1
|
Li K, Pei Y, Dong X, Wu Y, Lou X, Li Y, Liang S, Wu Y, Xu D, Li B, Cui W. ALKBH5-mediated m6A regulates the alternative splicing events of SRSF10 in ovarian cancer. Cancer Gene Ther 2025:10.1038/s41417-025-00898-5. [PMID: 40175608 DOI: 10.1038/s41417-025-00898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 01/23/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025]
Abstract
N6-methyladenosine (m6A) methylation was found to be involved in the tumorigenesis and development of ovarian cancer. Until now, it is not clear to identify the mechanism by m6A demethylase ALKBH5 affects RNA splicing in ovarian cancer. In this study, we examined ALKBH5 protein expression and m6A levels by immunohistochemistry and analyzed their correlation with clinical features and prognosis in patients with ovarian cancer. We identified the elevated expression of ALKBH5 and a general reduction in the level of m6A in ovarian cancer patients. In the ovarian cancer cell line A2780, ALKBH5 depletion was found using the siRNA strategy or the CRISPR/Cas9 knockout (KO) method, which significantly reduced the level of m6A and inhibited cell viability, proliferation, and migration. The MeRIP-seq and RNA-seq showed that ALKBH5-regulated m6A RNA modification mainly affects RNA splicing function in ovarian cancer cells. SRSF10 is a key target gene involved in alternative splicing regulation through ALKBH5-m6A. ALKBH5 knockdown resulted in increased retention of SRSF10 exon 5 and decreased expression of transcript SRSF10-211. In conclusion, the alternative splicing regulation effect by ALKBH5-mediated m6A suggests a novel promising approach for m6A modification in OC and provides novel insights into the mechanisms involved in ovarian cancer therapy.
Collapse
Affiliation(s)
- Kexin Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuqing Pei
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Clinical Research Center for Laboratory Medicine, Chengdu, China
- Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu, China
| | - Xin Dong
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoying Lou
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiling Li
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuang Liang
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Wu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danfei Xu
- Department of Clinical Laboratory, State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Practice of Laboratory Medicine in Qinghai Province, Beijing, China.
| |
Collapse
|
2
|
Stejskal S, Rájecká V, Covelo-Molares H, Sinigaglia K, Brožinová K, Kašiarová L, Dohnálková M, Reyes-Gutierrez PE, Cahová H, Keegan LP, O'Connell MA, Vaňáčová Š. Global analysis by LC-MS/MS of N6-methyladenosine and inosine in mRNA reveal complex incidence. RNA (NEW YORK, N.Y.) 2025; 31:514-528. [PMID: 39746750 PMCID: PMC11912911 DOI: 10.1261/rna.080324.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
The precise and unambiguous detection and quantification of internal RNA modifications represents a critical step for understanding their physiological functions. The methods of direct RNA sequencing are quickly developing allowing for the precise location of internal RNA marks. This detection is, however, not quantitative and still presents detection limits. One of the biggest remaining challenges in the field is still the detection and quantification of m6A, m6Am, inosine, and m1A modifications of adenosine. The second intriguing and timely question remaining to be addressed is the extent to which individual marks are coregulated or potentially can affect each other. Here, we present a methodological approach to detect and quantify several key mRNA modifications in human total RNA and in mRNA, which is difficult to purify away from contaminating tRNA. We show that the adenosine demethylase FTO primarily targets m6Am marks in noncoding RNAs in HEK293T cells. Surprisingly, we observe little effect of FTO or ALKBH5 depletion on the m6A mRNA levels. Interestingly, the upregulation of ALKBH5 is accompanied by an increase in inosine level in overall mRNA.
Collapse
Affiliation(s)
- Stanislav Stejskal
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Veronika Rájecká
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Helena Covelo-Molares
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Ketty Sinigaglia
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Květoslava Brožinová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Linda Kašiarová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Michaela Dohnálková
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | | | - Hana Cahová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Liam P Keegan
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Mary A O'Connell
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| | - Štěpánka Vaňáčová
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
3
|
Li P, Lin Y, Ma H, Zhang J, Zhang Q, Yan R, Fan Y. Epigenetic regulation in female reproduction: the impact of m6A on maternal-fetal health. Cell Death Discov 2025; 11:43. [PMID: 39904996 PMCID: PMC11794895 DOI: 10.1038/s41420-025-02324-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
With the development of public health, female diseases have become the focus of current concern. The unique reproductive anatomy of women leads to the development of gynecological diseases gradually become an important part of the socio-economic burden. Epigenetics plays an irreplaceable role in gynecologic diseases. As an important mRNA modification, m6A is involved in the maturation of ovum cells and maternal-fetal microenvironment. At present, researchers have found that m6A is involved in the regulation of gestational diabetes and other reproductive system diseases, but the specific mechanism is not clear. In this manuscript, we summarize the components of m6A, the biological function of m6A, the progression of m6A in the maternal-fetal microenvironment and a variety of gynecological diseases as well as the progression of targeted m6A treatment-related diseases, providing a new perspective for clinical treatment-related diseases.
Collapse
Affiliation(s)
- Peipei Li
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yumeng Lin
- Health Management Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Hongyun Ma
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Jiao Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Qiaorui Zhang
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Ruihua Yan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China
| | - Yang Fan
- Department of Obstetrics and Gynecology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia, China.
| |
Collapse
|
4
|
Zhang L, Jing M, Song Q, Ouyang Y, Pang Y, Ye X, Fu Y, Yan W. Role of the m 6A demethylase ALKBH5 in gastrointestinal tract cancer (Review). Int J Mol Med 2025; 55:22. [PMID: 39611478 PMCID: PMC11637504 DOI: 10.3892/ijmm.2024.5463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
N6‑methyladenosine (m6A) is one of the most universal, abundant and conserved types of internal post‑transcriptional modifications in eukaryotic RNA, and is involved in nuclear RNA export, RNA splicing, mRNA stability, gene expression, microRNA biogenesis and long non‑coding RNA metabolism. AlkB homologue 5 (ALKBH5) acts as a m6A demethylase to regulate a wide variety of biological processes closely associated with tumour progression, tumour metastasis, tumour immunity and tumour drug resistance. ALKBH5 serves a crucial role in human digestive system tumours, mainly through post‑transcriptional regulation of m6A modification. The present review discusses progress in the study of the m6A demethylase ALKBH5 in gastrointestinal tract cancer, summarizes the potential molecular mechanisms of ALKBH5 dysregulation in gastrointestinal tract cancer, and discusses the significance of ALKBH5‑targeted therapy, which may provide novel ideas for future clinical prognosis prediction, biomarker identification and precise treatment.
Collapse
Affiliation(s)
- Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yiming Ouyang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yingzhi Pang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
5
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
6
|
Fang M, Ye L, Zhu Y, Huang L, Xu S. M6A Demethylase ALKBH5 in Human Diseases: From Structure to Mechanisms. Biomolecules 2025; 15:157. [PMID: 40001461 PMCID: PMC11853652 DOI: 10.3390/biom15020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
N6-methyladenosine (m6A) is the most abundant, dynamically reversible, and evolutionarily conserved internal chemical modification in eukaryotic RNA. It is emerging as critical for regulating gene expression at the post-transcriptional level by affecting RNA metabolism through, for example, pre-mRNA processing, mRNA decay, and translation. ALKBH5 has recently been identified as an endogenous m6A demethylase implicated in a multitude of biological processes. This review provides an overview of the structural and functional characteristics of ALKBH5 and the involvement of ALKBH5 in diverse human diseases, including metabolic, immune, reproductive, and nervous system disorders, as well as the development of inhibitors. In summation, this review highlights the current understanding of the structure, functions, and detailed mechanisms of ALKBH5 in various physiological and pathological processes and provides valuable insights for clinical applications and foundational research within related fields.
Collapse
Affiliation(s)
| | | | | | | | - Shun Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Institute of Aging Research, School of Medical Technology, Guangdong Medical University, Songshan Lake, Dongguan 523808, China; (M.F.); (L.Y.); (Y.Z.); (L.H.)
| |
Collapse
|
7
|
Malek Mohammadi M, Rismanchi H, Esmailzadeh S, Farahani A, Hedayati N, Alimohammadi M, Mafi A, Farahani N, Hushmandi K. The emerging role of circular RNAs in cisplatin resistance in ovarian cancer: From molecular mechanism to future potential. Noncoding RNA Res 2024; 9:1280-1291. [PMID: 39040815 PMCID: PMC11261309 DOI: 10.1016/j.ncrna.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 07/24/2024] Open
Abstract
Ovarian cancer (OC) is the most common cause of death in female cancers. The prognosis of OC is very poor due to delayed diagnosis and identification of most patients in advanced stages, metastasis, recurrence, and resistance to chemotherapy. As chemotherapy with platinum-based drugs such as cisplatin (DDP) is the main treatment in most OC cases, resistance to DDP is an important obstacle to achieving satisfactory therapeutic efficacy. Consequently, knowing the different molecular mechanisms involved in resistance to DDP is necessary to achieve new therapeutic approaches. According to numerous recent studies, non-coding RNAs (ncRNAs) could regulate proliferation, differentiation, apoptosis, and chemoresistance in many cancers, including OC. Most of these ncRNAs are released by tumor cells into human fluid, allowing them to be used as tools for diagnosis. CircRNAs are ncRNA family members that have a role in the initiation, progression, and chemoresistance regulation of various cancers. In the current study, we investigated the roles of several circRNAs and their signaling pathways on OC progression and also on DDP resistance during chemotherapy.
Collapse
Affiliation(s)
| | - Hamidreza Rismanchi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shakiba Esmailzadeh
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Farahani
- Student Research Committee, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Qi Y, Li T, Zhou Y, Hao Y, Zhang J. RNA modification regulators as promising biomarkers in gynecological cancers. Cell Biol Toxicol 2024; 40:92. [PMID: 39472384 PMCID: PMC11522084 DOI: 10.1007/s10565-024-09924-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024]
Abstract
This review explores the evolving landscape of gynecological oncology by focusing on emerging RNA modification signatures as promising biomarkers for assessing the risk and progression of ovarian, cervical, and uterine cancers. It provides a comprehensive overview of common RNA modifications, especially m6A, and their roles in cellular processes, emphasizing their implications in gynecological cancer development. The review meticulously examines specific m6A regulators including "writers", "readers", and "erasers" associated with three gynecological cancer types, discussing their involvement in initiation and progression. Methodologies for detecting RNA modifications are surveyed, highlighting advancements in high-throughput techniques with high sensitivity. A critical analysis of studies identifying m6A regulators as potential biomarkers is presented, addressing their diagnostic or prognostic significance. Mechanistic insights into RNA modification-mediated cancer progression are explored, shedding light on molecular pathways and potential therapeutic targets. Despite current challenges, the review discusses ongoing research efforts, future directions, and the transformative possibility of RNA modifications on early assessment and personalized therapy in gynecological oncology.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, Shanxi, China.
| | - Yang Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China
| | - Yingying Hao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| | - Jin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36 Sanhao St, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
9
|
Liao Z, Wang J, Xu M, Li X, Xu H. The role of RNA m6A demethylase ALKBH5 in the mechanisms of fibrosis. Front Cell Dev Biol 2024; 12:1447135. [PMID: 39220683 PMCID: PMC11362088 DOI: 10.3389/fcell.2024.1447135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
ALKBH5 is one of the demethylases involved in the regulation of RNA m6A modification. In addition to its role in the dynamic regulation of RNA m6A modification, ALKBH5 has been found to play important roles in various tissues fibrosis processes in recent years. However, the mechanisms and effects of ALKBH5 in fibrosis have been reported inconsistently. Multiple cell types, including parenchymal cells, immune cells (neutrophils and T cells), macrophages, endothelial cells, and fibroblasts, play roles in various stages of fibrosis. Therefore, this review analyzes the mechanisms by which ALKBH5 regulates these cells, its impact on their functions, and the outcomes of fibrosis. Furthermore, this review summarizes the role of ALKBH5 in fibrotic diseases such as pulmonary fibrosis, liver fibrosis, cardiac fibrosis, and renal fibrosis, and discusses various ALKBH5 inhibitors that have been discovered to date, exploring the potential of ALKBH5 as a clinical target for fibrosis.
Collapse
Affiliation(s)
| | | | | | - Xiaoyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongming Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Children’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Hou R, Wang Y, Cao S, Sun X, Jiang L. N 6-Methyladenosine-Modified KREMEN2 Promotes Tumorigenesis and Malignant Progression of High-Grade Serous Ovarian Cancer. J Transl Med 2024; 104:102059. [PMID: 38615731 DOI: 10.1016/j.labinv.2024.102059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 04/16/2024] Open
Abstract
High-grade serous ovarian cancer (HGSOC) remains the most lethal female cancer by far. Herein, clinical HGSOC samples had higher N6-methyladenosine (m6A) modification than normal ovarian tissue, and its dysregulation had been reported to drive aberrant transcription and translation programs. However, Kringle-containing transmembrane protein 2 (KREMEN2) and its m6A modification have not been fully elucidated in HGSOC. In this study, the data from the high-throughput messenger RNA (mRNA) sequencing of clinical samples were processed using the weighted correlation network analysis and functional enrichment analysis. Results revealed that KREMEN2 was a driver gene in the tumorigenesis of HGSOC and a potential target of m6A demethylase fat-mass and obesity-associated protein (FTO). KREMEN2 and FTO levels were upregulated and downregulated, respectively, and correlation analysis showed a significant negative correlation in HGSOC samples. Importantly, upregulated KREMEN2 was remarkably associated with lymph node metastasis, distant metastasis, peritoneal metastasis, and high International Federation of Gynecology and Obstetrics stage (Ⅲ/Ⅳ), independent of the age of patients. KREMEN2 promoted the growth of HGSOC in vitro and in vivo, which was dependent on FTO. The methylated RNA immunoprecipitation qPCR and RNA immunoprecipitation assays were performed to verify the m6A level and sites of KREMEN2. FTO overexpression significantly decreased m6A modification in the 3' and 5' untranslated regions of KREMEN2 mRNA and downregulated its expression. In addition, we found that FTO-mediated m6A modification of KREMEN2 mRNA was recognized and stabilized by the m6A reader IGF2BP1 rather than by IGF2BP2 or IGF2BP3. This study highlights the m6A modification of KREMEN2 and extends the importance of RNA epigenetics in HGSOC.
Collapse
Affiliation(s)
- Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yadong Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyao Cao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinrui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Luo Jiang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Zhang Z, Liu J, Wu Y, Gu Z, Zou L, Liu Y, Geng J, Mao S, Luo M, Guo C, Zhang W, Yao X. The functions and mechanisms of RNA modification in prostate: Current status and future perspectives. Front Genet 2024; 15:1380746. [PMID: 38798700 PMCID: PMC11116725 DOI: 10.3389/fgene.2024.1380746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
The increasing incidence and mortality of prostate cancer worldwide significantly impact the life span of male patients, emphasizing the urgency of understanding its pathogenic mechanism and associated molecular changes that regulate tumor progression for effective prevention and treatment. RNA modification, an important post-transcriptional regulatory process, profoundly influences tumor cell growth and metabolism, shaping cell fate. Over 170 RNA modification methods are known, with prominent research focusing on N6-methyladenosine, N7-methylguanosine, N1-methyladenosine, 5-methylcytidine, pseudouridine, and N4-acetylcytidine modifications. These alterations intricately regulate coding and non-coding RNA post-transcriptionally, affecting the stability of RNA and protein expression levels. This article delves into the latest advancements and challenges associated with various RNA modifications in prostate cancer tumor cells, tumor microenvironment, and core signaling molecule androgen receptors. It aims to provide new research targets and avenues for molecular diagnosis, treatment strategies, and improvement of the prognosis in prostate cancer.
Collapse
Affiliation(s)
- Zhijin Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ji Liu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yang Wu
- School of Medicine, Tongji University, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Libin Zou
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Yingdi Liu
- Department of Pathology, Shanghai Tenth People’s Hospital, Shanghai, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Shiyu Mao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Ming Luo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Changcheng Guo
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
12
|
Hu J, Wang S, Li X. A comprehensive review of m 6A research in cervical cancer. Epigenomics 2024; 16:753-773. [PMID: 38639713 PMCID: PMC11318741 DOI: 10.2217/epi-2024-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024] Open
Abstract
Cervical cancer (CC) remains one of the most common malignancies among women worldwide, posing a serious threat to women's health. N6-methyladenosine (m6A) modification, as the most abundant type of RNA methylation modification, and has been found to play a crucial role in various cancers. Current research suggests a close association between RNA m6A modification and the occurrence and progression of CC, encompassing disruptions in m6A levels and its regulatory machinery. This review summarizes the current status of m6A modification research in CC, explores the mechanisms underlying m6A levels and regulators (methyltransferases, demethylases, reader proteins) in CC and examines the application of small-molecule inhibitors of m6A regulators in disease treatment. The findings provide new insights into the future treatment of CC.
Collapse
Affiliation(s)
- Jing Hu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Shizhi Wang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Xiuting Li
- Department of Public Health, Jiangsu Health Vocational College, Nanjing, 210000, China
| |
Collapse
|
13
|
An Y, Duan H. ALKBH5 modulates macrophages polarization in tumor microenvironment of ovarian cancer. J Ovarian Res 2024; 17:84. [PMID: 38637813 PMCID: PMC11025218 DOI: 10.1186/s13048-024-01394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/14/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Macrophages play an essential role in regulating ovarian cancer immune microenvironment. Studies have shown that m6A methylation could influence immune microenvironment in cancer. In this study, we investigated the roles of m6A demethylase ALKBH5 and m6A recognition protein IGF2BP2 played in regulating macrophages polarization in ovarian cancer. METHODS In this study, we first explored the differentially expressed m6A methylation enzymes in M0 and M2 macrophages according to two independent GEO datasets. TIMER2.0 and GSCA database were used to explore the immune analysis of ALKBH5 and IGF2BP2 in ovarian cancer. K-M plotter and TIMER2.0 databases were used to evaluate the prognostic role of ALKBH5 and IGF2BP2 in ovarian cancer. For CNV mutation analysis of ALKBH5 and IGF2BP2, cBioPortal and GSCA databases were used. For single-cell analysis, sc-TIME and HPA softwares were used to analyze the roles of ALKBH5 and IGF2BP2 played in immune cells in ovarian cancer. To identify the role of ALKBH5 played in macrophage polarization, RT-PCR was used to verify the macrophage polarization related markers in vitro study. The function of ALKBH5 played in ovarian cancer was further analyzed through GO and KEGG analysis. FINDINGS In this study, we found that ALKBH5 and IGF2BP2 were up-regulated in M2 macrophages, which showed closely correlation with immune cells expressions in ovarian cancer, especially with macrophages. Ovarian cancer patients with higher expression of ALKBH5 and IGF2BP2 showed worse prognosis, possibly because of their close correlation with immune response. ALKBH5 also correlated with macrophage phenotypes in single-cell levels analysis. However, the expression level of IGF2BP2 in ovarian cancer immune microenvironment was very low. The results of RT-PCR indicated the potential role of ALKBH5 in M2 polarization of macrophages. INTERPRETATION ALKBH5 participated in regulating macrophage M2 polarization in ovarian cancer immune microenvironment.
Collapse
Affiliation(s)
- Yuanyuan An
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Beijing, 100006, China
| | - Hua Duan
- Gynecological Mini-Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, 17 Qihelou Street, Beijing, 100006, China.
| |
Collapse
|
14
|
Tan J, Chen F, Wang J, Li J, Ouyang B, Li X, Li Y, Zhang W, Jiang Y. ALKBH5 promotes the development of lung adenocarcinoma by regulating the polarization of M2 macrophages through CDCA4. Gene 2024; 895:147975. [PMID: 37949419 DOI: 10.1016/j.gene.2023.147975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer, with high morbidity and mortality. N6-methyladenosine (m6A) is an important regulator of LUAD progression. Here, we investigated the potential biological functions of ALKBH5 (a m6A demethylated enzyme) and cell division cycle associated protein 4 (CDCA4) in the progression of LUAD. METHODS The expressions of CDCA4, METTL3, ALKBH5, FTO, YTHDC2 and YTHDC1 mRNA and proteins in LUAD and adjacent tissues, as well as NCI-H1299 and NCI-H157 cells were detected by RT-qPCR and western blot. Meanwhile, the role of ALKBH5 and CDCA4 in macrophage polarization was explored through tumor formation in Lewis lung carcinoma (LLC) mice and the co-culture system of NCI-H1299 and NCI-H157/THP-1 cells. Cell characterization was further analyzed. The expression of Ki-67 in tumor tissue was tested by immunohistochemistry. The scale of M1 and M2 macrophages was determined by flow cytometry. RESULTS CDCA4 was significantly overexpressed in NCI-H1299 and NCI-H157 cell lines compared with BEAS-2B cells. The fold enrichment of CDCA4 m6A level in the overexpression (oe)-METTL3 or short hairpin (sh)-ALKBH5 cells was enhanced. Overexpression of CDCA4 promoted the cell viability, proliferation and migration, and inhibited apoptosis, which was reversed by sh-ALKBH5 intervention. Overexpression of YTHDC2 (not YTHDC1) inhibited the effect of CDCA4 on sh-ALKBH5 cells. sh-CDCA4 inhibited tumor growth and weight of LLC cells in mice, and promoted M1/M2 ratio in LLC mice and NCI-H1299/THP-1 and NCI-H157/THP-1 co-culture systems. Oe-CDCA4 promoted the volume and weight of tumor and inhibited the M1/M2 ratio of tumor tissue in LLC mice, but was reversed by sh-ALKBH5 intervention. CONCLUSION m6A demethylase ALKBH5 promotes the development of LUAD through CDCA4 regulation of malignant characterization and M1/M2 macrophage polarization.
Collapse
Affiliation(s)
- Jianlong Tan
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Fengyu Chen
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jufen Wang
- Department of Respiratory Medicine,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| | - Jianmin Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Bin Ouyang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiuying Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yun Li
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Weidong Zhang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| | - Yongliang Jiang
- Department of Respiratory Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China.
| |
Collapse
|
15
|
Zhang Y, Ling Y, Zhou Y, Shi X, Shen F, Zhou J, Chen Y, Yang F, Gu Y, Wang J. Research Advances in the Roles of N6-Methyladenosine Modification in Ovarian Cancer. Cancer Control 2024; 31:10732748241256819. [PMID: 38755968 PMCID: PMC11102699 DOI: 10.1177/10732748241256819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological tumor, characterized by its insidious and frequently recurring metastatic progression. Owing to limited early screening methods, over 70% of OC cases are diagnosed at advanced stages, typically stage III or IV. Recently, N6-methyladenosine (m6A) modification has emerged as a hotspot of epigenetic research, representing a significant endogenous RNA modification in higher eukaryotes. Numerous studies have reported that m6A-related regulatory factors play pivotal roles in tumor development through diverse mechanisms. Moreover, recent studies have indicated the aberrant expression of multiple regulatory factors in OC. Therefore, this paper comprehensively reviews research advancements concerning m6A in OC, aiming to elucidate the regulatory mechanism of m6A-associated regulators on pivotal aspects, such as proliferation, invasion, metastasis, and drug resistance, in OC. Furthermore, it discusses the potential of m6A-associated regulators as early diagnostic markers and therapeutic targets, thus contributing to the diagnosis and treatment of OC.
Collapse
Affiliation(s)
- Yuhong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yufeng Ling
- Affiliated Hospital of Medical School, Nanjing University, Nanjing Stomatological Hospital, Nanjing, China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Clinical Research Center of Obstetrics and Gynecology, Jiangsu Key Laboratory of Clinical Immunology of Soochow University, Suzhou, China
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu Shi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Yang
- Department of Gynecology and Obstetrics, West China Second Hospital, University of Sichuan, Chengdu, China
- Key Laboratory of Obstetric & Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, University of Sichuan, Chengdu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Li L, Chen J, Wang A, Yi K. ALKBH5 regulates ovarian cancer growth via demethylating long noncoding RNA PVT1 in ovarian cancer. J Cell Mol Med 2024; 28:e18066. [PMID: 38098223 PMCID: PMC10826426 DOI: 10.1111/jcmm.18066] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 02/01/2024] Open
Abstract
The long noncoding RNA PVT1 is reported to act as an oncogene in several kinds of cancers, especially ovarian cancer (OV). Abnormal levels of N6 -methyladenosine, a dynamic and reversible modification, are associated with tumorigenesis and malignancies. Our previous study reported that PVT1 plays critical roles in regulating OV. However, it is still largely unknown how m6 A modification affects OV via PVT1. In this study, we aimed to investigate the regulation of ALKBH5 by affecting PVT1 in OV. We first found that the PVT1 RNA level was higher in OV cells than in IOSE80 cells, and conversely, the m6 A modification level of PVT1 was lower in OV cells. By searching the HPA, ALKBH5, which is responsible for PVT1 demethylation, was found to be upregulated in OV tissues versus normal ovarian tissues. ALKBH5 binds to PVT1 RNA, and knockdown of ALKBH5 decreased PVT1 RNA levels. ALKBH5 also increased FOXM1 levels by upregulating PVT1, at least partially. Knockdown of ALKBH5 suppressed OV growth, colony formation, tumour formation and invasion, which were partially reversed by overexpression of PVT1. Moreover, ALKBH5 knockdown decreased FOXM1 levels by regulating PVT1 RNA expression, subsequently increasing the sensitivity to carboplatin, 5-FU and docetaxel chemotherapy. Taken together, these results indicate that ALKBH5 directly regulates the m6 A modification and stability of PVT1. Then, modified PVT1 further regulates FOXM1 and thus affects malignant behaviours and chemosensitivity in OV cells. All these results indicate that ALKBH5 regulates the malignant behaviour of OV by regulating PVT1/FOXM1.
Collapse
Affiliation(s)
- Lin Li
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Jie Chen
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Ao Wang
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| | - Ke Yi
- Department of Obstetrics and Gynecology, West China Second University HospitalSichuan UniversityChengduSichuanChina
- The Key Laboratory of Birth Defects and Related Diseases of Women and Children (West China Second University Hospital Sichuan University), Ministry of EducationChengduSichuanChina
| |
Collapse
|
17
|
Gu J, Cao H, Chen X, Zhang XD, Thorne RF, Liu X. RNA m6A modifications regulate crosstalk between tumor metabolism and immunity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1829. [PMID: 38114887 DOI: 10.1002/wrna.1829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
In recent years, m6A modifications in RNA transcripts have arisen as a hot topic in cancer research. Indeed, a number of independent studies have elaborated that the m6A modification impacts the behavior of tumor cells and tumor-infiltrating immune cells, altering tumor cell metabolism along with the differentiation and functional activity of immune cells. This review elaborates on the links between RNA m6A modifications, tumor cell metabolism, and immune cell behavior, discussing this topic from the viewpoint of reciprocal regulation through "RNA m6A-tumor cell metabolism-immune cell behavior" and "RNA m6A-immune cell behavior-tumor cell metabolism" axes. In addition, we discuss the various factors affecting RNA m6A modifications in the tumor microenvironment, particularly the effects of hypoxia associated with cancer cell metabolism along with immune cell-secreted cytokines. Our analysis proposes the conclusion that RNA m6A modifications support widespread interactions between tumor metabolism and tumor immunity. With the current viewpoint that long-term cancer control must tackle cancer cell malignant behavior while strengthening anti-tumor immunity, the recognition of RNA m6A modifications as a key factor provides a new direction for the targeted therapy of tumors. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jinghua Gu
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Huake Cao
- School of Life Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaoli Chen
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| | - Xu Dong Zhang
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Rick F Thorne
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, New South Wales, Australia
| | - Xiaoying Liu
- School of Life Sciences, Anhui Medical University, Hefei, China
- Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Henan Provincial Key Laboratory of Long Non-coding RNA and Cancer Metabolism, Translational Research Institute of Henan Provincial People's Hospital and People's Hospital of Zhengzhou University, Henan, China
| |
Collapse
|
18
|
Luo R, Zhang T, Wang L, Feng Y. Emissions and mitigation potential of endocrine disruptors during outdoor exercise: Fate, transport, and implications for human health. ENVIRONMENTAL RESEARCH 2023; 236:116575. [PMID: 37487926 DOI: 10.1016/j.envres.2023.116575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
The endocrine system is responsible for secreting and controlling hormones crucial in regulating key body activities. However, endocrine disruptors or endocrine-disrupting chemicals (EDCs) can harm human health and well-being by interfering with this complex process. This report seeks to assess the present state of understanding about endocrine disruptors in China, including their origins, impacts, and obstacles, and to provide actionable recommendations for reducing exposure and mitigating negative effects. Strong negative correlations between ANOE and rural ecological compensation (REC) and a negative correlation between ANOE and forest coverage (FC) were found in this analysis of the relationships between agricultural nitrous oxide emissions (ANOE), agricultural methane emissions (AME), and land use and land cover variables (LUPC). Just as LUPC is significantly inversely related to FC, AME is positively related. The team uses a gradient-boosted model (GBM) with a Gaussian loss function and fine-tunes the model's parameters to achieve optimal performance and reliable prediction results. With a relative relevance score of 90.36 for ANOE and 67.64 for AME, the analysis shows that LUPC is the most important factor in influencing emission levels. This study aims to increase knowledge of endocrine disruptors' potential advantages and disadvantages in outdoor exercise. The study aims to aid in preventing and managing many diseases and disorders caused by hormonal imbalances or disruptions by examining the origins, effects, and potential mitigation of these substances during outdoor activity. Safe and healthful outdoor exercise is promoted by the study's efforts to discover and implement effective and sustainable solutions to decrease emissions and exposure to endocrine disruptors. This comprehensive study aims to promote a healthier and more sustainable environment for individuals engaging in outdoor exercise by synthesizing current knowledge, providing practical recommendations, and emphasizing the importance of awareness and action.
Collapse
Affiliation(s)
- Rui Luo
- Chengdu Sport University, Tiyuan Road, Chengdu, Sichuan Province, 610041, China; College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China.
| | - Tao Zhang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Li Wang
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| | - Yong Feng
- College of Sports and Leisure, Sichuan Tourism University, No. 459, Hongling Road, Longquanyi District, Chengdu City, Sichuan Province, 610100, China
| |
Collapse
|
19
|
Lyu Y, Wang Y, Ding H, Li P. Hypoxia-induced m6A demethylase ALKBH5 promotes ovarian cancer tumorigenicity by decreasing methylation of the lncRNA RMRP. Am J Cancer Res 2023; 13:4179-4191. [PMID: 37818080 PMCID: PMC10560949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Ovarian cancer is one of the most lethal and drug-resistant gynecological diseases. Among the various post-transcriptional RNA modifications, N6-methyladenosine (m6A) has been implicated in several malignancies, including breast cancer. Recently, the biological significance of long noncoding RNA (lncRNA) methylation has garnered significant attention. The N6-methyladenosine (m6A) demethylase ALKBH5 (Alkylation Repair Homolog Protein 5) has been shown to promote ovarian cancer development by reducing the methylation of the lncRNA RMRP. In this study, we found that a hypoxic microenvironment induces an increase in ALKBH5 expression in ovarian cancer. Both in vitro and in vivo investigations demonstrated that ALKBH5, which is overexpressed in human ovarian cancer, promotes carcinogenesis. Furthermore, using bioinformatics analysis, we predicted interactions between ALKBH5 and lncRNAs, confirming RMRP as a potential binding lncRNA for ALKBH5. ALKBH5 was found to upregulate RMRP expression via demethylation. Knockdown of RMRP in ovarian cancer cell lines led to a decrease in cell growth and migration. Additionally, we demonstrated that the inhibition of ovarian cancer by ALKBH5 knockdown is partially mediated by RMRP suppression. In conclusion, our findings reveal a novel mechanism in which ALKBH5 promotes ovarian cancer by demethylating the lncRNA RMRP, suggesting its potential as a therapeutic target for the disease.
Collapse
Affiliation(s)
- Yuanyuan Lyu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, P. R. China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical CollegeWuhu 241001, Anhui, P. R. China
| | - Yuhan Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, P. R. China
| | - Huafeng Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Wannan Medical CollegeWuhu 241001, Anhui, P. R. China
| | - Peiling Li
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical UniversityHarbin 150086, Heilongjiang, P. R. China
| |
Collapse
|
20
|
Huo FC, Zhu ZM, Du WQ, Pan YJ, Jiang X, Kang MJ, Liu BW, Mou J, Pei DS. HPV E7-drived ALKBH5 promotes cervical cancer progression by modulating m6A modification of PAK5. Pharmacol Res 2023; 195:106863. [PMID: 37480971 DOI: 10.1016/j.phrs.2023.106863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Human papillomavirus (HPV) infection is a causative agent of cervical cancer (CC). N6-methyladenosine (m6A) modification is implicated in carcinogenesis and tumor progression. However, the involvement of m6A modification in HPV-involved CC remains unclear. Here we showed that HPV E6/7 oncoproteins affected the global m6A modification and E7 specifically promoted the expression of ALKBH5. We found that ALKBH5 was significantly upregulated in CC and might serve as a valuable prognostic marker. Forced expression of ALKBH5 enhanced the malignant phenotypes of CC cells. Mechanistically, we discovered that E7 increased ALKBH5 expression through E2F1-mediated activation of the H3K27Ac and H3K4Me3 histone modifications, as well as post-translational modification mediated by DDX3. ALKBH5-mediated m6A demethylation enhanced the expression of PAK5. The m6A reader YTHDF2 bound to PAK5 mRNA and regulated its stability in an m6A-dependent manner. Moreover, ALKBH5 promoted tumorigenesis and metastasis of CC by regulating PAK5. Overall, our findings herein demonstrate a significant role of ALKBH5 in CC progression in HPV-positive cells. Thus, we propose that ALKBH5 may serve as a prognostic biomarker and therapeutic target for CC patients.
Collapse
Affiliation(s)
- Fu-Chun Huo
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Zhi-Man Zhu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Wen-Qi Du
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Yao-Jie Pan
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Xin Jiang
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Meng-Jie Kang
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Bo-Wen Liu
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China
| | - Jie Mou
- Jiangsu Key Laboratory of New drug and Clinical Pharmacy, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China.
| | - Dong-Sheng Pei
- Department of Pathology, Xuzhou Medical University, 209 Tong-shan Road, Xuzhou 221004, Jiangsu, China.
| |
Collapse
|
21
|
Ye L, Yao X, Xu B, Chen W, Lou H, Tong X, Fang S, Zou R, Hu Y, Wang Z, Xiang D, Lin Q, Feng S, Xue X, Guo G. RNA epigenetic modifications in ovarian cancer: The changes, chances, and challenges. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1784. [PMID: 36811232 DOI: 10.1002/wrna.1784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
Ovarian cancer (OC) is the most common female cancer worldwide. Patients with OC have high mortality because of its complex and poorly understood pathogenesis. RNA epigenetic modifications, such as m6 A, m1 A, and m5 C, are closely associated with the occurrence and development of OC. RNA modifications can affect the stability of mRNA transcripts, nuclear export of RNAs, translation efficiency, and decoding accuracy. However, there are few overviews that summarize the link between m6 A RNA modification and OC. Here, we discuss the molecular and cellular functions of different RNA modifications and how their regulation contributes to the pathogenesis of OC. By improving our understanding of the role of RNA modifications in the etiology of OC, we provide new perspectives for their use in OC diagnosis and treatment. This article is categorized under: RNA Processing > RNA Editing and Modification RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Gynecologic Oncology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuyang Yao
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Binbing Xu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Wenwen Chen
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Han Lou
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Su Fang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruanmin Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yingying Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhibin Wang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dan Xiang
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Qiaoai Lin
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shiyu Feng
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Wang Y, Liu J, Wang Y. Role of TNF-α-induced m6A RNA methylation in diseases: a comprehensive review. Front Cell Dev Biol 2023; 11:1166308. [PMID: 37554306 PMCID: PMC10406503 DOI: 10.3389/fcell.2023.1166308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 08/10/2023] Open
Abstract
Tumor Necrosis Factor-alpha (TNF-α) is ubiquitous in the human body and plays a significant role in various physiological and pathological processes. However, TNF-α-induced diseases remain poorly understood with limited efficacy due to the intricate nature of their mechanisms. N6-methyladenosine (m6A) methylation, a prevalent type of epigenetic modification of mRNA, primarily occurs at the post-transcriptional level and is involved in intranuclear and extranuclear mRNA metabolism. Evidence suggests that m6A methylation participates in TNF-α-induced diseases and signaling pathways associated with TNF-α. This review summarizes the involvement of TNF-α and m6A methylation regulators in various diseases, investigates the impact of m6A methylation on TNF-α-induced diseases, and puts forth potential therapeutic targets for treating TNF-α-induced diseases.
Collapse
Affiliation(s)
- Youlin Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jing Liu
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yongchen Wang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- General Practice Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
23
|
Meng Q, Schatten H, Zhou Q, Chen J. Crosstalk between m6A and coding/non-coding RNA in cancer and detection methods of m6A modification residues. Aging (Albany NY) 2023; 15:6577-6619. [PMID: 37437245 PMCID: PMC10373953 DOI: 10.18632/aging.204836] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
N6-methyladenosine (m6A) is one of the most common and well-known internal RNA modifications that occur on mRNAs or ncRNAs. It affects various aspects of RNA metabolism, including splicing, stability, translocation, and translation. An abundance of evidence demonstrates that m6A plays a crucial role in various pathological and biological processes, especially in tumorigenesis and tumor progression. In this article, we introduce the potential functions of m6A regulators, including "writers" that install m6A marks, "erasers" that demethylate m6A, and "readers" that determine the fate of m6A-modified targets. We have conducted a review on the molecular functions of m6A, focusing on both coding and noncoding RNAs. Additionally, we have compiled an overview of the effects noncoding RNAs have on m6A regulators and explored the dual roles of m6A in the development and advancement of cancer. Our review also includes a detailed summary of the most advanced databases for m6A, state-of-the-art experimental and sequencing detection methods, and machine learning-based computational predictors for identifying m6A sites.
Collapse
Affiliation(s)
- Qingren Meng
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Heide Schatten
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Qian Zhou
- International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong Province, China
| | - Jun Chen
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, The Second Hospital Affiliated with the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
24
|
Liang Y, Wang H, Wu B, Peng N, Yu D, Wu X, Zhong X. The emerging role of N 6-methyladenine RNA methylation in metal ion metabolism and metal-induced carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121897. [PMID: 37244530 DOI: 10.1016/j.envpol.2023.121897] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
N6-methyladenine (m6A) is the most common and abundant internal modification in eukaryotic mRNAs, which can regulate gene expression and perform important biological tasks. Metal ions participate in nucleotide biosynthesis and repair, signal transduction, energy generation, immune defense, and other important metabolic processes. However, long-term environmental and occupational exposure to metals through food, air, soil, water, and industry can result in toxicity, serious health problems, and cancer. Recent evidence indicates dynamic and reversible m6A modification modulates various metal ion metabolism, such as iron absorption, calcium uptake and transport. In turn, environmental heavy metal can alter m6A modification by directly affecting catalytic activity and expression level of methyltransferases and demethylases, or through reactive oxygen species, eventually disrupting normal biological function and leading to diseases. Therefore, m6A RNA methylation may play a bridging role in heavy metal pollution-induced carcinogenesis. This review discusses interaction among heavy metal, m6A, and metal ions metabolism, and their regulatory mechanism, focuses on the role of m6A methylation and heavy metal pollution in cancer. Finally, the role of nutritional therapy that targeting m6A methylation to prevent metal ion metabolism disorder-induced cancer is summarized.
Collapse
Affiliation(s)
- Yaxu Liang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Huan Wang
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Bencheng Wu
- Anyou Biotechnology Group Co., LTD., Taicang, 215437, China
| | - Ning Peng
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Dongming Yu
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiang Zhong
- Joint International Research Laboratory of Animal Health & Food Safety, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
25
|
Yang Q, Al-Hendy A. The Functional Role and Regulatory Mechanism of FTO m 6A RNA Demethylase in Human Uterine Leiomyosarcoma. Int J Mol Sci 2023; 24:7957. [PMID: 37175660 PMCID: PMC10178470 DOI: 10.3390/ijms24097957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most frequent subtype of uterine sarcoma that presents a poor prognosis and high rates of recurrence and metastasis. The origin and molecular mechanism underlying and driving its clinical and biological behavior remain largely unknown. Recently, we and others have revealed the role of microRNAs, DNA methylation, and histone modifications in contributing to the pathogenesis of uLMS. However, the connection between reversible m6A RNA methylation and uLMS pathogenesis remains unclear. In this study, we assessed the role and mechanism of FTO m6A RNA demethylase in the pathogenesis of uLMS. Immunohistochemistry analysis revealed that the levels of RNA demethylases FTO and ALKBH5 were aberrantly upregulated in uLMS tissues compared to adjacent myometrium with a significant change by histochemical scoring assessment (p < 0.01). Furthermore, the inhibition of FTO demethylase with its small, potent inhibitor (Dac51) significantly decreased the uLMS proliferation dose-dependently via cell cycle arrest. Notably, RNA-seq analysis revealed that the inhibition of FTO with Dac51 exhibited a significant decrease in cell-cycle-related genes, including several CDK members, and a significant increase in the expression of CDKN1A, which correlated with a Dac51-exerted inhibitory effect on cell proliferation. Moreover, Dac51 treatment allowed the rewiring of several critical pathways, including TNFα signaling, KRAS signaling, inflammation response, G2M checkpoint, and C-Myc signaling, among others, leading to the suppression of the uLMS phenotype. Moreover, transcription factor (TF) analyses suggested that epitranscriptional alterations by Dac51 may alter the cell cycle-related gene expression via TF-driven pathways and epigenetic networks in uLMS cells. This intersection of RNA methylation and other epigenetic controls and pathways provides a framework to better understand uterine diseases, particularly uLMS pathogenesis with a dysregulation of RNA methylation machinery. Therefore, targeting the vulnerable epitranscriptome may provide an additional regulatory layer for a promising and novel strategy for treating patients with this aggressive uterine cancer.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
26
|
Li Q, Zhu Q. The role of demethylase AlkB homologs in cancer. Front Oncol 2023; 13:1153463. [PMID: 37007161 PMCID: PMC10060643 DOI: 10.3389/fonc.2023.1153463] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The AlkB family (ALKBH1-8 and FTO), a member of the Fe (II)- and α-ketoglutarate-dependent dioxygenase superfamily, has shown the ability to catalyze the demethylation of a variety of substrates, including DNA, RNA, and histones. Methylation is one of the natural organisms’ most prevalent forms of epigenetic modifications. Methylation and demethylation processes on genetic material regulate gene transcription and expression. A wide variety of enzymes are involved in these processes. The methylation levels of DNA, RNA, and histones are highly conserved. Stable methylation levels at different stages can coordinate the regulation of gene expression, DNA repair, and DNA replication. Dynamic methylation changes are essential for the abilities of cell growth, differentiation, and division. In some malignancies, the methylation of DNA, RNA, and histones is frequently altered. To date, nine AlkB homologs as demethylases have been identified in numerous cancers’ biological processes. In this review, we summarize the latest advances in the research of the structures, enzymatic activities, and substrates of the AlkB homologs and the role of these nine homologs as demethylases in cancer genesis, progression, metastasis, and invasion. We provide some new directions for the AlkB homologs in cancer research. In addition, the AlkB family is expected to be a new target for tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Qiao Li
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Qingsan Zhu
- Department of Orthopedic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
- *Correspondence: Qingsan Zhu,
| |
Collapse
|
27
|
Zhou W, Lin J, Liu J, Zhang R, Fan A, Xie Q, Hong L, Fan D. Thyroid cancer risk prediction model using m6A RNA methylation regulators: integrated bioinformatics analysis and histological validation. Aging (Albany NY) 2023; 15:846-865. [PMID: 36791151 PMCID: PMC9970309 DOI: 10.18632/aging.204525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 01/23/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Epigenetic reprogramming has been reported to play a critical role in the progression of thyroid cancer. RNA methylation accounts for more than 60% of all RNA modifications, and N6-methyladenosine (m6A) is the most common modification of RNAs in higher organisms. The purpose of this study was to explore the related modification mode of m6A regulators construction and its evaluation on the clinical prognosis and therapeutic effect of thyroid cancer. METHODS The levels of 23 m6A regulators in The Cancer Genome Atlas (TCGA) were analyzed. Differentially expressed genes (DEGs) and survival analysis were performed based on TCGA-THCA clinicopathological and follow-up information, and the mRNA levels of representative genes were verified using clinical thyroid cancer data. In order to detect the effects of m6A regulators and their DEGs, consensus cluster analysis was carried out, and the expression of different m6A scores in Tumor Mutation Burden (TMB) and immune double antibodies (PD-1 antibody and CTLA4 antibody) were evaluated to predict the correlation between m6A score and thyroid cancer tumor immunotherapy response. RESULTS Different expression patterns of m6A regulatory factors were detected in thyroid cancer tumors and normal tissues, and several prognoses related m6A genes were obtained. Two different m6A modification patterns were determined by consensus cluster analysis. Two different subgroups were established by screening overlapping DEGs between two m6A clusters, with cluster A having the best prognosis. According to the m6A score extracted from DEGs, thyroid cancer patients can be divided into high and low score subgroups. Patients with lower m6A score have longer survival time and better clinical features. The relationship between m6A score and Tumor Mutation Burden (TMB) and its correlation with the expression of PD-1 antibody and CTLA4 antibody proved that m6A score could be used as a potential predictor of the efficacy of immunotherapy in thyroid cancer patients. CONCLUSIONS We screened DEGs from cluster m6A and constructed a highly predictive model with prognostic value by dividing TCGA-THCA into two different clusters and performing m6A score analysis. This study will help clarify the overall impact of m6A modification patterns on thyroid cancer progression and formulate more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Wei Zhou
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Junchao Lin
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Jinqiang Liu
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Rui Zhang
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Aqiang Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Qibin Xie
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Liu Hong
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Daiming Fan
- Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| |
Collapse
|
28
|
The Emerging Role of m6A Modification in Endocrine Cancer. Cancers (Basel) 2023; 15:cancers15041033. [PMID: 36831377 PMCID: PMC9954123 DOI: 10.3390/cancers15041033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
With the development of RNA modification research, N6-methyladenosine (m6A) is regarded as one of the most important internal epigenetic modifications of eukaryotic mRNA. It is also regulated by methylase, demethylase, and protein preferentially recognizing the m6A modification. This dynamic and reversible post-transcriptional RNA alteration has steadily become the focus of cancer research. It can increase tumor stem cell self-renewal and cell proliferation. The m6A-modified genes may be the primary focus for cancer breakthroughs. Although some endocrine cancers are rare, they may have a high mortality rate. As a result, it is critical to recognize the significance of endocrine cancers and identify new therapeutic targets that will aid in improving disease treatment and prognosis. We summarized the latest experimental progress in the m6A modification in endocrine cancers and proposed the m6A alteration as a potential diagnostic marker for endocrine malignancies.
Collapse
|
29
|
Gene signature of m6A-related targets to predict prognosis and immunotherapy response in ovarian cancer. J Cancer Res Clin Oncol 2023; 149:593-608. [PMID: 36048273 DOI: 10.1007/s00432-022-04162-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/17/2022] [Indexed: 10/14/2022]
Abstract
PURPOSE The aim of the study was to construct a risk score model based on m6A-related targets to predict overall survival and immunotherapy response in ovarian cancer. METHODS The gene expression profiles of 24 m6A regulators were extracted. Survival analysis screened 9 prognostic m6A regulators. Next, consensus clustering analysis was applied to identify clusters of ovarian cancer patients. Furthermore, 47 phenotype-related differentially expressed genes, strongly correlated with 9 prognostic m6A regulators, were screened and subjected to univariate and the least absolute shrinkage and selection operator (LASSO) Cox regression. Ultimately, a nomogram was constructed which presented a strong ability to predict overall survival in ovarian cancer. RESULTS CBLL1, FTO, HNRNPC, METTL3, METTL14, WTAP, ZC3H13, RBM15B and YTHDC2 were associated with worse overall survival (OS) in ovarian cancer. Three m6A clusters were identified, which were highly consistent with the three immune phenotypes. What is more, a risk model based on seven m6A-related targets was constructed with distinct prognosis. In addition, the low-risk group is the best candidate population for immunotherapy. CONCLUSION We comprehensively analyzed the m6A modification landscape of ovarian cancer and detected seven m6A-related targets as an independent prognostic biomarker for predicting survival. Furthermore, we divided patients into high- and low-risk groups with distinct prognosis and select the optimum population which may benefit from immunotherapy and constructed a nomogram to precisely predict ovarian cancer patients' survival time and visualize the prediction results.
Collapse
|
30
|
Sun R, Yuan L, Jiang Y, Wan Y, Ma X, Yang J, Sun G, Zhou S, Wang H, Qiu J, Zhang L, Cheng W. ALKBH5 activates FAK signaling through m6A demethylation in ITGB1 mRNA and enhances tumor-associated lymphangiogenesis and lymph node metastasis in ovarian cancer. Theranostics 2023; 13:833-848. [PMID: 36632222 PMCID: PMC9830429 DOI: 10.7150/thno.77441] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Lymph node (LN) metastasis is common in patients with epithelial ovarian cancer (EOC) and is associated with poor prognosis. Tumor-associated lymphangiogenesis is the first stage of LN metastasis. Research on lymphangiogenesis and lymph node metastases can help develop new anti-LN-targeted therapies. Aberrant N6-methyladenosine (m6A) modifications have been reported to be linked to LN metastasis in several cancers, however, their role in EOC lymphangiogenesis and LN metastasis remains unclear. Methods: m6A levels in EOC tissues with or without LN metastases were evaluated by dot blot analysis. Real-time polymerase chain reaction (PCR) and immunofluorescence were used to examine the expression of m6A-related enzymes. Additionally, in vitro and in vivo functional studies were performed to discover the importance of the AlkB homolog 5 (ALKBH5) gene in EOC lymphatic metastasis. To identify the downstream target genes regulated by ALKBH5, we performed RNA pulldown, RNA-binding protein immunoprecipitation-quantitative PCR, co-immunoprecipitation, m6A-modified RNA immunoprecipitation-quantitative PCR, and luciferase reporter assays. Results: m6A modification was reduced in ovarian cancers with LN metastases. ALKBH5 overexpression increased tumor-associated lymphangiogenesis and LN metastasis both in vitro and in vivo. ALKBH5 overexpression also reversed the m6A modification in ITGB1 mRNA and suppressed the YTHDF2 protein-mediated m6A-dependent ITGB1 mRNA degradation, which resulted in increased expression of ITGB1 and phosphorylation of the focal adhesion kinase (FAK) and Src proto-oncogene proteins, thereby increasing LN metastasis. Furthermore, hypoxia induced the expression of hypoxia inducible factor 1 subunit alpha, which increased ALKBH5 expression and enhanced LN metastasis in EOC. Conclusions: The ALKBH5/m6A-ITGB1/FAK signalling axis is important in ovarian cancer lymphangiogenesis and LN metastasis. Antibodies that block ITGB1 and FAK kinase-inhibitors are promising anti-metastatic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lin Zhang
- ✉ Corresponding authors: Lin Zhang: ; Wenjun Cheng:
| | - Wenjun Cheng
- ✉ Corresponding authors: Lin Zhang: ; Wenjun Cheng:
| |
Collapse
|
31
|
Verghese M, Wilkinson E, He YY. Recent Advances in RNA m 6A Modification in Solid Tumors and Tumor Immunity. Cancer Treat Res 2023; 190:95-142. [PMID: 38113000 DOI: 10.1007/978-3-031-45654-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
An analogous field to epigenetics is referred to as epitranscriptomics, which focuses on the study of post-transcriptional chemical modifications in RNA. RNA molecules, including mRNA, tRNA, rRNA, and other non-coding RNA molecules, can be edited with numerous modifications. The most prevalent modification in eukaryotic mRNA is N6-methyladenosine (m6A), which is a reversible modification found in over 7000 human genes. Recent technological advances have accelerated the characterization of these modifications, and they have been shown to play important roles in many biological processes, including pathogenic processes such as cancer. In this chapter, we discuss the role of m6A mRNA modification in cancer with a focus on solid tumor biology and immunity. m6A RNA methylation and its regulatory proteins can play context-dependent roles in solid tumor development and progression by modulating RNA metabolism to drive oncogenic or tumor-suppressive cellular pathways. m6A RNA methylation also plays dynamic roles within both immune cells and tumor cells to mediate the anti-tumor immune response. Finally, an emerging area of research within epitranscriptomics studies the role of m6A RNA methylation in promoting sensitivity or resistance to cancer therapies, including chemotherapy, targeted therapy, and immunotherapy. Overall, our understanding of m6A RNA methylation in solid tumors has advanced significantly, and continued research is needed both to fill gaps in knowledge and to identify potential areas of focus for therapeutic development.
Collapse
Affiliation(s)
- Michelle Verghese
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Emma Wilkinson
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
32
|
Shen W, Pu J, Zuo Z, Gu S, Sun J, Tan B, Wang L, Cheng J, Zuo Y. The RNA demethylase ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the stability of the LncRNA PVT1. Cancer Cell Int 2022; 22:353. [PMID: 36376862 PMCID: PMC9664734 DOI: 10.1186/s12935-022-02770-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 10/30/2022] [Indexed: 11/16/2022] Open
Abstract
Background N6-methyladenosine (m6A) is the most common posttranscriptional modification of RNA and plays critical roles in human cancer progression. However, the biological function of m6A methylation requires further studied in cancer, especially in tumor angiogenesis. Methods A public database was used to analyze the expression and overall survival of ALKBH5 and PVT1 in lung cancer patients. CCK-8 and colony formation assays were performed to detect cell proliferation, a transwell assay was used to assess cell migration, and a tube formation assay was performed to assess angiogenic potential in vitro. A zebrafish lung cancer xenograft model was used to verify the function of ALKBH5 and PVT1 in vivo. Western blot assays were used to measure the relative protein expression in lung cancer cells. SRAMP predictor analysis and RNA stability experiments were used to examine the potential m6A modification. Results Bioinformatics analysis showed that the expression levels of m6A-related genes were changed significantly in lung cancer tissues compared with normal lung tissues. We then identified that ALKBH5 was upregulated in lung cancer tissues and associated with poor prognosis of lung cancer patients by analyzing a public database. Knockdown of ALKBH5 inhibited the proliferation and migration of cultured lung cancer cell lines. Zebrafish lung cancer xenografts showed that ALKBH5 silencing also suppressed the growth and metastasis of lung cancer cells. Moreover, knockdown of ALKBH5 inhibited the angiogenesis of lung cancer in vitro and in vivo. Mechanistic studies showed that knockdown of ALKBH5 decreased the expression and stability of PVT1 in lung cancer cells. We next observed that PVT1 promoted the progression of lung cancer cells in vitro and in vivo and regulated the expression of VEGFA and angiogenesis in lung cancer. Finally, rescue experiments revealed that ALKBH5 regulated the proliferation, migration and angiogenesis of lung cancer cells, partially through PVT1. Conclusion Our results demonstrate that ALKBH5 promotes the progression and angiogenesis of lung cancer by regulating the expression and stability of PVT1, which provides a potential prognostic and therapeutic target for lung cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02770-0.
Collapse
|
33
|
Chen J, Guo B, Liu X, Zhang J, Zhang J, Fang Y, Zhu S, Wei B, Cao Y, Zhan L. Roles of N6-methyladenosine (m6A) modifications in gynecologic cancers: mechanisms and therapeutic targeting. Exp Hematol Oncol 2022; 11:98. [DOI: 10.1186/s40164-022-00357-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/01/2022] [Indexed: 11/14/2022] Open
Abstract
AbstractUterine and ovarian cancers are the most common gynecologic cancers. N6−methyladenosine (m6A), an important internal RNA modification in higher eukaryotes, has recently become a hot topic in epigenetic studies. Numerous studies have revealed that the m6A-related regulatory factors regulate the occurrence and metastasis of tumors and drug resistance through various mechanisms. The m6A-related regulatory factors can also be used as therapeutic targets and biomarkers for the early diagnosis of cancers, including gynecologic cancers. This review discusses the role of m6A in gynecologic cancers and summarizes the recent advancements in m6A modification in gynecologic cancers to improve the understanding of the occurrence, diagnosis, treatment, and prognosis of gynecologic cancers.
Collapse
|
34
|
Zhang L, Zhang Y, Zhang S, Qiu L, Zhang Y, Zhou Y, Han J, Xie J. Translational Regulation by eIFs and RNA Modifications in Cancer. Genes (Basel) 2022; 13:2050. [PMID: 36360287 PMCID: PMC9690228 DOI: 10.3390/genes13112050] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/04/2023] Open
Abstract
Translation is a fundamental process in all living organisms that involves the decoding of genetic information in mRNA by ribosomes and translation factors. The dysregulation of mRNA translation is a common feature of tumorigenesis. Protein expression reflects the total outcome of multiple regulatory mechanisms that change the metabolism of mRNA pathways from synthesis to degradation. Accumulated evidence has clarified the role of an increasing amount of mRNA modifications at each phase of the pathway, resulting in translational output. Translation machinery is directly affected by mRNA modifications, influencing translation initiation, elongation, and termination or altering mRNA abundance and subcellular localization. In this review, we focus on the translation initiation factors associated with cancer as well as several important RNA modifications, for which we describe their association with cancer.
Collapse
Affiliation(s)
- Linzhu Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| | - Yaguang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Su Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Qiu
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yang Zhang
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ying Zhou
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junhong Han
- State Key Laboratory of Biotherapy, Frontiers Science Center for Disease-Related Molecular Network and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiang Xie
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- The Third People’s Hospital of Chengdu, Clinical College of Southwest Jiao Tong University, Chengdu 610014, China
| |
Collapse
|
35
|
Tsuchiya K, Yoshimura K, Iwashita Y, Inoue Y, Ohta T, Watanabe H, Yamada H, Kawase A, Tanahashi M, Ogawa H, Funai K, Shinmura K, Suda T, Sugimura H. m 6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer. Cancer Gene Ther 2022; 29:1355-1372. [PMID: 35318440 PMCID: PMC9576599 DOI: 10.1038/s41417-022-00451-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 01/03/2022] [Accepted: 02/24/2022] [Indexed: 12/14/2022]
Abstract
The modification of N6-methyladenosine (m6A) in RNA and its eraser ALKBH5, an m6A demethylase, play an important role across various steps of human carcinogenesis. However, the involvement of ALKBH5 in non-small-cell lung cancer (NSCLC) development remains to be completely elucidated. The current study revealed that the expression of ALKBH5 was increased in NSCLC and increased expression of ALKBH5 worsened the prognosis of patients with NSCLC. In vitro study revealed that ALKBH5 knockdown suppressed cell proliferation ability of PC9 and A549 cells and promoted G1 arrest and increased the number of apoptotic cells. Furthermore, ALKBH5 overexpression increased the cell proliferation ability of the immortalized cell lines. Microarray analysis and western blotting revealed that the expression of CDKN1A (p21) or TIMP3 was increased by ALKBH5 knockdown. These alterations were offset by a double knockdown of both ALKBH5 and one of the IGF2BPs. The decline of mRNAs was, at least partly, owing to the destabilization of these mRNAs by one of the IGF2BPs. In conclusions, the ALKBH5-IGF2BPs axis promotes cell proliferation and tumorigenicity, which in turn causes the unfavorable prognosis of NSCLC.
Collapse
Affiliation(s)
- Kazuo Tsuchiya
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Katsuhiro Yoshimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yusuke Inoue
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ohta
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Physical Therapy, Faculty of Health and Medical Sciences, Tokoha University, Hamamatsu, Japan
| | - Hirofumi Watanabe
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Akikazu Kawase
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masayuki Tanahashi
- Division of Thoracic Surgery, Respiratory Disease Center, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Hiroshi Ogawa
- Department of Pathology, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Kazuhito Funai
- First Department of Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuya Shinmura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
36
|
Geng R, Chen T, Zhong Z, Ni S, Bai J, Liu J. The m6A-Related Long Noncoding RNA Signature Predicts Prognosis and Indicates Tumor Immune Infiltration in Ovarian Cancer. Cancers (Basel) 2022; 14:cancers14164056. [PMID: 36011053 PMCID: PMC9406778 DOI: 10.3390/cancers14164056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background: OV is the most lethal gynecological malignancy. M6A and lncRNAs have a great impact on OV development and patient immunotherapy response. In this paper, we decided to establish a reliable signature of mRLs. Method: The lncRNAs associated with m6A in OV were analyzed and obtained by co-expression analysis of the TCGA-OV database. Univariate, LASSO and multivariate Cox regression analyses were employed to establish the model of mRLs. K-M analysis, PCA, GSEA and nomogram based on the TCGA-OV and GEO database were conducted to prove the predictive value and independence of the model. The underlying relationship between the model and TME and cancer stemness properties were further investigated through immune feature comparison, consensus clustering analysis and pan-cancer analysis. Results: A prognostic signature comprising four mRLs, WAC-AS1, LINC00997, DNM3OS and FOXN3-AS1, was constructed and verified for OV according to the TCGA and GEO database. The expressions of the four mRLs were confirmed by qRT-PCR in clinical samples. Applying this signature, one can identify patients more effectively. The samples were divided into two clusters, and the clusters had different overall survival rates, clinical features and tumor microenvironments. Finally, pan-cancer analysis further demonstrated that the four mRLs were significantly related to immune infiltration, TME and cancer stemness properties in various cancer types. Conclusions: This study provided an accurate prognostic signature for patients with OV and elucidated the potential mechanism of the mRLs in immune modulation and treatment response, giving new insights into identifying new therapeutic targets.
Collapse
Affiliation(s)
- Rui Geng
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Tian Chen
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zihang Zhong
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Senmiao Ni
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
| | - Jianling Bai
- Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China
- Correspondence: (J.B.); (J.L.)
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Correspondence: (J.B.); (J.L.)
| |
Collapse
|
37
|
Liao K, Hu J, Huang Y, Yu S, Yang Q, Sun F, Wu C, Cheng Y, Zhang W, Zhang X, Li H, Wang X. m 6A Regulator-Based Methylation Modification Patterns Characterized by Distinct Tumor Microenvironment Immune Profiles in Rectal Cancer. Front Oncol 2022; 12:879405. [PMID: 35875124 PMCID: PMC9299953 DOI: 10.3389/fonc.2022.879405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 12/24/2022] Open
Abstract
Background Previous studies reported the related role of RNA n6-methyladenosine (m6A) modification in tumorigenesis and development. However, it is not clear whether m6A modification also plays a potential role in the immune regulation of rectal cancer (RC) and the formation of tumor microenvironment. Methods In this study, we screened 23 m6A regulatory factors from 369 rectal cancer specimens, further determined the modification patterns of m6A in RC, and systematically linked these modification patterns with the characteristics of TME cell infiltration. The principal component analysis (PCA) algorithm was used to evaluate the m6A modification pattern of a single tumor related to immune response. Results Three different m6A modification patterns were found in the measurement results, which are related to different clinical results and biological pathways. TME identification results show that the identified m6A pattern is closely related to immune characteristics. According to the m6Ascore extracted from m6A-related signature genes, RC patients were divided into high and low score subgroups combined with tumor mutation burden. Patients with high tumor mutation burden and higher m6Ascore have a significant survival advantage and enhanced immune infiltration. Further analysis showed that patients with higher m6Ascore had higher PD-L1 expression levels and showed better immune response and lasting clinical benefits. Conclusions M6A modification plays a crucial role in the formation of TME diversity and complexity. The evaluation of the m6A modification mode will help us to enhance our understanding of the characteristics of TME infiltration and provide new insights for more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Kaili Liao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jialing Hu
- Department of Emergency medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yu Huang
- School of Advanced Manufacturing of Nanchang University, Nanchang, China
| | - Siji Yu
- School of Advanced Manufacturing of Nanchang University, Nanchang, China
| | - Qijun Yang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Nanchang, China
| | - Fan Sun
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chengfeng Wu
- Department of Vascular Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunqi Cheng
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Nanchang, China
| | - Wenyige Zhang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Nanchang, China
| | - Xue Zhang
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Nanchang, China
| | - Hongyu Li
- Queen Mary College of Nanchang University, Xuefu Road, Nanchang, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
38
|
Jia J, Wu S, Jia Z, Wang C, Ju C, Sheng J, He F, Zhou M, He J. Novel insights into m 6A modification of coding and non-coding RNAs in tumor biology: From molecular mechanisms to therapeutic significance. Int J Biol Sci 2022; 18:4432-4451. [PMID: 35864970 PMCID: PMC9295064 DOI: 10.7150/ijbs.73093] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/12/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence has revealed that m6A modification, the predominant RNA modification in eukaryotes, adds a novel layer of regulation to the gene expression. Dynamic and reversible m6A modification implements sophisticated and crucial functions in RNA metabolism, including generation, splicing, stability, and translation in messenger RNAs (mRNAs) and non-coding RNAs (ncRNAs). Furthermore, m6A modification plays a determining role in producing various m6A-labeling RNA outcomes, thereby affecting several functional processes, including tumorigenesis and progression. Herein, we highlighted current advances in m6A modification and the regulatory mechanisms underlying mRNAs and ncRNAs in distinct cancer stages. Meanwhile, we also focused on the therapeutic significance of m6A regulators in clinical cancer treatment.
Collapse
Affiliation(s)
- Jinlin Jia
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Suwen Wu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China
| | - Zimo Jia
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Chang Wang
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chenxi Ju
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jinxiu Sheng
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fucheng He
- Department of Medical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Mingxia Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing He
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
39
|
Zhang C, Liu N. N6-methyladenosine (m6A) modification in gynecological malignancies. J Cell Physiol 2022; 237:3465-3479. [PMID: 35802474 DOI: 10.1002/jcp.30828] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 12/27/2022]
Abstract
N6-methyladenosine (m6A) modification is one of the most abundant modifications in eukaryotic mRNA, regulated by m6A methyltransferase and demethylase. m6A modified RNA is specifically recognized and bound by m6A recognition proteins, which mediate splicing, maturation, exonucleation, degradation, and translation. In gynecologic malignancies, m6A RNA modification-related molecules are expressed aberrantly, significantly altering the posttranscriptional methylation level of the target genes and their stability. The m6A modification also regulates related metabolic pathways, thereby controlling tumor development. This review analyzes the composition and mode of action of m6A modification-related proteins and their biological functions in the malignant progression of gynecologic malignancies, which provide new ideas for the early clinical diagnosis and targeted therapy of gynecologic malignancies.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
40
|
Zhang F, Liu H, Duan M, Wang G, Zhang Z, Wang Y, Qian Y, Yang Z, Jiang X. Crosstalk among m6A RNA methylation, hypoxia and metabolic reprogramming in TME: from immunosuppressive microenvironment to clinical application. J Hematol Oncol 2022; 15:84. [PMID: 35794625 PMCID: PMC9258089 DOI: 10.1186/s13045-022-01304-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment (TME), which is regulated by intrinsic oncogenic mechanisms and epigenetic modifications, has become a research hotspot in recent years. Characteristic features of TME include hypoxia, metabolic dysregulation, and immunosuppression. One of the most common RNA modifications, N6-methyladenosine (m6A) methylation, is widely involved in the regulation of physiological and pathological processes, including tumor development. Compelling evidence indicates that m6A methylation regulates transcription and protein expression through shearing, export, translation, and processing, thereby participating in the dynamic evolution of TME. Specifically, m6A methylation-mediated adaptation to hypoxia, metabolic dysregulation, and phenotypic shift of immune cells synergistically promote the formation of an immunosuppressive TME that supports tumor proliferation and metastasis. In this review, we have focused on the involvement of m6A methylation in the dynamic evolution of tumor-adaptive TME and described the detailed mechanisms linking m6A methylation to change in tumor cell biological functions. In view of the collective data, we advocate treating TME as a complete ecosystem in which components crosstalk with each other to synergistically achieve tumor adaptive changes. Finally, we describe the potential utility of m6A methylation-targeted therapies and tumor immunotherapy in clinical applications and the challenges faced, with the aim of advancing m6A methylation research.
Collapse
|
41
|
Zhu YF, Wang SJ, Zhou J, Sun YH, Chen YM, Ma J, Huo XX, Song H. Effects of N6-Methyladenosine Modification on Cancer Progression: Molecular Mechanisms and Cancer Therapy. Front Oncol 2022; 12:897895. [PMID: 35707365 PMCID: PMC9189310 DOI: 10.3389/fonc.2022.897895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 11/20/2022] Open
Abstract
N6-methyladenosine (m6A) is a major internal epigenetic modification in eukaryotic mRNA, which is dynamic and reversible. m6A is regulated by methylases (“writers”) and demethylases (“erasers”) and is recognized and processed by m6A-binding proteins (“readers”), which further regulate RNA transport, localization, translation, and degradation. It plays a role in promoting or suppressing tumors and has the potential to become a therapeutic target for malignant tumors. In this review, we focus on the mutual regulation of m6A and coding and non-coding RNAs and introduce the molecular mechanism of m6A methylation involved in regulation and its role in cancer treatment by taking common female malignant tumors as an example.
Collapse
Affiliation(s)
- Yong-fu Zhu
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- The Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shu-Jie Wang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Jie Zhou
- The Department of Acupuncture, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ye-han Sun
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - You-mou Chen
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Jia Ma
- The First Department of Oncology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Xing-xing Huo
- Experimental Center of Clinical Research, Scientific Research Department, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Hang Song, ; Xing-xing Huo,
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Hang Song, ; Xing-xing Huo,
| |
Collapse
|
42
|
Role of main RNA modifications in cancer: N 6-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther 2022; 7:142. [PMID: 35484099 PMCID: PMC9051163 DOI: 10.1038/s41392-022-01003-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/16/2022] Open
Abstract
Cancer is one of the major diseases threatening human life and health worldwide. Epigenetic modification refers to heritable changes in the genetic material without any changes in the nucleic acid sequence and results in heritable phenotypic changes. Epigenetic modifications regulate many biological processes, such as growth, aging, and various diseases, including cancer. With the advancement of next-generation sequencing technology, the role of RNA modifications in cancer progression has become increasingly prominent and is a hot spot in scientific research. This review studied several common RNA modifications, such as N6-methyladenosine, 5-methylcytosine, and pseudouridine. The deposition and roles of these modifications in coding and noncoding RNAs are summarized in detail. Based on the RNA modification background, this review summarized the expression, function, and underlying molecular mechanism of these modifications and their regulators in cancer and further discussed the role of some existing small-molecule inhibitors. More in-depth studies on RNA modification and cancer are needed to broaden the understanding of epigenetics and cancer diagnosis, treatment, and prognosis.
Collapse
|
43
|
Zhao Q, Yao Z, Chen L, He Y, Xie Z, Zhang H, Lin W, Chen F, Xie Q, Zhang X. Transcriptome-Wide Dynamics of m6A Methylation in Tumor Livers Induced by ALV-J Infection in Chickens. Front Immunol 2022; 13:868892. [PMID: 35529873 PMCID: PMC9072629 DOI: 10.3389/fimmu.2022.868892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/28/2022] [Indexed: 11/26/2022] Open
Abstract
Avian Leukosis Virus Subgroup J (ALV-J) is a tumorigenic virus with high morbidity and rapid transmission. N6-methyladenosine (m6A) is a common epigenetic modification that may be closely related to the pathogenicity of ALV-J. Currently, there are no reports on whether m6A modification is related to ALV-J induced tumor formation. In this study, we used methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA sequencing (RNA-seq) to examine the differences in m6A methylation and gene expression in normal livers and ALV-J-induced tumor livers systematically, with functional enrichment and co-expression analysis. The results identified 6,541 m6A methylated peaks, mainly enriched in CDS, and more than 83% of the transcripts contained 1-2 m6A peaks. For RNA-seq, 1,896 and 1,757 differentially expressed mRNAs and lncRNAs were identified, respectively. Gene enrichment analysis indicated that they may be involved in biological processes and pathways such as immunology-related and apoptosis. Moreover, we identified 17 lncRNAs, commonly existing in differently expressed methylome and transcriptome. Through co-expression analysis, 126 differentially expressed lncRNAs, and 18 potentially m6A-related methyltransferases were finally identified and connected, suggesting that m6A modifications might affect gene expression of lncRNAs and play a role in ALV-J induced tumor formation. This study provides the first comprehensive description of the m6A expression profile in tumor livers induced by ALV-J infection in chickens, which provides a basis for studying the role of m6A modification in ALV-J induced tumorigenesis. This study provides clues for studying the epigenetic etiology and pathogenesis of ALV-J.
Collapse
Affiliation(s)
- Qiqi Zhao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Liyi Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Yaai He
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Zi Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Huanmin Zhang
- United States Department of Agriculture (USDA), Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI, United States
| | - Wencheng Lin
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- *Correspondence: Qingmei Xie, ; Xinheng Zhang,
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- *Correspondence: Qingmei Xie, ; Xinheng Zhang,
| |
Collapse
|
44
|
Chen Z, Hu Y, Jin L, Yang F, Ding H, Zhang L, Li L, Pan T. The Emerging Role of N6-Methyladenosine RNA Methylation as Regulators in Cancer Therapy and Drug Resistance. Front Pharmacol 2022; 13:873030. [PMID: 35462896 PMCID: PMC9022635 DOI: 10.3389/fphar.2022.873030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
N6-methyladenosine (m6A) RNA methylation has been considered the most prevalent, abundant, and conserved internal transcriptional modification throughout the eukaryotic mRNAs. Typically, m6A RNA methylation is catalyzed by the RNA methyltransferases (writers), is removed by its demethylases (erasers), and interacts with m6A-binding proteins (readers). Accumulating evidence shows that abnormal changes in the m6A levels of these regulators are increasingly associated with human tumorigenesis and drug resistance. However, the molecular mechanisms underlying m6A RNA methylation in tumor occurrence and development have not been comprehensively clarified. We reviewed the recent findings on biological regulation of m6A RNA methylation and summarized its potential therapeutic strategies in various human cancers.
Collapse
Affiliation(s)
- Zhaolin Chen
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Le Jin
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Fan Yang
- Department of Clinical Medical, The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Haiwen Ding
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lei Zhang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| | - Lili Li
- Department of Hematopathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tingting Pan
- Department of General Surgery, Diagnosis and Therapy Center of Thyroid and Breast, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Anhui Provincial Hospital, Hefei, China
| |
Collapse
|
45
|
Huang W, Kong F, Li R, Chen X, Wang K. Emerging Roles of m 6A RNA Methylation Regulators in Gynecological Cancer. Front Oncol 2022; 12:827956. [PMID: 35155260 PMCID: PMC8831694 DOI: 10.3389/fonc.2022.827956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/17/2022] Open
Abstract
Gynecological cancers seriously affect the reproductive system of females; diseases include ovarian tumors, uterine tumors, endometrial cancers, cervical cancers, and vulva and vaginal tumors. At present, the diagnosis methods of gynecological cancer are insufficiently sensitive and specific, leading to failure of early disease detection. N6-methyladenosine (m6A) plays various biological functions in RNA modification and is currently studied extensively. m6A modification controls the fate of transcripts and regulates RNA metabolism and biological processes through the interaction of m6A methyltransferase (“writer”) and demethylase (“erasers”) and the binding protein decoding m6A methylation (“readers”). In the field of epigenetics, m6A modification is a dynamic process of reversible regulation of target RNA through its regulatory factors. It plays an important role in many diseases, especially cancer. However, its role in gynecologic cancers has not been fully investigated. Thus, we review the regulatory mechanism, biological functions, and therapeutic prospects of m6A RNA methylation regulators in gynecological cancers.
Collapse
Affiliation(s)
- Wanjun Huang
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, China
| | - Ruolan Li
- Department of Obstetrics and Gynecology, Taizhou Central Hospital (Taizhou University, Hospital), Taizhou, China
| | - Xiang Chen
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Kunpeng Wang
- Department of General Surgery, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
46
|
Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS. m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 2022; 21:52. [PMID: 35164788 PMCID: PMC8842557 DOI: 10.1186/s12943-022-01510-2] [Citation(s) in RCA: 214] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/15/2022] [Indexed: 12/12/2022] Open
Abstract
Abnormal N6-methyladenosine (m6A) modification is closely associated with the occurrence, development, progression and prognosis of cancer, and aberrant m6A regulators have been identified as novel anticancer drug targets. Both traditional medicine-related approaches and modern drug discovery platforms have been used in an attempt to develop m6A-targeted drugs. Here, we provide an update of the latest findings on m6A modification and the critical roles of m6A modification in cancer progression, and we summarize rational sources for the discovery of m6A-targeted anticancer agents from traditional medicines and computer-based chemosynthetic compounds. This review highlights the potential agents targeting m6A modification for cancer treatment and proposes the advantage of artificial intelligence (AI) in the discovery of m6A-targeting anticancer drugs. Three stages of m6A-targeting anticancer drug discovery: traditional medicine-based natural products, modern chemical modification or synthesis, and artificial intelligence (AI)-assisted approaches for the future.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wei-Qing Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shu-Ran Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Min-Feng Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wen-Yu Lyu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Qi Qi
- Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, USA
| | - Jia-Xu Chen
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| |
Collapse
|
47
|
Yin L, Ma C, Hou S, Ma X. Methyltransferase-like (METTL)14-mediated N6-methyladenosine modification modulates retinal pigment epithelial (RPE) activity by regulating the methylation of microtubule-associated protein (MAP)2. Bioengineered 2022; 13:4773-4785. [PMID: 35139773 PMCID: PMC8973965 DOI: 10.1080/21655979.2022.2032968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The expression of METTL14 is significantly reduced in patients with retinitis pigmentosa (RP). To clarify the significance of the N6-methyladenosine (m6A) RNA modification in RP, we examined phagocytosis, apoptosis, and cell cycle distribution in a human RPE cell line, ARPE-19, following lentivirus-mediated knockdown of METTL14. Differentially expressed genes and changes in m6A level were evaluated by RNA sequencing (RNA-seq) and methylated RNA immunoprecipitation sequencing (MeRIP-seq), respectively. The results showed that phagocytosis and proliferation were decreased whereas apoptosis was increased in RPE cells by METTL14 silencing. We found that METTL14 directly regulated m6A level and the expression of MAP2, as determined by RNA-seq, MeRIP-seq, MeRIP quantitative PCR, and the RNA pull-down assay. Additionally, MAP2 could bind to neuronal differentiation (NEUROD)1, a pathogenic gene in RPE-associated diseases. A family member of the YTH domain, (YTHDF)2 was recognized as an m6A reader of MAP2 mRNA. MAP2 overexpression had the same effects as METTL14 knockdown in RPE cells. Thus, METTL14 regulates the expression of MAP2 via the modification of m6A, resulting in the dysregulation of NEUROD1 and pathologic changes in RPE cells. These findings suggest that therapeutic strategies targeting the m6A modification of MAP2 or the METTL14/YTHDF2/MAP2/NEUROD1 signaling axis may be effective in the treatment of RPE-associated ocular diseases.
Collapse
Affiliation(s)
- Lu Yin
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liaoning Province Division of National Clinical Research Center for Ocular Diseases, Dalian, China.,Liaoning Key Laboratory of Vitreoretinal Diseases, Dalian, China.,Dalian Corneal Stem Cell Transplantation Engineering Research Center, Dalian, China
| | - Cong Ma
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Lab of Ophthalmology, Chongqing, China.,Chongqing Eye Institute, Chongqing, China
| | - Xiang Ma
- Department of Ophthalmology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Liaoning Province Division of National Clinical Research Center for Ocular Diseases, Dalian, China.,Liaoning Key Laboratory of Vitreoretinal Diseases, Dalian, China.,Dalian Corneal Stem Cell Transplantation Engineering Research Center, Dalian, China
| |
Collapse
|
48
|
Cui J, Zhu Y, Liu X, Wang W, Jiang X, Xia Y, Zhou G, Chen S, Shi B. Comprehensive analysis of N 6-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell Int 2022; 22:72. [PMID: 35148766 PMCID: PMC8840771 DOI: 10.1186/s12935-022-02456-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022] Open
Abstract
Background N6-methyladenosine (m6A) is one of the most abundant post-transcriptional modifications of RNA. However, there is limited information about the potential roles of m6A regulators in tumor immunity. Therefore, in this study, we aimed to testify the functions of m6A regulators in bladder cancer as well as their association with the tumor immune landscape. Methods We reported the variation and expression levels of m6A regulators in the TCGA database and GTEx database of bladder cancer. Clusters, risk score patterns, and nomograms were constructed to evaluate the function and prognostic value of m6A regulators. Furthermore, we constructed nomogram to evaluate the prognosis of the individual patients. The correlation between insulin-like growth factor 2 mRNA-binding protein 3 (IGF2BP3) and programmed cell death ligand 1 (PD-L1) was evaluated both in vitro and in vivo. Results We found that the tumor grade and DNA damage pathways were strongly correlated with distinct clusters. Furthermore, two risk score groups with six m6A regulators were identified using the least absolute shrinkage and selection operator (LASSO) and multivariable Cox regression analysis, which could be regarded as independent prognostic markers in patients with bladder cancer. The risk score pattern was linked to the tumor immune landscape, indicating a correlation between immune checkpoints and m6A regulators. Moreover, an m6A regulator, IGF2BP3, was found to be highly expressed in the tumor samples, regulating both the total and membrane-bound PD-L1 expression levels. Conclusions The results of this study revealed that the m6A clusters and patterns play crucial roles in the regulation of tumor immunity, which may be used to develop comprehensive treatment strategies for the management of bladder cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02456-7.
Collapse
Affiliation(s)
- Jianfeng Cui
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Yaofeng Zhu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Xiaochen Liu
- The Key Laboratory of Experimental Teratology, Ministry of Education and Department of Molecular Medicine and Genetics, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Wenfu Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Xuewen Jiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Yangyang Xia
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Guanwen Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China
| | - Shouzhen Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, 250012, Shandong, China.
| |
Collapse
|
49
|
Luo Y, Sun X, Xiong J. Characterization of m6A Regulator-Mediated Methylation Modification Patterns and Tumor Microenvironment Infiltration in Ovarian Cancer. Front Cell Dev Biol 2022; 9:794801. [PMID: 35087835 PMCID: PMC8787330 DOI: 10.3389/fcell.2021.794801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Introduction: Studies have demonstrated the epigenetic regulation of immune responses in various cancers. However, little is known about the RNA N6-methyladenosine (m6A) modification patterns of the microenvironment (TME) cell infiltration in ovarian cancer (OC). Methods: We evaluated the correlation between m6A modification patterns and TME cell infiltration based on 459 OC samples from the Cancer Genome Atlas and Gene-Expression Omnibus database. We constructed an m6Ascore system to quantify m6A modification patterns using principal component analysis. Results: Based on unsupervised clustering, three m6A modification patterns were identified. Gene set variation analysis showed that the antigen presentation signal pathway, the NOTCH signaling pathway, and the metabolism-related pathway differed significantly across m6A modificaiton patterns. The m6Ascore is closely correlated with TME cell infiltration. OC patients with lower m6Ascores had worse outcomes. There was better risk stratification with combined m6Ascore and tumor mutation burden. The responses to immune checkpoint inhibitor treatment significantly differed between high and low m6Ascore groups. Conclusion: M6A modification plays an essential role in TME cell infiltration in OC. Evaluating the m6A modification patterns in OC patients could enhance our understanding of TME infiltration characterization and guide immunotherapy strategies.
Collapse
Affiliation(s)
- Yihong Luo
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xiang Sun
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jian Xiong
- Department of Gynaecology and Obstetrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
50
|
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022; 15:8. [PMID: 35063010 PMCID: PMC8780705 DOI: 10.1186/s13045-022-01224-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
RNA demethylase ALKBH5 takes part in the modulation of N6-methyladenosine (m6A) modification and controls various cell processes. ALKBH5-mediated m6A demethylation regulates gene expression by affecting multiple events in RNA metabolism, e.g., pre-mRNA processing, mRNA decay and translation. Mounting evidence shows that ALKBH5 plays critical roles in a variety of human malignancies, mostly via post-transcriptional regulation of oncogenes or tumor suppressors in an m6A-dependent manner. Meanwhile, increasing non-coding RNAs are recognized as functional targets of ALKBH5 in cancers. Here we reviewed up-to-date findings about the pathological roles of ALKBH5 in cancer, the molecular mechanisms by which it exerts its functions, as well as the underlying mechanism of its dysregulation. We also discussed the therapeutic implications of targeting ALKBH5 in cancer and potential ALKBH5-targeting strategies.
Collapse
Affiliation(s)
- Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|