: 10.1021/acsptsci.2c00229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 01/18/2023]
Abstract
Organelles are specialized subunits within a cell membrane that perform specific roles or functions, and their dysfunction can lead to a variety of pathophysiologies including developmental defects, aging, and diseases (cancer, cardiovascular and neurodegenerative diseases). Recent studies have shown that cell-penetrating peptide (CPP)-based pharmacological therapies delivered to organelles or even directly resulting in organelle replacement can restore cell function and improve or prevent disease. In this review, we summarized the current developments in the precise delivery of exogenous cargoes via CPPs at the organelle level, CPP-mediated organelle delivery, and discuss their feasibility as next-generation targeting strategies for the diagnosis and treatment of diseases at the organelle level.
Collapse
Affiliation(s)
- Jingping Geng
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Interdisciplinary
Laboratory of Molecular Biology and Biophysics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097Warszawa, Poland
| | - Jing Wang
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| | - Hu Wang
- Department
of Microbiology and Immunology, Medical School, China Three Gorges University, Yichang443002, China
- Institute
of Cell Engineering, School of Medicine, Johns Hopkins University, Baltimore, Maryland21215, United States
| |
Collapse
|
21
|
D'Amato M, Morra F, Di Meo I, Tiranti V. Mitochondrial Transplantation in Mitochondrial Medicine: Current Challenges and Future Perspectives. Int J Mol Sci 2023; 24:1969. [PMID: 36768312 PMCID: PMC9916997 DOI: 10.3390/ijms24031969] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial diseases (MDs) are inherited genetic conditions characterized by pathogenic mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA). Current therapies are still far from being fully effective and from covering the broad spectrum of mutations in mtDNA. For example, unlike heteroplasmic conditions, MDs caused by homoplasmic mtDNA mutations do not yet benefit from advances in molecular approaches. An attractive method of providing dysfunctional cells and/or tissues with healthy mitochondria is mitochondrial transplantation. In this review, we discuss what is known about intercellular transfer of mitochondria and the methods used to transfer mitochondria both in vitro and in vivo, and we provide an outlook on future therapeutic applications. Overall, the transfer of healthy mitochondria containing wild-type mtDNA copies could induce a heteroplasmic shift even when homoplasmic mtDNA variants are present, with the aim of attenuating or preventing the progression of pathological clinical phenotypes. In summary, mitochondrial transplantation is a challenging but potentially ground-breaking option for the treatment of various mitochondrial pathologies, although several questions remain to be addressed before its application in mitochondrial medicine.
Collapse
Affiliation(s)
- Marco D'Amato
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Francesca Morra
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Ivano Di Meo
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Valeria Tiranti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| |
Collapse
|
22
|
Preferred Migration of Mitochondria toward Cells and Tissues with Mitochondrial Damage. Int J Mol Sci 2022; 23:ijms232415734. [PMID: 36555376 PMCID: PMC9779580 DOI: 10.3390/ijms232415734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.
Collapse
|
23
|
Huang X, Zeng Z, Li S, Xie Y, Tong X. The Therapeutic Strategies Targeting Mitochondrial Metabolism in Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14122760. [PMID: 36559254 PMCID: PMC9788260 DOI: 10.3390/pharmaceutics14122760] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular disease (CVD) is a group of systemic disorders threatening human health with complex pathogenesis, among which mitochondrial energy metabolism reprogramming has a critical role. Mitochondria are cell organelles that fuel the energy essential for biochemical reactions and maintain normal physiological functions of the body. Mitochondrial metabolic disorders are extensively involved in the progression of CVD, especially for energy-demanding organs such as the heart. Therefore, elucidating the role of mitochondrial metabolism in the progression of CVD is of great significance to further understand the pathogenesis of CVD and explore preventive and therapeutic methods. In this review, we discuss the major factors of mitochondrial metabolism and their potential roles in the prevention and treatment of CVD. The current application of mitochondria-targeted therapeutic agents in the treatment of CVD and advances in mitochondria-targeted gene therapy technologies are also overviewed.
Collapse
Affiliation(s)
- Xiaoyang Huang
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Zhenhua Zeng
- Biomedical Research Center, Hunan University of Medicine, Huaihua 418000, China
| | - Siqi Li
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Yufei Xie
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoyong Tong
- Department of Pharmacology and Pharmacy, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
- Correspondence:
| |
Collapse
|
24
|
Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci 2022; 12:66. [PMID: 35590379 PMCID: PMC9121600 DOI: 10.1186/s13578-022-00805-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 05/01/2022] [Indexed: 12/16/2022] Open
Abstract
Mitochondria play a pivotal role in energy generation and cellular physiological processes. These organelles are highly dynamic, constantly changing their morphology, cellular location, and distribution in response to cellular stress. In recent years, the phenomenon of mitochondrial transfer has attracted significant attention and interest from biologists and medical investigators. Intercellular mitochondrial transfer occurs in different ways, including tunnelling nanotubes (TNTs), extracellular vesicles (EVs), and gap junction channels (GJCs). According to research on intercellular mitochondrial transfer in physiological and pathological environments, mitochondrial transfer hold great potential for maintaining body homeostasis and regulating pathological processes. Multiple research groups have developed artificial mitochondrial transfer/transplantation (AMT/T) methods that transfer healthy mitochondria into damaged cells and recover cellular function. This paper reviews intercellular spontaneous mitochondrial transfer modes, mechanisms, and the latest methods of AMT/T. Furthermore, potential application value and mechanism of AMT/T in disease treatment are also discussed.
Collapse
|
25
|
Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. Lab Invest 2022; 20:483. [PMID: 36273156 PMCID: PMC9588235 DOI: 10.1186/s12967-022-03693-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022]
Abstract
Metabolic diseases, including obesity, diabetes, and nonalcoholic fatty liver disease (NAFLD), are rising in both incidence and prevalence and remain a major global health and socioeconomic burden in the twenty-first century. Despite an increasing understanding of these diseases, the lack of effective treatments remains an ongoing challenge. Mitochondria are key players in intracellular energy production, calcium homeostasis, signaling, and apoptosis. Emerging evidence shows that mitochondrial dysfunction participates in the pathogeneses of metabolic diseases. Exogenous supplementation with healthy mitochondria is emerging as a promising therapeutic approach to treating these diseases. This article reviews recent advances in the use of mitochondrial transplantation therapy (MRT) in such treatment.
Collapse
Affiliation(s)
- Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,School of Medicine, Jiangsu University, ZhenjiangJiangsu Province, 212013, China
| | - Ying Chu
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Zhihua Yun
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China. .,Central Laboratory, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| | - Jianhua Jin
- Department of Oncology, Wujin Hospital Affiliated With Jiangsu University (The Wujin Clinical College of Xuzhou Medical University), Changzhou, 213017, Jiangsu Province, China.
| |
Collapse
|
26
|
Mitochondrial DNA Is a Vital Driving Force in Ischemia-Reperfusion Injury in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6235747. [PMID: 35620580 PMCID: PMC9129988 DOI: 10.1155/2022/6235747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022]
Abstract
According to the latest Global Burden of Disease Study, cardiovascular disease (CVD) is the leading cause of death, and ischemic heart disease and stroke are the cause of death in approximately half of CVD patients. In CVD, mitochondrial dysfunction following ischemia-reperfusion (I/R) injury results in heart failure. The proper functioning of oxidative phosphorylation (OXPHOS) and the mitochondrial life cycle in cardiac mitochondria are closely related to mitochondrial DNA (mtDNA). Following myocardial I/R injury, mitochondria activate multiple repair and clearance mechanisms to repair damaged mtDNA. When these repair mechanisms are insufficient to restore the structure and function of mtDNA, irreversible mtDNA damage occurs, leading to mtDNA mutations. Since mtDNA mutations aggravate OXPHOS dysfunction and affect mitophagy, mtDNA mutation accumulation leads to leakage of mtDNA and proteins outside the mitochondria, inducing an innate immune response, aggravating cardiovascular injury, and leading to the need for external interventions to stop or slow the disease course. On the other hand, mtDNA released into the circulation after cardiac injury can serve as a biomarker for CVD diagnosis and prognosis. This article reviews the pathogenic basis and related research findings of mtDNA oxidative damage and mtDNA leak-triggered innate immune response associated with I/R injury in CVD and summarizes therapeutic options that target mtDNA.
Collapse
|
27
|
Mohan T, Kleinschek KS, Kargl R. Polysaccharide peptide conjugates: Chemistry, properties and applications. Carbohydr Polym 2022; 280:118875. [PMID: 35027118 DOI: 10.1016/j.carbpol.2021.118875] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/25/2021] [Accepted: 11/05/2021] [Indexed: 11/02/2022]
Abstract
The intention of this publication is to give an overview on research related to conjugates of polysaccharides and peptides. Dextran, chitosan, and alginate were selected, to cover four of the most often encountered functional groups known to be present in polysaccharides. These groups are the hydroxyl, the amine, the carboxyl, and the acetal functionality. A collection of the commonly used chemical reactions for conjugation is provided. Conjugation results into distinct properties compared to the parent polysaccharide, and a number of these characteristics are highlighted. This review aims at demonstrating the applicability of said conjugates with a strong emphasis on biomedical applications, drug delivery, biosensing, and tissue engineering. Some suggestions are made for more rigorous chemistries and analytics that could be investigated. Finally, an outlook is given into which direction the field could be developed further. We hope that this survey provides the reader with a comprehensive summary and contributes to the progress of works that aim at synthetically combining two of the main building blocks of life into supramolecular structures with unprecedented biological response.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Karin Stana Kleinschek
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Rupert Kargl
- Institute for Chemistry and Technology of Biobased Systems (IBIOSYS), Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria; Institute for Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
28
|
Gao L, Liu F, Hou PP, Manaenko A, Xiao ZP, Wang F, Xu TL, Hu Q. Neurons Release Injured Mitochondria as “Help-Me” Signaling After Ischemic Stroke. Front Aging Neurosci 2022; 14:785761. [PMID: 35309888 PMCID: PMC8926840 DOI: 10.3389/fnagi.2022.785761] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/17/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction has been regarded as one of the major contributors of ischemic neuronal death after stroke. Recently, intercellular mitochondrial transfer between different cell types has been widely studied and suggested as a potential therapeutic approach. However, whether mitochondria are involved in the neuron-glia cross-talk following ischemic stroke and the underlying mechanisms have not been explored yet. In this study, we demonstrated that under physiological condition, neurons release few mitochondria into the extracellular space, and the mitochondrial release increased when subjected to the challenges of acidosis, hydrogen peroxide (H2O2), N-methyl-D-aspartate (NMDA), or glutamate. Acidosis reduced the mitochondrial basal respiration and lowered the membrane potential in primary-cultured mouse cortical neurons. These defective mitochondria were prone to be expelled to the extracellular space by the injured neurons, and were engulfed by adjacent astrocytes, leading to increased astrocytic expressions of mitochondrial Rho GTPase 1 (Miro 1) and mitochondrial transcription factor A (TFAM) at mRNA level. In mice subjected to transient focal cerebral ischemia, the number of defective mitochondria in the cerebrospinal fluid increased. Our results suggested that the neuron-derived mitochondria may serve as a “help-me” signaling and mediate the neuron-astrocyte cross-talk following ischemic stroke. Promoting the intercellular mitochondrial transfer by accelerating the neuronal releasing or astrocytic engulfing might be a potential and attractive therapeutic strategy for the treatment of ischemic stroke in the future.
Collapse
Affiliation(s)
- Li Gao
- Central Laboratory, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Cerebrovascular Disease Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Liu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pin-Pin Hou
- Central Laboratory, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anatol Manaenko
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Xiao
- Cerebrovascular Disease Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Wang
- Cerebrovascular Disease Center, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tian-Le Xu
- Department of Anatomy and Physiology, Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Tian-Le Xu,
| | - Qin Hu
- Central Laboratory, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Qin Hu,
| |
Collapse
|
29
|
Huang T, Zhang T, Gao J. Targeted mitochondrial delivery: A therapeutic new era for disease treatment. J Control Release 2022; 343:89-106. [DOI: 10.1016/j.jconrel.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/13/2022]
|
30
|
Chen J, Zhong J, Wang LL, Chen YY. Mitochondrial Transfer in Cardiovascular Disease: From Mechanisms to Therapeutic Implications. Front Cardiovasc Med 2021; 8:771298. [PMID: 34901230 PMCID: PMC8661009 DOI: 10.3389/fcvm.2021.771298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial dysfunction has been proven to play a critical role in the pathogenesis of cardiovascular diseases. The phenomenon of intercellular mitochondrial transfer has been discovered in the cardiovascular system. Studies have shown that cell-to-cell mitochondrial transfer plays an essential role in regulating cardiovascular system development and maintaining normal tissue homeostasis under physiological conditions. In pathological conditions, damaged cells transfer dysfunctional mitochondria toward recipient cells to ask for help and take up exogenous functional mitochondria to alleviate injury. In this review, we summarized the mechanism of mitochondrial transfer in the cardiovascular system and outlined the fate and functional role of donor mitochondria. We also discussed the advantage and challenges of mitochondrial transfer strategies, including cell-based mitochondrial transplantation, extracellular vesicle-based mitochondrial transplantation, and naked mitochondrial transplantation, for the treatment of cardiovascular disorders. We hope this review will provide perspectives on mitochondrial-targeted therapeutics in cardiovascular diseases.
Collapse
Affiliation(s)
- Jun Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinjie Zhong
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Liu Y, Gao X, Xiao Q, Wang W, Zhu B. Correlation Between QTc Dispersion and Soluble Growth-stimulating Gene 2 Protein on the Early Prognosis of Acute Carbon Monoxide Poisoning Heart Disease. J Cardiovasc Pharmacol 2021; 78:572-580. [PMID: 34166304 DOI: 10.1097/fjc.0000000000001090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 06/05/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT This study aimed to explore the correlation between QTc dispersion (QTcd) and soluble growth-stimulating gene 2 protein (sST2) after heart rate correction in patients with acute carbon monoxide poisoning heart disease. Among the 150 patients, 35 cases had severe toxic heart disease. The concentrations of sST2, cardiac troponin I, and creatine kinase-MB in the severe group began to increase from admission, 24 hours, and 2 days, respectively, and their detected values were all higher than those in the nonsevere group and the normal control group. There were statistically significant differences in sST2 and QTcd between the poisoning, nonsevere, and normal control groups before the treatment. There was a statistically significant difference between the indexes of the poisoning groups at different degrees 2 and 3 days after poisoning. Receiver operating characteristic curve analysis confirmed the sensitivity and specificity of sST2 and QTcd. The correlation analysis showed that sST2 and QTcd levels were positively correlated with the incidence of severe heart disease at admission. Generally, the combined observation of sST2 and QTcd improved the prediction sensitivity and were early predictor indexes of toxic heart disease.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of Emergency, Harrison International Peace Hospital Affiliated to Hebei Medical University, Hebei, China
| | | | | | | | | |
Collapse
|
32
|
Ali Pour P, Hosseinian S, Kheradvar A. Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. Am J Physiol Cell Physiol 2021; 321:C489-C503. [PMID: 34191626 DOI: 10.1152/ajpcell.00152.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondrial transplantation is emerging as a novel cellular biotherapy to alleviate mitochondrial damage and dysfunction. Mitochondria play a crucial role in establishing cellular homeostasis and providing cell with the energy necessary to accomplish its function. Owing to its endosymbiotic origin, mitochondria share many features with their bacterial ancestors. Unlike the nuclear DNA, which is packaged into nucleosomes and protected from adverse environmental effects, mitochondrial DNA are more prone to harsh environmental effects, in particular that of the reactive oxygen species. Mitochondrial damage and dysfunction are implicated in many diseases ranging from metabolic diseases to cardiovascular and neurodegenerative diseases, among others. While it was once thought that transplantation of mitochondria would not be possible due to their semiautonomous nature and reliance on the nucleus, recent advances have shown that it is possible to transplant viable functional intact mitochondria from autologous, allogenic, and xenogeneic sources into different cell types. Moreover, current research suggests that the transplantation could positively modulate bioenergetics and improve disease outcome. Mitochondrial transplantation techniques and consequences of transplantation in cardiomyocytes are the theme of this review. We outline the different mitochondrial isolation and transfer techniques. Finally, we detail the consequences of mitochondrial transplantation in the cardiovascular system, more specifically in the context of cardiomyopathies and ischemia.
Collapse
Affiliation(s)
- Paria Ali Pour
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California
| | - Sina Hosseinian
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,School of Medicine, University of California, Irvine, California
| | - Arash Kheradvar
- Edwards Lifesciences Center for Advanced Cardiovascular Technology, Irvine, California.,Department of Biomedical Engineering, University of California, Irvine, California.,School of Medicine, University of California, Irvine, California
| |
Collapse
|
33
|
Generation of somatic mitochondrial DNA-replaced cells for mitochondrial dysfunction treatment. Sci Rep 2021; 11:10897. [PMID: 34035362 PMCID: PMC8149667 DOI: 10.1038/s41598-021-90316-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial diseases currently have no cure regardless of whether the cause is a nuclear or mitochondrial genome mutation. Mitochondrial dysfunction notably affects a wide range of disorders in aged individuals, including neurodegenerative diseases, cancers, and even senescence. Here, we present a procedure to generate mitochondrial DNA-replaced somatic cells with a combination of a temporal reduction in endogenous mitochondrial DNA and coincubation with exogeneous isolated mitochondria. Heteroplasmy in mitochondrial disease patient-derived fibroblasts in which the mutant genotype was dominant over the wild-type genotype was reversed. Mitochondrial disease patient-derived fibroblasts regained respiratory function and showed lifespan extension. Mitochondrial membranous components were utilized as a vehicle to deliver the genetic materials into endogenous mitochondria-like horizontal genetic transfer in prokaryotes. Mitochondrial DNA-replaced cells could be a resource for transplantation to treat maternal inherited mitochondrial diseases.
Collapse
|
34
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
35
|
Ibáñez B, Villena-Gutierrez R. Cardiac Mitochondrial Transplantation: The Force Awakens. J Am Coll Cardiol 2021; 77:1089-1092. [PMID: 33632483 DOI: 10.1016/j.jacc.2021.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Cardiology Department, IIS-Fundación Jiménez Díaz Hospital, Madrid; Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares, Madrid, Spain.
| | | |
Collapse
|
36
|
Intercellular mitochondrial transfer as a means of tissue revitalization. Signal Transduct Target Ther 2021; 6:65. [PMID: 33589598 PMCID: PMC7884415 DOI: 10.1038/s41392-020-00440-z] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/04/2020] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
As the crucial powerhouse for cell metabolism and tissue survival, the mitochondrion frequently undergoes morphological or positional changes when responding to various stresses and energy demands. In addition to intracellular changes, mitochondria can also be transferred intercellularly. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, the intercellular mitochondrial transfer also occurs under physiological conditions. In this review, the phenomenon of mitochondrial transfer is described according to its function under both physiological and pathological conditions, including tissue homeostasis, damaged tissue repair, tumor progression, and immunoregulation. Then, the mechanisms that contribute to this process are summarized, such as the trigger factors and transfer routes. Furthermore, various perspectives are explored to better understand the mysteries of cell-cell mitochondrial trafficking. In addition, potential therapeutic strategies for mitochondria-targeted application to rescue tissue damage and degeneration, as well as the inhibition of tumor progression, are discussed.
Collapse
|
37
|
"Empowering" Cardiac Cells via Stem Cell Derived Mitochondrial Transplantation- Does Age Matter? Int J Mol Sci 2021; 22:ijms22041824. [PMID: 33673127 PMCID: PMC7918132 DOI: 10.3390/ijms22041824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.
Collapse
|
38
|
Zeng M, He Y, Du H, Yang J, Wan H. Output Regulation and Function Optimization of Mitochondria in Eukaryotes. Front Cell Dev Biol 2020; 8:598112. [PMID: 33330486 PMCID: PMC7718039 DOI: 10.3389/fcell.2020.598112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 12/23/2022] Open
Abstract
The emergence of endosymbiosis between aerobic alpha-proteobacterium and anaerobic eukaryotic cell precursors opened the chapter of eukaryotic evolution. Multiple functions of mitochondria originated from the ancient precursors of mitochondria and underwent remodeling in eukaryotic cells. Due to the dependence on mitochondrial functions, eukaryotic cells need to constantly adjust mitochondrial output based on energy demand and cellular stress. Meanwhile, eukaryotes conduct the metabolic cooperation between different cells through the involvement of mitochondria. Under some conditions, mitochondria might also be transferred to nearby cells to provide a protective mechanism. However, the endosymbiont relationship determines the existence of various types of mitochondrial injury, such as proteotoxic stress, mutational meltdown, oxidative injure, and immune activation caused by released mitochondrial contents. Eukaryotes have a repertoire of mitochondrial optimization processes, including various mitochondrial quality-control proteins, regulation of mitochondrial dynamics and activation of mitochondrial autophagy. When these quality-control processes fail, eukaryotic cells can activate apoptosis to intercept uncontrolled cell death, thereby minimizing the damage to extracellular tissue. In this review, we describe the intracellular and extracellular context-based regulation of mitochondrial output in eukaryotic cells, and introduce new findings on multifaceted quality-control processes to deal with mitochondrial defects.
Collapse
Affiliation(s)
- Miaolin Zeng
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixia Du
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.,College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
39
|
Challenges in Promoting Mitochondrial Transplantation Therapy. Int J Mol Sci 2020; 21:ijms21176365. [PMID: 32887310 PMCID: PMC7504154 DOI: 10.3390/ijms21176365] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 08/30/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial transplantation therapy is an innovative strategy for the treatment of mitochondrial dysfunction. The approach has been reported to be useful in the treatment of cardiac ischemic reperfusion injuries in human clinical trials and has also been shown to be useful in animal studies as a method for treating mitochondrial dysfunction in various tissues, including the heart, liver, lungs, and brain. On the other hand, there is no methodology for using preserved mitochondria. Research into the pharmaceutical formulation of mitochondria to promote mitochondrial transplantation therapy as the next step in treating many patients is urgently needed. In this review, we overview previous studies on the therapeutic effects of mitochondrial transplantation. We also discuss studies related to immune responses that occur during mitochondrial transplantation and methods for preserving mitochondria, which are key to their stability as medicines. Finally, we describe research related to mitochondrial targeting drug delivery systems (DDS) and discuss future perspectives of mitochondrial transplantation.
Collapse
|
40
|
Kami D, Gojo S. From Cell Entry to Engraftment of Exogenous Mitochondria. Int J Mol Sci 2020; 21:ijms21144995. [PMID: 32679802 PMCID: PMC7404190 DOI: 10.3390/ijms21144995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/07/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial transfer has been recognized to play a role in a variety of processes, ranging from fertilization to cancer and neurodegenerative diseases as well as mammalian horizontal gene transfer. It is achieved through either exogeneous or intercellular mitochondrial transfer. From the viewpoint of evolution, exogeneous mitochondrial transfer is quite akin to the initial process of symbiosis between α-protobacterium and archaea, although the progeny have developed more sophisticated machinery to engulf environmental materials, including nutrients, bacteria, and viruses. A molecular-based knowledge of endocytosis, including macropinocytosis and endosomal escape involving bacteria and viruses, could provide mechanistic insights into exogeneous mitochondrial transfer. We focus on exogeneous mitochondrial transfer in this review to facilitate the clinical development of the use of isolated mitochondria to treat various pathological conditions. Several kinds of novel procedures to enhance exogeneous mitochondrial transfer have been developed and are summarized in this review.
Collapse
|
41
|
Maeda H, Kami D, Maeda R, Murata Y, Jo JI, Kitani T, Tabata Y, Matoba S, Gojo S. TAT-dextran-mediated mitochondrial transfer enhances recovery from models of reperfusion injury in cultured cardiomyocytes. J Cell Mol Med 2020; 24:5007-5020. [PMID: 32212298 PMCID: PMC7205789 DOI: 10.1111/jcmm.15120] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction is a leading cause of death among single organ diseases. Despite successful reperfusion therapy, ischaemia reperfusion injury (IRI) can induce oxidative stress (OS), cardiomyocyte apoptosis, autophagy and release of inflammatory cytokines, resulting in increased infarct size. In IRI, mitochondrial dysfunction is a key factor, which involves the production of reactive oxygen species, activation of inflammatory signalling cascades or innate immune responses, and apoptosis. Therefore, intercellular mitochondrial transfer could be considered as a promising treatment strategy for ischaemic heart disease. However, low transfer efficiency is a challenge in clinical settings. We previously reported uptake of isolated exogenous mitochondria into cultured cells through co‐incubation, mediated by macropinocytosis. Here, we report the use of transactivator of transcription dextran complexes (TAT‐dextran) to enhance cellular uptake of exogenous mitochondria and improve the protective effect of mitochondrial replenishment in neonatal rat cardiomyocytes (NRCMs) against OS. TAT‐dextran–modified mitochondria (TAT‐Mito) showed a significantly higher level of cellular uptake. Mitochondrial transfer into NRCMs resulted in anti‐apoptotic capability and prevented the suppression of oxidative phosphorylation in mitochondria after OS. Furthermore, TAT‐Mito significantly reduced the apoptotic rates of cardiomyocytes after OS, compared to simple mitochondrial transfer. These results indicate the potential of mitochondrial replenishment therapy in OS‐induced myocardial IRI.
Collapse
Affiliation(s)
- Hideki Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ryotaro Maeda
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Murata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-Ichiro Jo
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Tomoya Kitani
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|