1
|
Liu M, Li TZ, Xu C. The role of tumor-associated fibroblast-derived exosomes in chemotherapy resistance of colorectal cancer and its application prospect. Biochim Biophys Acta Gen Subj 2025; 1869:130796. [PMID: 40122307 DOI: 10.1016/j.bbagen.2025.130796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/03/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025]
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor in the world. With its increasing incidence and younger age trend, its impact on human health has been paid more and more attention. Currently, we have a variety of chemotherapy drugs that can be used to treat colorectal cancer. However, the drug resistance of colorectal cancer has become a significant factor affecting its cure rate. Some studies have reported that exosomes are related to the occurrence of drug resistance. However, the exact mechanism is not precise. Therefore, we focused on the role of cancer associated-fibroblast-derived (CAFs-derived) exosomes in colorectal progression. It was found that cancer cells transmit information through exosome interaction and induce chemotherapy resistance by promoting epithelial-mesenchymal transition (EMT), up-regulating the Wnt/β-catenin signaling pathway, transforming growth factor-β1 (TGF-β1) pathway, promoting angiogenesis and other possible molecular mechanisms. In addition, in terms of clinical significance and therapeutic strategies, we explore the clinical relevance of CAFs-derived exosomes in colorectal cancer patients and their potential as potential biomarkers for predicting chemotherapy response. We also provide a new possible direction for overcoming chemotherapy resistance in colorectal cancer by targeting CAFs-derived exosomes.
Collapse
Affiliation(s)
- Meichen Liu
- The Second Clinical Medical College, Nanchang University, NanChang, China
| | - Teng-Zheng Li
- Department of Gastroenterology, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, NanChang, China.
| |
Collapse
|
2
|
Farzam OR, Eslami S, Jafarizadeh A, Alamdari SG, Dabbaghipour R, Nobari SA, Baradaran B. The significance of exosomal non-coding RNAs (ncRNAs) in the metastasis of colorectal cancer and development of therapy resistance. Gene 2025; 937:149141. [PMID: 39643147 DOI: 10.1016/j.gene.2024.149141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/30/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) represents a common type of carcinoma with significant mortality rates globally. A primary factor contributing to the unfavorable treatment outcomes and reduced survival rates in CRC patients is the occurrence of metastasis. Various intricate molecular mechanisms are implicated in the metastatic process, leading to mortality among individuals with CRC. In the realm of intercellular communication, exosomes, which are a form of extracellular vesicle (EV), play an essential role. These vesicles act as conduits for information exchange between cells and originate from multiple sources. By fostering a microenvironment conducive to CRC progression, exosomes and EVs significantly influence the advancement of the disease. They contain a diverse array of molecules, including messenger RNAs (mRNAs), non-coding RNAs (ncRNAs), proteins, lipids, and transcription factors. Notably, ncRNAs, such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are prominently featured within exosomes. These ncRNAs have the capacity to regulate various critical molecules or signaling pathways, particularly those associated with tumor metastasis, thereby playing a crucial role in tumorigenesis. Their presence indicates a substantial potential to affect vital aspects of tumor progression, including proliferation, metastasis, and resistance to treatment. This research aims to categorize exosomal ncRNAs and examine their functions in colorectal cancer. Furthermore, it investigates the clinical applicability of novel biomarkers and therapeutic strategies in CRC. Abbreviations: ncRNAs, non-coding RNAs; CRC, Colorectal cancer; EV, extracellular vesicle; mRNAs, messenger RNAs; miRNAs, microRNAs; lncRNAs, long non-coding RNAs; circRNAs, circular RNAs; HOTTIP, HOXA transcript at the distal tip; NSCLC, non-small cell lung cancer; 5-FU, 5-fluorouracil; OX, Oxaliplatin; PDCD4, programmed cell death factor 4; Tregs, regulatory T cells; EMT, epithelial-mesenchymal transition; PFKFB3, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; USP2, ubiquitin carboxyl-terminal hydrolase 2; TNM, tumor node metastasis; TAMs, tumor-associated macrophages; RASA1, RAS p21 protein activator 1; PDCD4, programmed cell death 4; ZBTB2, zinc finger and BTB domain containing 2; SOCS1, suppressor of cytokine signaling 1; TUBB3, β-III tubulin; MSCs, mesenchymal stem cells.
Collapse
Affiliation(s)
- Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sahand Eslami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Evidence-based Medicine, Iranian EBM Center: A Joana-affiliated Group, Tabriz University of Medicine Science, Tabriz, Iran
| | - Sania Ghobadi Alamdari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Cell and Molecular Biology, Faculty of Basic Sciences, University of Maragheh, Maragheh, Iran
| | - Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Alizadeh Nobari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Farahani M, Ghazimoradi MH. Dissecting the roles of exosomal cancer-associated fibroblasts-derived non-coding RNAs in tumor progression: A complete guide. Pathol Res Pract 2024; 262:155576. [PMID: 39232286 DOI: 10.1016/j.prp.2024.155576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Cancer-associated fibroblasts are the most important cellular component of the tumor microenvironment, controlling cancer progression and therapeutic response. These cells in the tumor microenvironment regulate tumor progression and development as oncogenic or tumor suppressor agents. However, the mechanisms by which CAFs communicate with cancer cells remain to investigate. Here, we review evidence that extracellular vesicles, particularly exosomes, serve as vehicles for the intercellular transfer of bioactive cargos, notably microRNAs and long non-coding RNAs, from CAFs to cancer cells. We try to highlight molecular pathways of non-coding RNAs and the interaction among these molecules. Together, these findings elucidate a critical exosome-based communication axis by which CAFs create mostly a supportive pro-tumorigenic microenvironment and highlight therapeutic opportunities for disrupting this intercellular crosstalk.
Collapse
Affiliation(s)
- Mahnaz Farahani
- Department of Neurology, School of Medicine, Hazrat Rasool-E Akram, General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Ghazimoradi
- Department of Molecular Genetics, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
4
|
Díaz CR, Hernández-Huerta MT, Mayoral LPC, Villegas MEA, Zenteno E, Cruz MM, Mayoral EPC, del Socorro Pina Canseco M, Andrade GM, Castellanos MÁ, Matías Salvador JM, Cruz Parada E, Martínez Barras A, Cruz Fernández JN, Scott-Algara D, Pérez-Campos E. Non-Coding RNAs and Innate Immune Responses in Cancer. Biomedicines 2024; 12:2072. [PMID: 39335585 PMCID: PMC11429077 DOI: 10.3390/biomedicines12092072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Non-coding RNAs (ncRNAs) and the innate immune system are closely related, acting as defense mechanisms and regulating gene expression and innate immunity. Both are modulators in the initiation, development and progression of cancer. We aimed to review the major types of ncRNAs, including small interfering RNAs (siRNAs), microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and long non-coding RNAs (lncRNAs), with a focus on cancer, innate immunity, and inflammation. We found that ncRNAs are closely related to innate immunity, epigenetics, chronic inflammation, and cancer and share properties such as inducibility, specificity, memory, and transfer. These similarities and interrelationships suggest that ncRNAs and modulators of trained immunity, together with the control of chronic inflammation, can be combined to develop novel therapeutic approaches for personalized cancer treatment. In conclusion, the close relationship between ncRNAs, the innate immune system, and inflammation highlights their importance in cancer pathways and their potential as targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Carlos Romero Díaz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | - María Teresa Hernández-Huerta
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCyT), Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico;
| | - Laura Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | | | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico; (E.Z.); (M.Á.C.)
| | - Margarito Martínez Cruz
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | - Eduardo Pérez-Campos Mayoral
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - María del Socorro Pina Canseco
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Gabriel Mayoral Andrade
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Manuel Ángeles Castellanos
- Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Ciudad de México 04510, Mexico; (E.Z.); (M.Á.C.)
| | | | - Eli Cruz Parada
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
| | | | - Jaydi Nora Cruz Fernández
- Centro de Investigación, Facultad de Medicina UNAM-UABJO, Universidad Autónoma “Benito Juárez” de Oaxaca (UABJO), Oaxaca 68020, Mexico; (L.P.-C.M.); (E.P.-C.M.); (M.d.S.P.C.); (G.M.A.); (J.N.C.F.)
| | - Daniel Scott-Algara
- Unité de Biologie Cellulaire des Lymphocytes and Direction of International Affairs, Institut Pasteur, 75015 Paris, France
| | - Eduardo Pérez-Campos
- Tecnológico Nacional de México/IT Oaxaca, Oaxaca 68030, Mexico; (C.R.D.); (M.E.A.V.); (M.M.C.); (E.C.P.)
- Laboratorio de Patología Clínica “Dr. Eduardo Pérez Ortega”, Oaxaca 68000, Mexico
| |
Collapse
|
5
|
Lin Z, Li G, Jiang K, Li Z, Liu T. Cancer therapy resistance mediated by cancer-associated fibroblast-derived extracellular vesicles: biological mechanisms to clinical significance and implications. Mol Cancer 2024; 23:191. [PMID: 39244548 PMCID: PMC11380334 DOI: 10.1186/s12943-024-02106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs) are a diverse stromal cell population within the tumour microenvironment, where they play fundamental roles in cancer progression and patient prognosis. Multiple lines of evidence have identified that CAFs are critically involved in shaping the structure and function of the tumour microenvironment with numerous functions in regulating tumour behaviours, such as metastasis, invasion, and epithelial-mesenchymal transition (EMT). CAFs can interact extensively with cancer cells by producing extracellular vesicles (EVs), multiple secreted factors, and metabolites. Notably, CAF-derived EVs have been identified as critical mediators of cancer therapy resistance, and constitute novel therapy targets and biomarkers in cancer management. This review aimed to summarize the biological roles and detailed molecular mechanisms of CAF-derived EVs in mediating cancer resistance to chemotherapy, targeted therapy agents, radiotherapy, and immunotherapy. We also discussed the therapeutic potential of CAF-derived EVs as novel targets and clinical biomarkers in cancer clinical management, thereby providing a novel therapeutic strategy for enhancing cancer therapy efficacy and improving patient prognosis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Guoqing Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan Province, China
| | - Ke Jiang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139# Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
6
|
Lau R, Yu L, Roumeliotis TI, Stewart A, Pickard L, Choudhary JS, Banerji U. Secretome of Cancer-Associated Fibroblasts (CAFs) Influences Drug Sensitivity in Cancer Cells. J Proteome Res 2024; 23:2160-2168. [PMID: 38767394 PMCID: PMC11165579 DOI: 10.1021/acs.jproteome.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/20/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024]
Abstract
Resistance is a major problem with effective cancer treatment and the stroma forms a significant portion of the tumor mass but traditional drug screens involve cancer cells alone. Cancer-associated fibroblasts (CAFs) are a major tumor stroma component and its secreted proteins may influence the function of cancer cells. The majority of secretome studies compare different cancer or CAF cell lines exclusively. Here, we present the direct characterization of the secreted protein profiles between CAFs and KRAS mutant-cancer cell lines from colorectal, lung, and pancreatic tissues using multiplexed mass spectrometry. 2573 secreted proteins were annotated, and differential analysis highlighted understudied CAF-enriched secreted proteins, including Wnt family member 5B (WNT5B), in addition to established CAF markers, such as collagens. The functional role of CAF secreted proteins was explored by assessing its effect on the response to 97 anticancer drugs since stromal cells may cause a differing cancer drug response, which may be missed on routine drug screening using cancer cells alone. CAF secreted proteins caused specific effects on each of the cancer cell lines, which highlights the complexity and challenges in cancer treatment and so the importance to consider stromal elements.
Collapse
Affiliation(s)
- Rachel Lau
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Lu Yu
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Theodoros I. Roumeliotis
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Adam Stewart
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Lisa Pickard
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| | - Jyoti S. Choudhary
- Functional
Proteomics Group, Chester Beatty Laboratories,
The Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Udai Banerji
- Clinical
Pharmacology and Adaptive Therapy Group, The Institute of Cancer Research and The Royal Marsden NHS Foundation
Trust, London SM2 5PT, United
Kingdom
| |
Collapse
|
7
|
Gou Z, Li J, Liu J, Yang N. The hidden messengers: cancer associated fibroblasts-derived exosomal miRNAs as key regulators of cancer malignancy. Front Cell Dev Biol 2024; 12:1378302. [PMID: 38694824 PMCID: PMC11061421 DOI: 10.3389/fcell.2024.1378302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/08/2024] [Indexed: 05/04/2024] Open
Abstract
Cancer-associated fibroblasts (CAFs), a class of stromal cells in the tumor microenvironment (TME), play a key role in controlling cancer cell invasion and metastasis, immune evasion, angiogenesis, and resistance to chemotherapy. CAFs mediate their activities by secreting soluble chemicals, releasing exosomes, and altering the extracellular matrix (ECM). Exosomes contain various biomolecules, such as nucleic acids, lipids, and proteins. microRNA (miRNA), a 22-26 nucleotide non-coding RNA, can regulate the cellular transcription processes. Studies have shown that miRNA-loaded exosomes secreted by CAFs engage in various regulatory communication networks with other TME constituents. This study focused on the roles of CAF-derived exosomal miRNAs in generating cancer malignant characteristics, including immune modulation, tumor growth, migration and invasion, epithelial-mesenchymal transition (EMT), and treatment resistance. This study thoroughly examines miRNA's dual regulatory roles in promoting and suppressing cancer. Thus, changes in the CAF-derived exosomal miRNAs can be used as biomarkers for the diagnosis and prognosis of patients, and their specificity can be used to develop newer therapies. This review also discusses the pressing problems that require immediate attention, aiming to inspire researchers to explore more novel avenues in this field.
Collapse
Affiliation(s)
- Zixuan Gou
- Bethune First Clinical School of Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Jianming Liu
- Department of Otolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Yang
- Department of Clinical Pharmacy, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
8
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
9
|
Cao L, Ouyang H. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via exosomes in gastrointestinal tumors. Front Oncol 2024; 14:1374742. [PMID: 38463229 PMCID: PMC10920350 DOI: 10.3389/fonc.2024.1374742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Gastrointestinal (GI) tumors are a significant global health threat, with high rates of morbidity and mortality. Exosomes contain various biologically active molecules like nucleic acids, proteins, and lipids and can serve as messengers for intercellular communication. They play critical roles in the exchange of information between tumor cells and the tumor microenvironment (TME). The TME consists of mesenchymal cells and components of the extracellular matrix (ECM), with fibroblasts being the most abundant cell type in the tumor mesenchyme. Cancer-associated fibroblasts (CAFs) are derived from normal fibroblasts and mesenchymal stem cells that are activated in the TME. CAFs can secrete exosomes to modulate cell proliferation, invasion, migration, drug resistance, and other biological processes in tumors. Additionally, tumor cells can manipulate the function and behavior of fibroblasts through direct cell-cell interactions. This review provides a summary of the intercellular crosstalk between GI tumor cells and CAFs through exosomes, along with potential underlying mechanisms.
Collapse
Affiliation(s)
- Longyang Cao
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| | - Hong Ouyang
- Department of Gastroenterology, The First Peoples' Hospital of Hangzhou Linan District, Hangzhou, China
| |
Collapse
|
10
|
Piwocka O, Piotrowski I, Suchorska WM, Kulcenty K. Dynamic interactions in the tumor niche: how the cross-talk between CAFs and the tumor microenvironment impacts resistance to therapy. Front Mol Biosci 2024; 11:1343523. [PMID: 38455762 PMCID: PMC10918473 DOI: 10.3389/fmolb.2024.1343523] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/07/2024] [Indexed: 03/09/2024] Open
Abstract
The tumor microenvironment (TME) is a complex ecosystem of cells, signaling molecules, and extracellular matrix components that profoundly influence cancer progression. Among the key players in the TME, cancer-associated fibroblasts (CAFs) have gained increasing attention for their diverse and influential roles. CAFs are activated fibroblasts found abundantly within the TME of various cancer types. CAFs contribute significantly to tumor progression by promoting angiogenesis, remodeling the extracellular matrix, and modulating immune cell infiltration. In order to influence the microenvironment, CAFs engage in cross-talk with immune cells, cancer cells, and other stromal components through paracrine signaling and direct cell-cell interactions. This cross-talk can result in immunosuppression, tumor cell proliferation, and epithelial-mesenchymal transition, contributing to disease progression. Emerging evidence suggests that CAFs play a crucial role in therapy resistance, including resistance to chemotherapy and radiotherapy. CAFs can modulate the tumor response to treatment by secreting factors that promote drug efflux, enhance DNA repair mechanisms, and suppress apoptosis pathways. This paper aims to understand the multifaceted functions of CAFs within the TME, discusses cross-talk between CAFs with other TME cells, and sheds light on the contibution of CAFs to therapy resistance. Targeting CAFs or disrupting their cross-talk with other cells holds promise for overcoming drug resistance and improving the treatment efficacy of various cancer types.
Collapse
Affiliation(s)
- Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Wiktoria M. Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kulcenty
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
11
|
Albadari N, Xie Y, Li W. Deciphering treatment resistance in metastatic colorectal cancer: roles of drug transports, EGFR mutations, and HGF/c-MET signaling. Front Pharmacol 2024; 14:1340401. [PMID: 38269272 PMCID: PMC10806212 DOI: 10.3389/fphar.2023.1340401] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/27/2023] [Indexed: 01/26/2024] Open
Abstract
In 2023, colorectal cancer (CRC) is the third most diagnosed malignancy and the third leading cause of cancer death worldwide. At the time of the initial visit, 20% of patients diagnosed with CRC have metastatic CRC (mCRC), and another 25% who present with localized disease will later develop metastases. Despite the improvement in response rates with various modulation strategies such as chemotherapy combined with targeted therapy, radiotherapy, and immunotherapy, the prognosis of mCRC is poor, with a 5-year survival rate of 14%, and the primary reason for treatment failure is believed to be the development of resistance to therapies. Herein, we provide an overview of the main mechanisms of resistance in mCRC and specifically highlight the role of drug transports, EGFR, and HGF/c-MET signaling pathway in mediating mCRC resistance, as well as discuss recent therapeutic approaches to reverse resistance caused by drug transports and resistance to anti-EGFR blockade caused by mutations in EGFR and alteration in HGF/c-MET signaling pathway.
Collapse
Affiliation(s)
| | | | - Wei Li
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
12
|
Radak M, Ghamari N, Fallahi H. Identification of common factors among fibrosarcoma, rhabdomyosarcoma, and osteosarcoma by network analysis. Biosystems 2024; 235:105093. [PMID: 38052344 DOI: 10.1016/j.biosystems.2023.105093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023]
Abstract
Sarcoma cancers are uncommon malignant tumors, and there are many subgroups, including fibrosarcoma (FS), which mainly affects middle-aged and older adults in deep soft tissues. Rhabdomyosarcoma (RMS), on the other hand, is the most common soft-tissue sarcoma in children and is located in the head and neck area. Osteosarcomas (OS) is the predominant form of primary bone cancer among young adults, primarily resulting from sporadically random mutations. This frequently results in the dissemination of cancer cells to the lungs, commonly known as metastasis. Mesodermal cells are the origin of sarcoma cancers. In this study, a rather radical approach has been applied. Instead of comparing homogenous cancer types, we focus on three main subtypes of sarcoma: fibrosarcoma, rhabdomyosarcoma, and osteosarcoma, and compare their gene expression with normal cell groups to identify the differentially expressed genes (DEGs). Next, by applying protein-protein interaction (PPI) network analysis, we determine the hub genes and crucial factors, such as transcription factors (TFs), affected by these types of cancer. Our findings indicate a modification in a range of pathways associated with cell cycle, extracellular matrix, and DNA repair in these three malignancies. Results showed that fibrosarcoma (FS), rhabdomyosarcoma (RMS), and osteosarcoma (OS) had 653, 1270, and 2823 differentially expressed genes (DEGs), respectively. Interestingly, there were 24 DEGs common to all three types. Network analysis showed that the fibrosarcoma network had two sub-networks identified in FS that contributed to the catabolic process of collagen via the G-protein coupled receptor signaling pathway. The rhabdomyosarcoma network included nine sub-networks associated with cell division, extracellular matrix organization, mRNA splicing via spliceosome, and others. The osteosarcoma network has 13 sub-networks, including mRNA splicing, sister chromatid cohesion, DNA repair, etc. In conclusion, the common DEGs identified in this study have been shown to play significant and multiple roles in various other cancers based on the literature review, indicating their significance.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Nakisa Ghamari
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Iran.
| |
Collapse
|
13
|
Anajafi S, Paryan M, Khoshnazar A, Soleimani M, Mohammadi-Yeganeh S. miRNAs Delivery for Cancer-associated Fibroblasts' Activation and Drug Resistance in Cancer Microenvironment. Endocr Metab Immune Disord Drug Targets 2024; 24:333-347. [PMID: 37612874 DOI: 10.2174/1871530323666230823094556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023]
Abstract
Cancer-associated fibroblasts (CAFs) as a major component of cancer stroma contribute to diverse procedures of most solid tumors and might be a targeted cancer therapy approach. Their specified features, related signaling pathways, distinct biomarkers, and sub-populations need to be deciphered. There is a need for CAF extraction or induction for in vitro investigations. Some miRNAs could activate CAF-like phenotype and they also interfere in CAF-mediated drug resistance, aggressiveness, and metastatic behaviors of several cancer cell types. Due to the complex relevance of miRNA and CAFs, these non-coding oligonucleotides may serve as attractive scope for anti-cancer targeted therapies, but the lack of an efficient delivery system is still a major hurdle. Here, we have summarized the investigated information on CAF features, isolation, and induction procedures, and highlighted the miRNA-CAF communications, providing special insight into nano-delivery systems.
Collapse
Affiliation(s)
- Sara Anajafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Paryan
- Department of Research and Development, Production and Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Amineh Khoshnazar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samira Mohammadi-Yeganeh
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Estêvão D, da Cruz-Ribeiro M, Cardoso AP, Costa ÂM, Oliveira MJ, Duarte TL, da Cruz TB. Iron metabolism in colorectal cancer: a balancing act. Cell Oncol (Dordr) 2023; 46:1545-1558. [PMID: 37273145 DOI: 10.1007/s13402-023-00828-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the second deadliest malignancy worldwide. Current dietary habits are associated with increased levels of iron and heme, both of which increase the risk of developing CRC. The harmful effects of iron overload are related to the induction of iron-mediated pro-tumorigenic pathways, including carcinogenesis and hyperproliferation. On the other hand, iron deficiency may also promote CRC development and progression by contributing to genome instability, therapy resistance, and diminished immune responses. In addition to the relevance of systemic iron levels, iron-regulatory mechanisms in the tumor microenvironment are also believed to play a significant role in CRC and to influence disease outcome. Furthermore, CRC cells are more prone to escape iron-dependent cell death (ferroptosis) than non-malignant cells due to the constitutive activation of antioxidant genes expression. There is wide evidence that inhibition of ferroptosis may contribute to the resistance of CRC to established chemotherapeutic regimens. As such, ferroptosis inducers represent promising therapeutic drugs for CRC. CONCLUSIONS AND PERSPECTIVES This review addresses the complex role of iron in CRC, particularly in what concerns the consequences of iron excess or deprivation in tumor development and progression. We also dissect the regulation of cellular iron metabolism in the CRC microenvironment and emphasize the role of hypoxia and of oxidative stress (e.g. ferroptosis) in CRC. Finally, we underline some iron-related players as potential therapeutic targets against CRC malignancy.
Collapse
Affiliation(s)
- Diogo Estêvão
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Cancer Research Institute, Ghent University, Ghent, Belgium
| | - Miguel da Cruz-Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
| | - Ana P Cardoso
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Ângela M Costa
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Maria J Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- FMUP - Faculty of Medicine, Pathology Department, University of Porto, Porto, Portugal
| | - Tiago L Duarte
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
| | - Tânia B da Cruz
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal.
| |
Collapse
|
15
|
Zhang C, Qin M. Extracellular vesicles targeting tumor microenvironment in ovarian cancer. Int J Biol Macromol 2023; 252:126300. [PMID: 37573911 DOI: 10.1016/j.ijbiomac.2023.126300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/17/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Ovarian cancer (OC) is a prevalent neoplastic condition affecting women. Extracellular vesicles (EVs), nano-sized membrane vesicles, are secreted by various cells in both physiological and pathological states. The profound interplay between EVs and the tumor microenvironment (TME) in ovarian cancer is crucial. In this review, we explores the pivotal role of EVs in facilitating intercellular communication between cancer cells and the TME, emphasizing the potential of EVs as promising diagnostic markers and innovative therapeutic targets for ovarian cancer. The comprehensive analysis outlines the specific mechanisms by which EVs engage in communication with the constituents of the TME, including the modulation of tumor growth through EVs carrying matrix metalloproteinases (MMPs) and EV-mediated inhibition of angiogenesis, among other factors. Additionally, the we discuss the potential clinical applications of EVs that target the TME in ovarian cancer, encompassing the establishment of novel treatment strategies and the identification of novel biomarkers for early detection and prognosis. Finally, this review identifies novel strategies for therapeutic interventions, such as utilizing EVs as carriers for drug delivery and targeting specific EV-mediated signaling pathways. In summary, this manuscript offers valuable insights into the role of EVs in ovarian cancer and highlights the significance of comprehending intercellular communication in the realm of cancer biology.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China
| | - Meiying Qin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, China.
| |
Collapse
|
16
|
Al-Bzour NN, Al-Bzour AN, Ababneh OE, Al-Jezawi MM, Saeed A, Saeed A. Cancer-Associated Fibroblasts in Gastrointestinal Cancers: Unveiling Their Dynamic Roles in the Tumor Microenvironment. Int J Mol Sci 2023; 24:16505. [PMID: 38003695 PMCID: PMC10671196 DOI: 10.3390/ijms242216505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Gastrointestinal cancers are highly aggressive malignancies with significant mortality rates. Recent research emphasizes the critical role of the tumor microenvironment (TME) in these cancers, which includes cancer-associated fibroblasts (CAFs), a key component of the TME that have diverse origins, including fibroblasts, mesenchymal stem cells, and endothelial cells. Several markers, such as α-SMA and FAP, have been identified to label CAFs, and some specific markers may serve as potential therapeutic targets. In this review article, we summarize the literature on the multifaceted role of CAFs in tumor progression, including their effects on angiogenesis, immune suppression, invasion, and metastasis. In addition, we highlight the use of single-cell transcriptomics to understand CAF heterogeneity and their interactions within the TME. Moreover, we discuss the dynamic interplay between CAFs and the immune system, which contributes to immunosuppression in the TME, and the potential for CAF-targeted therapies and combination approaches with immunotherapy to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Noor N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Ayah N. Al-Bzour
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
| | - Obada E. Ababneh
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Moayad M. Al-Jezawi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; (O.E.A.); (M.M.A.-J.)
| | - Azhar Saeed
- Department of Pathology and Laboratory Medicine, University of Vermont Medical Center, Burlington, VT 05401, USA;
| | - Anwaar Saeed
- Department of Medicine, Division of Hematology & Oncology, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA 15232, USA; (N.N.A.-B.); (A.N.A.-B.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15232, USA
| |
Collapse
|
17
|
Huang Z, Wang C, Huang Q, Yan Z, Yin Z. Hungatella hathewayi impairs the sensitivity of colorectal cancer cells to 5-FU through decreasing CDX2 expression. Hum Cell 2023; 36:2055-2065. [PMID: 37477870 DOI: 10.1007/s13577-023-00938-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/16/2023] [Indexed: 07/22/2023]
Abstract
Hungatella hathewayi (H. hathewayi), also known as Clostridium hathewayi, has been reported to be accumulated in the colorectal cancer (CRC) samples. In addition, evidence has demonstrated that inoculation with H. hathewayi promotes the proliferation of colonic epithelial cells in mice. Herein, we explored H. hathewayi role in regulating the 5-fluorouracil (5-FU) resistance in CRC cells, and investigated the underlying mechanisms. H. hathewayi abundance in CRC tissues and the corresponding adjacent normal tissues was tested using qRT-PCR. Both parental and 5-FU resistance CRC cell lines were used to assess H. hathewayi role in regulating the 5-FU resistance of CRC cells using CCK-8, flow cytometry and animal experiments. H. hathewayi abundance was significantly increased in CRC tissues, and the high level of H. hathewayi was linked to lower overall survival rate. H. hathewayi treatment significantly weakened 5-FU effects on inhibiting cell growth and inducing cell apoptosis in CRC HCT116 and HT29 cells. In addition, H. hathewayi enhanced the 5-FU resistance of HCT116/5-FU and HT29/5-FU cells (the 5-FU resistance cell lines). In mechanism, H. hathewayi decreased the expression of CDX2, and increased the expression of nuclear accumulation of β-catenin. Overexpression of CDX2 abolished H. hathewayi-mediated enhancement in cell growth and inhibition in cell apoptosis in HCT116/5-FU and HT29/5-FU cells, as well as inhibited the expression and nuclear accumulation of β-catenin. In conclusion, H. hathewayi abundance was increased in CRC tissues, and the high level of H. hathewayi was linked to lower overall survival rate. In mechanisam, H. hathewayi treatment enhanced the 5-FU resistance of CRC cells through modulating CDX2/β-catenin signaling.
Collapse
Affiliation(s)
- Zhi Huang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, 550002, People's Republic of China
| | - Chuanlin Wang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Qiujin Huang
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhiqiang Yan
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550002, People's Republic of China.
| | - Zhaohui Yin
- Department of Anus and Intestine Surgery, The Guizhou Maotai Hospital, Zunyi, 5190100, People's Republic of China.
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
18
|
Zhang H, Yue X, Chen Z, Liu C, Wu W, Zhang N, Liu Z, Yang L, Jiang Q, Cheng Q, Luo P, Liu G. Define cancer-associated fibroblasts (CAFs) in the tumor microenvironment: new opportunities in cancer immunotherapy and advances in clinical trials. Mol Cancer 2023; 22:159. [PMID: 37784082 PMCID: PMC10544417 DOI: 10.1186/s12943-023-01860-5] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/04/2023] Open
Abstract
Despite centuries since the discovery and study of cancer, cancer is still a lethal and intractable health issue worldwide. Cancer-associated fibroblasts (CAFs) have gained much attention as a pivotal component of the tumor microenvironment. The versatility and sophisticated mechanisms of CAFs in facilitating cancer progression have been elucidated extensively, including promoting cancer angiogenesis and metastasis, inducing drug resistance, reshaping the extracellular matrix, and developing an immunosuppressive microenvironment. Owing to their robust tumor-promoting function, CAFs are considered a promising target for oncotherapy. However, CAFs are a highly heterogeneous group of cells. Some subpopulations exert an inhibitory role in tumor growth, which implies that CAF-targeting approaches must be more precise and individualized. This review comprehensively summarize the origin, phenotypical, and functional heterogeneity of CAFs. More importantly, we underscore advances in strategies and clinical trials to target CAF in various cancers, and we also summarize progressions of CAF in cancer immunotherapy.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xinghai Yue
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhe Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Chao Liu
- Department of Neurosurgery, Central Hospital of Zhuzhou, Zhuzhou, China
| | - Wantao Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liping Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qing Jiang
- Department of Urology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Peng Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
19
|
Hu X, Lu Y, Zhou J, Wang L, Zhang M, Mao Y, Chen Z. Progress of regulatory RNA in small extracellular vesicles in colorectal cancer. Front Cell Dev Biol 2023; 11:1225965. [PMID: 37519298 PMCID: PMC10382209 DOI: 10.3389/fcell.2023.1225965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common malignant tumor of the gastrointestinal tract with the second highest mortality rate and the third highest incidence rate. Early diagnosis and treatment are important measures to reduce CRC mortality. Small extracellular vesicles (sEVs) have emerged as key mediators that facilitate communication between tumor cells and various other cells, playing a significant role in the growth, invasion, and metastasis of cancer cells. Regulatory RNAs have been identified as potential biomarkers for early diagnosis and prognosis of CRC, serving as crucial factors in promoting CRC cell proliferation, invasion and metastasis, angiogenesis, drug resistance, and immune cell differentiation. This review provides a comprehensive summary of the vital role of sEVs as biomarkers in CRC diagnosis and their potential application in CRC treatment, highlighting their importance as a promising avenue for further research and clinical translation.
Collapse
Affiliation(s)
- Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jiajun Zhou
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Sun S, Zhang Y, Li Y, Wei L. Crosstalk between colorectal cancer cells and cancer-associated fibroblasts in the tumor microenvironment mediated by exosomal noncoding RNAs. Front Immunol 2023; 14:1161628. [PMID: 37234178 PMCID: PMC10206140 DOI: 10.3389/fimmu.2023.1161628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignant tumor of the digestive system, and its morbidity rates are increasing worldwide. Cancer-associated fibroblasts (CAFs), as part of the tumor microenvironment (TME), are not only closely linked to normal fibroblasts, but also can secrete a variety of substances (including exosomes) to participate in the regulation of the TME. Exosomes can play a key role in intercellular communication by delivering intracellular signaling substances (e.g., proteins, nucleic acids, non-coding RNAs), and an increasing number of studies have shown that non-coding RNAs of exosomal origin from CAFs are not only closely associated with the formation of the CRC microenvironment, but also increase the ability of CRC to grow in metastasis, mediate tumor immunosuppression, and are involved in the mechanism of drug resistance in CRC patients receiving. It is also involved in the mechanism of drug resistance after radiotherapy in CRC patients. In this paper, we review the current status and progress of research on CAFs-derived exosomal non-coding RNAs in CRC.
Collapse
Affiliation(s)
| | | | | | - Linlin Wei
- Department of Radiotherapy, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
21
|
Xiong L, Wei Y, Jia Q, Chen J, Chen T, Yuan J, Pi C, Liu H, Tang J, Yin S, Zuo Y, Zhang X, Liu F, Yang H, Zhao L. The application of extracellular vesicles in colorectal cancer metastasis and drug resistance: recent advances and trends. J Nanobiotechnology 2023; 21:143. [PMID: 37120534 PMCID: PMC10148416 DOI: 10.1186/s12951-023-01888-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/06/2023] [Indexed: 05/01/2023] Open
Abstract
Colorectal cancer (CRC) has high incidence and mortality rates and is one of the most common cancers of the digestive tract worldwide. Metastasis and drug resistance are the main causes of cancer treatment failure. Studies have recently suggested extracellular vesicles (EVs) as a novel mechanism for intercellular communication. They are vesicular particles, which are secreted and released into biological fluids, such as blood, urine, milk, etc., by a variety of cells and carry numerous biologically active molecules, including proteins, nucleic acids, lipids, metabolites, etc. EVs play a crucial part in the metastasis and drug resistance of CRC by delivering cargo to recipient cells and modulating their behavior. An in-depth exploration of EVs might facilitate a comprehensive understanding of the biological behavior of CRC metastasis and drug resistance, which might provide a basis for developing therapeutic strategies. Therefore, considering the specific biological properties of EVs, researchers have attempted to explore their potential as next-generation delivery systems. On the other hand, EVs have also been demonstrated as biomarkers for the prediction, diagnosis, and presumed prognosis of CRC. This review focuses on the role of EVs in regulating the metastasis and chemoresistance of CRC. Moreover, the clinical applications of EVs are also discussed.
Collapse
Affiliation(s)
- Linjin Xiong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qiang Jia
- Ethics Committee Office, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jiyuan Yuan
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Suyu Yin
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, People's Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Xiaomei Zhang
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, Institute of Medicinal Chemistry of Chinese Medicine, Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, People's Republic of China
| | - Furong Liu
- Department of Oncology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Hongru Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, No.182, Chunhui Road, Longmatan District, Luzhou, 646000, Sichuan, People's Republic of China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest, Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
22
|
Helman SL, Zhou J, Fuqua BK, Lu Y, Collins JF, Chen H, Vulpe CD, Anderson GJ, Frazer DM. The biology of mammalian multi-copper ferroxidases. Biometals 2023; 36:263-281. [PMID: 35167013 PMCID: PMC9376197 DOI: 10.1007/s10534-022-00370-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022]
Abstract
The mammalian multicopper ferroxidases (MCFs) ceruloplasmin (CP), hephaestin (HEPH) and zyklopen (ZP) comprise a family of conserved enzymes that are essential for body iron homeostasis. Each of these enzymes contains six biosynthetically incorporated copper atoms which act as intermediate electron acceptors, and the oxidation of iron is associated with the four electron reduction of dioxygen to generate two water molecules. CP occurs in both a secreted and GPI-linked (membrane-bound) form, while HEPH and ZP each contain a single C-terminal transmembrane domain. These enzymes function to ensure the efficient oxidation of iron so that it can be effectively released from tissues via the iron export protein ferroportin and subsequently bound to the iron carrier protein transferrin in the blood. CP is particularly important in facilitating iron release from the liver and central nervous system, HEPH is the major MCF in the small intestine and is critical for dietary iron absorption, and ZP is important for normal hair development. CP and HEPH (and possibly ZP) function in multiple tissues. These proteins also play other (non-iron-related) physiological roles, but many of these are ill-defined. In addition to disrupting iron homeostasis, MCF dysfunction perturbs neurological and immune function, alters cancer susceptibility, and causes hair loss, but, despite their importance, how MCFs co-ordinately maintain body iron homeostasis and perform other functions remains incompletely understood.
Collapse
Affiliation(s)
- Sheridan L Helman
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jie Zhou
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Brie K Fuqua
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Yan Lu
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia
- Mucosal Immunology Group, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainsville, FL, USA
| | - Huijun Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Christopher D Vulpe
- Department of Physiological Sciences, University of Florida, Gainsville, FL, USA
| | - Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
- School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Australia.
| | - David M Frazer
- Molecular Nutrition Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
23
|
Butti R, Khaladkar A, Bhardwaj P, Prakasam G. Heterotypic signaling of cancer-associated fibroblasts in shaping the cancer cell drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:182-204. [PMID: 37065872 PMCID: PMC10099601 DOI: 10.20517/cdr.2022.72] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/28/2022] [Accepted: 11/22/2022] [Indexed: 03/29/2023]
Abstract
The context-dependent reciprocal interaction between the cancer cells and surrounding fibroblasts is imperative for regulating malignant potential, metabolic reprogramming, immunosuppression, and ECM deposition. However, recent evidence also suggests that cancer-associated fibroblasts induce chemoresistance in cancer cells to various anticancer regimens. Because of the protumorigenic function of cancer-associated fibroblasts, these stromal cell types have emerged as fascinating therapeutic targets for cancer. However, this notion was recently challenged by studies that targeted cancer-associated fibroblasts and highlighted the underlying heterogeneity by identifying a subset of these cells with tumor-restricting functions. Hence, it is imperative to understand the heterogeneity and heterotypic signaling of cancer-associated fibroblasts to target tumor-promoting signaling processes by sparing tumor-restricting ones. In this review, we discuss the heterogeneity and heterotypic signaling of cancer-associated fibroblasts in shaping drug resistance and also list the cancer-associated fibroblast-targeting therapeutics.
Collapse
Affiliation(s)
- Ramesh Butti
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Ashwini Khaladkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Bombay 400076, India
- Authors contributed equally
| | - Priya Bhardwaj
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 110029, India
- Authors contributed equally
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Centre, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| |
Collapse
|
24
|
Masoudi-Khoram N, Soheilifar MH, Ghorbanifar S, Nobari S, Hakimi M, Hassani M. Exosomes derived from cancer-associated fibroblasts mediate response to cancer therapy. Crit Rev Oncol Hematol 2023; 185:103967. [PMID: 36965647 DOI: 10.1016/j.critrevonc.2023.103967] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the prominent stromal cell population in the tumor microenvironment (TME), which play an indispensable role in cancer progression and response to therapy. CAFs provide communication between tumor cells and surrounding cells by secreting soluble biomolecules and extracellular vesicles (EVs). Exosomes are small membrane-bound EVs that contain various cargos, including growth factors, non-coding RNAs (ncRNAs), cytokines, and chemokines. These biomolecules can be transferred between cells within the TME and alter the behavior of recipient cells. Some studies have shown that exosomes secreted by CAFs contribute to resistance to chemotherapy and radiotherapy. This review focuses on CAF-derived exosomes in different types of tumors, with emphasis on resistance to chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nastaran Masoudi-Khoram
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | | | - Shima Ghorbanifar
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Sima Nobari
- Research Center for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Maryam Hakimi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Hassani
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Liang Q, Zhou XH. Role of cancer-associated fibroblasts in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:134-142. [DOI: 10.11569/wcjd.v31.i4.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy that has a high incidence in all countries around the world. Cancer-associated fibroblasts (CAFs) are a vital component of the tumor microenvironment (TME), playing an important role in the development of CRC. CAFs can release multiple cytokines and exosomes, activating a variety of related signaling pathways and boosting the processes of the invasion, metastasis, metabolism, drug resistance, and immunosuppression in CRC. Thus, CAFs are a prognostic marker and therapeutic target for CRC. Understanding the role and mechanism of CAFs can provide new insights for the treatment of CRC.
Collapse
Affiliation(s)
- Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
26
|
Liang Q, Zhou XH, Shen GF, Zhu F, Lian HF, Li X, Zheng JY, Li JP, Deng SM, Huang R. Role of cancer-associated fibroblasts in colorectal cancer. Shijie Huaren Xiaohua Zazhi 2023; 31:129-137. [DOI: 10.11569/wcjd.v31.i4.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy that has a high incidence in all countries around the world. Cancer-associated fibroblasts (CAFs) are a vital component of the tumor microenvironment (TME), playing an important role in the development of CRC. CAFs can release multiple cytokines and exosomes, activating a variety of related signaling pathways and boosting the processes of the invasion, metastasis, metabolism, drug resistance, and immunosuppression in CRC. Thus, CAFs are a prognostic marker and therapeutic target for CRC. Understanding the role and mechanism of CAFs can provide new insights for the treatment of CRC.
Collapse
Affiliation(s)
- Qiao Liang
- Graduate School of Youjiang Medical College for Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Xi-Han Zhou
- Department of Gastroenterology, Affiliated Hospital of Youjiang Medical College Nationalities, Baise 533000, Guangxi Zhuang Autonomous Region, China
| | - Gao-Fei Shen
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Fei Zhu
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Hui-Fen Lian
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Xin Li
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Jun-Yi Zheng
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Jin-Peng Li
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Shui-Miao Deng
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| | - Rui Huang
- Department of Gastroenterology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an 710000, Shaanxi Province, China
| |
Collapse
|
27
|
Zhao S, Pan T, Deng J, Cao L, Vicencio JM, Liu J, Zhou G, Ng T, Zhang J. Exosomal transfer of miR-181b-5p confers senescence-mediated doxorubicin resistance via modulating BCLAF1 in breast cancer. Br J Cancer 2023; 128:665-677. [PMID: 36522479 PMCID: PMC9938221 DOI: 10.1038/s41416-022-02077-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/25/2022] [Accepted: 11/16/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Doxorubicin resistance represents a major clinical challenge for treating patients with advanced breast cancer (BC). Exosomes, exchanging genetic cargo between heterogeneous populations of tumour cells, have been proposed to mediate drug resistance and cancer progression in other cancer types. However, their specific role in mediating doxorubicin resistance in BC remains unclear. Here, we demonstrate the important role of exosomal miR-181b-5p (exo-miR-181b-5p) in mediating doxorubicin resistance. METHODS Small-RNA sequencing and bioinformatic analyses were used to screen miRNAs mediating doxorubicin resistance in BC, which were further verified by RT-qPCR. SA-β-gal staining assays allowed us to measure cellular senescence. Exosomes from patients' serum before and after neoadjuvant chemotherapy were isolated for exo-miR-181b-5p quantification. RESULTS Doxorubicin-resistant BC cell lines exhibited upregulated exosomal miR-181b-5p. Addition of exo-miR-181b-5p actively fused with recipient cells and transferred a drug-resistant phenotype. Overexpression of miR-181b-5p downregulated p53/p21 levels and inhibited doxorubicin-induced G1 arrest and senescence by suppressing BCLAF1 expression in vitro. Further, in vivo experiments showed treatment of exo-miR-181b-5p inhibitors exhibited superior tumour control and reversed the doxorubicin-resistance phenotype, accompanied with increased tumoral BCLAF1. CONCLUSION Our data suggests exo-miR-181b-5p as a prognostic biomarker and a therapeutic potential for exo-miR-181b-5p inhibitors in the treatment of doxorubicin-resistant BC patients.
Collapse
Affiliation(s)
- Shaorong Zhao
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Teng Pan
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Jinhai Deng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
| | - Lixia Cao
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Medical College of Nankai University, 300071, Tianjin, China
| | - Jose M Vicencio
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Cancer Institute, Paul O'Gorman Building, University College London, London, UK
| | - Jingjing Liu
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Guanglin Zhou
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Tony Ng
- Richard Dimbleby Laboratory of Cancer Research, School of Cancer & Pharmaceutical Sciences, King's College London, London, UK
- Cancer Institute, Paul O'Gorman Building, University College London, London, UK
- Cancer Research UK City of London Centre, London, England
| | - Jin Zhang
- The 3rd Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China.
| |
Collapse
|
28
|
Chuang YT, Tang JY, Shiau JP, Yen CY, Chang FR, Yang KH, Hou MF, Farooqi AA, Chang HW. Modulating Effects of Cancer-Derived Exosomal miRNAs and Exosomal Processing by Natural Products. Cancers (Basel) 2023; 15:318. [PMID: 36612314 PMCID: PMC9818271 DOI: 10.3390/cancers15010318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Cancer-derived exosomes exhibit sophisticated functions, such as proliferation, apoptosis, migration, resistance, and tumor microenvironment changes. Several clinical drugs modulate these exosome functions, but the impacts of natural products are not well understood. Exosome functions are regulated by exosome processing, such as secretion and assembly. The modulation of these exosome-processing genes can exert the anticancer and precancer effects of cancer-derived exosomes. This review focuses on the cancer-derived exosomal miRNAs that regulate exosome processing, acting on the natural-product-modulating cell functions of cancer cells. However, the role of exosomal processing has been overlooked in several studies of exosomal miRNAs and natural products. In this study, utilizing the bioinformatics database (miRDB), the exosome-processing genes of natural-product-modulated exosomal miRNAs were predicted. Consequently, several natural drugs that modulate exosome processing and exosomal miRNAs and regulate cancer cell functions are described here. This review sheds light on and improves our understanding of the modulating effects of exosomal miRNAs and their potential exosomal processing targets on anticancer treatments based on the use of natural products.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaoshiung Medical University, Kaohsiung 80708, Taiwan
| | - Jun-Ping Shiau
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei 11031, Taiwan
- Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Kun-Han Yang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Feng Hou
- Division of Breast Oncology and Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Hsueh-Wei Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
29
|
Villanueva JW, Kwong L, Han T, Martinez SA, Shanahan MT, Kanke M, Dow LE, Danko CG, Sethupathy P. Comprehensive microRNA analysis across genome-edited colorectal cancer organoid models reveals miR-24 as a candidate regulator of cell survival. BMC Genomics 2022; 23:792. [DOI: 10.1186/s12864-022-09018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
AbstractSomatic mutations drive colorectal cancer (CRC) by disrupting gene regulatory mechanisms. Distinct combinations of mutations can result in unique changes to regulatory mechanisms leading to variability in the efficacy of therapeutics. MicroRNAs are important regulators of gene expression, and their activity can be altered by oncogenic mutations. However, it is unknown how distinct combinations of CRC-risk mutations differentially affect microRNAs. Here, using genetically-modified mouse intestinal organoid (enteroid) models, we identify 12 different modules of microRNA expression patterns across different combinations of mutations common in CRC. We also show that miR-24-3p is aberrantly upregulated in genetically-modified mouse enteroids irrespective of mutational context. Furthermore, we identify an enrichment of miR-24-3p predicted targets in downregulated gene lists from various mutational contexts compared to WT. In follow-up experiments, we demonstrate that miR-24-3p promotes CRC cell survival in multiple cell contexts. Our novel characterization of genotype-specific patterns of miRNA expression offer insight into the mechanisms that drive inter-tumor heterogeneity and highlight candidate microRNA therapeutic targets for the advancement of precision medicine for CRC.
Collapse
|
30
|
Naito Y, Yoshioka Y, Ochiya T. Intercellular crosstalk between cancer cells and cancer-associated fibroblasts via extracellular vesicles. Cancer Cell Int 2022; 22:367. [PMID: 36424598 PMCID: PMC9686122 DOI: 10.1186/s12935-022-02784-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Intercellular communication plays an important role in cancer initiation and progression through direct contact and indirect interactions, such as via secretory molecules. Cancer-associated fibroblasts (CAFs) are one of the principal components of such communication with cancer cells, modulating cancer metastasis and tumour mechanics and influencing angiogenesis, the immune system, and therapeutic resistance. Over the past few years, there has been a significant increase in research on extracellular vesicles (EVs) as regulatory agents in intercellular communication. EVs enable the transfer of functional molecules, including proteins, mRNAs and microRNAs (miRNAs), to recipient cells. Cancer cells utilize EVs to dictate the specific characteristics of CAFs within the tumour microenvironment, thereby promoting cancer progression. In response to such "education" by cancer cells, CAFs contribute to cancer progression via EVs. In this review, we summarize experimental data indicating the pivotal roles of EVs in intercellular communication between cancer cells and CAFs.
Collapse
Affiliation(s)
- Yutaka Naito
- grid.410821.e0000 0001 2173 8328Department of Bioregulation, Institute for Advanced Medical Sciences, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-Ku, Tokyo, 113-8602 Japan
| | - Yusuke Yoshioka
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| | - Takahiro Ochiya
- grid.410793.80000 0001 0663 3325Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjuku, Shinjuku-Ku, Tokyo, 160-0023 Japan
| |
Collapse
|
31
|
Rajtmajerová M, Trailin A, Liška V, Hemminki K, Ambrozkiewicz F. Long Non-Coding RNA and microRNA Interplay in Colorectal Cancer and Their Effect on the Tumor Microenvironment. Cancers (Basel) 2022; 14:5450. [PMID: 36358867 PMCID: PMC9655812 DOI: 10.3390/cancers14215450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/06/2023] Open
Abstract
As the current staging and grading systems are not sufficient to stratify patients for therapy and predict the outcome of the disease, there is an urgent need to understand cancer in its complexity. The mutual relationship between tumour and immune or stromal cells leads to rapid evolution and subsequent genetic and epigenetic changes. Immunoscore has been introduced as a diagnostic tool for colorectal cancer (CRC) only recently, emphasising the role of the specific tumor microenvironment in patient's prognosis and overall outcome. Despite the fact that non-coding RNAs (ncRNAs), such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), cannot be translated into proteins, they significantly affect cell's transcriptome and translatome. miRNA binding to mRNA efficiently blocks its translation and leads to mRNA destruction. On the other hand, miRNAs can be bound by lncRNAs or circular RNAs (circRNAs), which prevents them from interfering with translation. In this way, ncRNAs create a multi-step network that regulates the cell's translatome. ncRNAs are also shed by the cell as exogenous RNAs and they are also found in exosomes, suggesting their role in intercellular communication. Hence, these mechanisms affect the tumor microenvironment as much as protein signal molecules. In this review, we provide an insight into the current knowledge of the microenvironment, lncRNAs', and miRNAs' interplay. Understanding mechanisms that underlie the evolution of a tissue as complex as a tumour is crucial for the future success in therapy.
Collapse
Affiliation(s)
- Marie Rajtmajerová
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Surgery, University Hospital in Pilsen and Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
- Department of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
32
|
Exosomal miR-625-3p Secreted by Cancer-associated Fibroblasts in Colorectal Cancer Promotes EMT and Chemotherapeutic Resistance by Blocking the CELF2/WWOX Pathway. Pharmacol Res 2022; 186:106534. [DOI: 10.1016/j.phrs.2022.106534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
33
|
Wang Y, Liang H, Zheng J. Exosomal microRNAs mediating crosstalk between cancer cells and cancer-associated fibroblasts in the tumor microenvironment. Pathol Res Pract 2022; 239:154159. [DOI: 10.1016/j.prp.2022.154159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/17/2022] [Accepted: 10/05/2022] [Indexed: 11/26/2022]
|
34
|
Liang C, Yang JB, Lin XY, Xie BL, Xu YX, Lin S, Xu TW. Recent advances in the diagnostic and therapeutic roles of microRNAs in colorectal cancer progression and metastasis. Front Oncol 2022; 12:911856. [PMID: 36313731 PMCID: PMC9607901 DOI: 10.3389/fonc.2022.911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignancy in the world and one of the leading causes of cancer death; its incidence is still increasing in most countries. The early diagnostic accuracy of CRC is low, and the metastasis rate is high, resulting in a low survival rate of advanced patients. MicroRNAs (miRNAs) are a small class of noncoding RNAs that can inhibit mRNA translation and trigger mRNA degradation, and can affect a variety of cellular and molecular targets. Numerous studies have shown that miRNAs are related to tumour progression, immune system activity, anticancer drug resistance, and the tumour microenvironment. Dysregulation of miRNAs occurs in a variety of malignancies, including CRC. In this review, we summarize the recent research progress of miRNAs, their roles in tumour progression and metastasis, and their clinical value as potential biomarkers or therapeutic targets for CRC. Furthermore, we combined the roles of miRNAs in tumorigenesis and development with the therapeutic strategies of CRC patients, which will provide new ideas for the diagnosis and treatment of CRC.
Collapse
Affiliation(s)
- Chen Liang
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jing-Bo Yang
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xin-Yi Lin
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Bi-Lan Xie
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yun-Xian Xu
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
- *Correspondence: Tian-Wen Xu, ; Shu Lin,
| | - Tian-Wen Xu
- Department of Digestive Tumours, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Tian-Wen Xu, ; Shu Lin,
| |
Collapse
|
35
|
Zhai S, Li X, Wu Y, Shi X, Ji B, Qiu C. Identifying potential microRNA biomarkers for colon cancer and colorectal cancer through bound nuclear norm regularization. Front Genet 2022; 13:980437. [PMID: 36313468 PMCID: PMC9614659 DOI: 10.3389/fgene.2022.980437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022] Open
Abstract
Colon cancer and colorectal cancer are two common cancer-related deaths worldwide. Identification of potential biomarkers for the two cancers can help us to evaluate their initiation, progression and therapeutic response. In this study, we propose a new microRNA-disease association identification method, BNNRMDA, to discover potential microRNA biomarkers for the two cancers. BNNRMDA better combines disease semantic similarity and Gaussian Association Profile Kernel (GAPK) similarity, microRNA function similarity and GAPK similarity, and the bound nuclear norm regularization model. Compared to other five classical microRNA-disease association identification methods (MIDPE, MIDP, RLSMDA, GRNMF, AND LPLNS), BNNRMDA obtains the highest AUC of 0.9071, demonstrating its strong microRNA-disease association identification performance. BNNRMDA is applied to discover possible microRNA biomarkers for colon cancer and colorectal cancer. The results show that all 73 known microRNAs associated with colon cancer in the HMDD database have the highest association scores with colon cancer and are ranked as top 73. Among 137 known microRNAs associated with colorectal cancer in the HMDD database, 129 microRNAs have the highest association scores with colorectal cancer and are ranked as top 129. In addition, we predict that hsa-miR-103a could be a potential biomarker of colon cancer and hsa-mir-193b and hsa-mir-7days could be potential biomarkers of colorectal cancer.
Collapse
Affiliation(s)
- Shengyong Zhai
- Department of General Surgery, Weifang People’s Hospital, Shandong, China
| | - Xiaoling Li
- The Second Department of Oncology, Beidahuang Industry Group General Hospital, Harbin, China,Heilongjiang Second Cancer Hospital, Harbin, China
| | - Yan Wu
- Geneis Beijing Co., Ltd., Beijing, China
| | - Xiaoli Shi
- Geneis Beijing Co., Ltd., Beijing, China
| | - Binbin Ji
- Geneis Beijing Co., Ltd., Beijing, China
| | - Chun Qiu
- Department of Oncology, Hainan General Hospital, Haikou, China,*Correspondence: Chun Qiu,
| |
Collapse
|
36
|
Fotsitzoudis C, Koulouridi A, Messaritakis I, Konstantinidis T, Gouvas N, Tsiaoussis J, Souglakos J. Cancer-Associated Fibroblasts: The Origin, Biological Characteristics and Role in Cancer-A Glance on Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14184394. [PMID: 36139552 PMCID: PMC9497276 DOI: 10.3390/cancers14184394] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Tumor microenvironment is a major contributor to tumor growth, metastasis and resistance to therapy. It consists of many cancer-associated fibroblasts (CAFs), which derive from different types of cells. CAFs detected in different tumor types are linked to poor prognosis, as in the case of colorectal cancer. Although their functions differ according to their subtype, their detection is not easy, and there are no established markers for such detection. They are possible targets for therapeutic treatment. Many trials are ongoing for their use as a prognostic factor and as a treatment target. More research remains to be carried out to establish their role in prognosis and treatment. Abstract The therapeutic approaches to cancer remain a considerable target for all scientists around the world. Although new cancer treatments are an everyday phenomenon, cancer still remains one of the leading mortality causes. Colorectal cancer (CRC) remains in this category, although patients with CRC may have better survival compared with other malignancies. Not only the tumor but also its environment, what we call the tumor microenvironment (TME), seem to contribute to cancer progression and resistance to therapy. TME consists of different molecules and cells. Cancer-associated fibroblasts are a major component. They arise from normal fibroblasts and other normal cells through various pathways. Their role seems to contribute to cancer promotion, participating in tumorigenesis, proliferation, growth, invasion, metastasis and resistance to treatment. Different markers, such as a-SMA, FAP, PDGFR-β, periostin, have been used for the detection of cancer-associated fibroblasts (CAFs). Their detection is important for two main reasons; research has shown that their existence is correlated with prognosis, and they are already under evaluation as a possible target for treatment. However, extensive research is warranted.
Collapse
Affiliation(s)
- Charalampos Fotsitzoudis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Asimina Koulouridi
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - Ippokratis Messaritakis
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Correspondence: ; Tel.: +30-2810-394926
| | | | | | - John Tsiaoussis
- Department of Anatomy, School of Medicine, University of Crete, 70013 Heraklion, Greece
| | - John Souglakos
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 70013 Heraklion, Greece
- Department of Medical Oncology, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
37
|
Sun L, Ke M, Wang X, Yin M, Wei J, Xu L, Tian X, Wang F, Zhang H, Fu S, Zhang C. FAP high α-SMA low cancer-associated fibroblast-derived SLPI protein encapsulated in extracellular vesicles promotes ovarian cancer development via activation of PI3K/AKT and downstream signaling pathways. Mol Carcinog 2022; 61:910-923. [PMID: 35801406 PMCID: PMC9541539 DOI: 10.1002/mc.23445] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 12/05/2022]
Abstract
Ovarian cancer is the most lethal gynecological malignancy worldwide with high metastasis and poor prognosis rates. Cancer‐associated fibroblasts (CAFs), a heterogeneous population of cells that constitutes a major component of the tumor microenvironment, secrete extracellular vesicles (EVs) loading with proteins, lipids, and RNAs to promote tumorigenesis. However, the specific roles of CAF‐derived proteins contained in EVs in ovarian cancer remain poorly understood at present. Using the gene expression microarray analysis, we identified a list of dysregulated genes between the α‐SMA+CAF and FAP+CAF subpopulations, from which secretory leukocyte protease inhibitor (SLPI) was chosen for further validation. Quantitative PCR, western blot, immunohistochemistry, and enzyme‐linked immunosorbent assays were used to assess SLPI expression in ovarian cancer cells, tissues, CAFs, and EVs. Additionally, we evaluated the effects of exogenous SLPI on proliferation, migration, invasion, and adhesion of ovarian cancer cells in vitro. Our results showed SLPI protein was upregulated in CAFs, particularly in the FAPhighα‐SMAlowCAF subpopulation, and associated with increased tumor grade and decreased overall survival (OS). Importantly, CAF‐derived SLPI protein could be encapsulated in EVs for delivery to ovarian cancer cells, thus facilitating cell proliferation, migration, invasion, and adhesion via activating the PI3K/AKT and downstream signaling pathways. Moreover, high plasma expression of SLPI encapsulated in EVs was closely correlated with tumor stage in ovarian cancer patients. Our collective results highlight an oncogenic role of plasma EV‐encapsulated SLPI secreted by CAFs in tumor progression for the first time, supporting its potential utility as a prognostic biomarker of ovarian cancer.
Collapse
Affiliation(s)
- Luyao Sun
- Laboratory of Medical Genetics, School of Medicine, South China University of Technology, Guangzhou, China
| | - Miaola Ke
- Department of Blood Transfusion, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xin Wang
- Department of Otorhinolaryngology Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Mengyuan Yin
- Laboratory of Medical Genetics, School of Medicine, South China University of Technology, Guangzhou, China
| | - Junni Wei
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Lu Xu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Xing Tian
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Fei Wang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - He Zhang
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Songbin Fu
- Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| | - Chunyu Zhang
- Laboratory of Medical Genetics, School of Medicine, South China University of Technology, Guangzhou, China.,Key Laboratory of Preservation of Human Genetic Resources and Disease Control in China (Harbin Medical University), Ministry of Education, Harbin, China
| |
Collapse
|
38
|
Sun X, Song W, Teng L, Huang Y, Liu J, Peng Y, Lu X, Yuan J, Zhao X, Zhao Q, Xu Y, Shen J, Peng X, Ren L. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogels for corneal epithelial healing. Bioact Mater 2022; 25:640-656. [PMID: 37056274 PMCID: PMC10086767 DOI: 10.1016/j.bioactmat.2022.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/02/2022] Open
Abstract
The damage of corneal epithelium may lead to the formation of irreversible corneal opacities and even blindness. The migration rate of corneal epithelial cells directly affects corneal repair. Here, we explored ocu-microRNA 24-3p (miRNA 24-3p) that can promote rabbit corneal epithelial cells migration and cornea repair. Exosomes, an excellent transport carrier, were exacted from adipose derived mesenchymal stem cells for loading with miRNA 24-3p to prepare miRNA 24-3p-rich exosomes (Exos-miRNA 24-3p). It can accelerate corneal epithelial migration in vitro and in vivo. For application in cornea alkali burns, we further modified hyaluronic acid with di(ethylene glycol) monomethyl ether methacrylate (DEGMA) to obtain a thermosensitive hydrogel, also reported a thermosensitive DEGMA-modified hyaluronic acid hydrogel (THH) for the controlled release of Exos-miRNA 24-3p. It formed a highly uniform and clear thin layer on the ocular surface to resist clearance from blinking and extended the drug-ocular-epithelium contact time. The use of THH-3/Exos-miRNA 24-3p for 28 days after alkali burn injury accelerated corneal epithelial defect healing and epithelial maturation. It also reduced corneal stromal fibrosis and macrophage activation. MiRNA 24-3p-rich exosomes functionalized DEGMA-modified hyaluronic acid hydrogel as a multilevel delivery strategy has a potential use for cell-free therapy of corneal epithelial regeneration.
Collapse
|
39
|
Simón L, Sanhueza S, Gaete-Ramírez B, Varas-Godoy M, Quest AFG. Role of the Pro-Inflammatory Tumor Microenvironment in Extracellular Vesicle-Mediated Transfer of Therapy Resistance. Front Oncol 2022; 12:897205. [PMID: 35646668 PMCID: PMC9130576 DOI: 10.3389/fonc.2022.897205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022] Open
Abstract
Advances in our understanding of cancer biology have contributed to generating different treatments to improve the survival of cancer patients. However, although initially most of the therapies are effective, relapse and recurrence occur in a large percentage of these cases after the treatment, and patients then die subsequently due to the development of therapy resistance in residual cancer cells. A large spectrum of molecular and cellular mechanisms have been identified as important contributors to therapy resistance, and more recently the inflammatory tumor microenvironment (TME) has been ascribed an important function as a source of signals generated by the TME that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Currently, extracellular vesicles (EVs) are considered one of the main means of communication between cells of the TME and have emerged as crucial modulators of cancer drug resistance. Important in this context is, also, the inflammatory TME that can be caused by several conditions, including hypoxia and following chemotherapy, among others. These inflammatory conditions modulate the release and composition of EVs within the TME, which in turn alters the responses of the tumor cells to cancer therapies. The TME has been ascribed an important function as a source of signals that modulate cellular processes in the tumor cells, such as to favor the acquisition of therapy resistance. Although generally the main cellular components considered to participate in generating a pro-inflammatory TME are from the immune system (for instance, macrophages), more recently other types of cells of the TME have also been shown to participate in this process, including adipocytes, cancer-associated fibroblasts, endothelial cells, cancer stem cells, as well as the tumor cells. In this review, we focus on summarizing available information relating to the impact of a pro-inflammatory tumor microenvironment on the release of EVs derived from both cancer cells and cells of the TME, and how these EVs contribute to resistance to cancer therapies.
Collapse
Affiliation(s)
- Layla Simón
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Escuela de Nutrición y Dietética, Universidad Finis Terrae, Santiago, Chile
| | - Sofía Sanhueza
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Belén Gaete-Ramírez
- Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Cancer Cell Biology Laboratory, Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Program of Cell and Molecular Biology, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Institute of Biomedical Sciences (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Chen X, Jia M, Ji J, Zhao Z, Zhao Y. Exosome-Derived Non-Coding RNAs in the Tumor Microenvironment of Colorectal Cancer: Possible Functions, Mechanisms and Clinical Applications. Front Oncol 2022; 12:887532. [PMID: 35646623 PMCID: PMC9133322 DOI: 10.3389/fonc.2022.887532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer death and the third most prevalent malignancy. Colorectal tumors exchange information with the surrounding environment and influence each other, which collectively constitutes the tumor microenvironment (TME) of CRC. Many studies have shown that exosome-derived non-coding RNAs (ncRNAs) play important roles in various pathophysiological processes by regulating the TME of CRC. This review summarizes recent findings on the fundamental roles of exosomal ncRNAs in angiogenesis, vascular permeability, tumor immunity, tumor metabolism and drug resistance. Certainly, the in-depth understanding of exosomal ncRNAs will provide comprehensive insights into the clinical application of these molecules against CRC.
Collapse
Affiliation(s)
- Xian Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Mengmeng Jia
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Ji
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhiying Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
41
|
Small Extracellular Vesicles: Key Forces Mediating the Development and Metastasis of Colorectal Cancer. Cells 2022; 11:cells11111780. [PMID: 35681475 PMCID: PMC9179504 DOI: 10.3390/cells11111780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, and its incidence and mortality rates have been increasing annually in recent years. A variety of different small extracellular vesicles (sEVs) are important mediators of intercellular communication and have an important role in tumor metastasis and progression. The development and metastasis of CRC are closely linked to tumor-cell-derived sEVs, non-tumor-cell-derived sEVs, and intestinal-microbiota-derived sEVs. Numerous studies have shown that the tumor microenvironment (TME) is a key component in the regulation of CRC proliferation, development, and metastasis. These sEVs can create a TME conducive to CRC growth and metastasis by forming an immunosuppressive microenvironment, remodeling the extracellular matrix, and promoting tumor cell metabolism. Therefore, in this paper, we review the role of different types of sEVs in colorectal cancer development and metastasis. Furthermore, based on the properties of sEVs, we further discuss the use of sEVs as early biomarkers for colorectal cancer diagnosis and the potential for their use in the treatment of CRC.
Collapse
|
42
|
Xavier CPR, Belisario DC, Rebelo R, Assaraf YG, Giovannetti E, Kopecka J, Vasconcelos MH. The role of extracellular vesicles in the transfer of drug resistance competences to cancer cells. Drug Resist Updat 2022; 62:100833. [PMID: 35429792 DOI: 10.1016/j.drup.2022.100833] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/20/2022] [Accepted: 03/13/2022] [Indexed: 02/07/2023]
Abstract
Drug resistance remains a major hurdle to successful cancer treatment, being accountable for approximately 90% of cancer-related deaths. In the past years, increasing attention has been given to the role of extracellular vesicles (EVs) in the horizontal transfer of drug resistance in cancer. Indeed, many studies have described the dissemination of therapy resistance traits mediated by EVs, which may be transferred from drug resistant tumor cells to their drug sensitive counterparts. Importantly, different key players of drug resistance have been identified in the cargo of those EVs, such as drug efflux pumps, oncoproteins, antiapoptotic proteins, or microRNAs, among others. Interestingly, the EVs-mediated crosstalk between cells from the tumor microenvironment (TME) and tumor cells has emerged as another important mechanism that leads to cancer cells drug resistance. Recently, the cargo of the TME-derived EVs responsible for the transfer of drug resistance traits has also become a focus of attention. In addition, the possible mechanisms involved in drug sequestration by EVs, likely to contribute to cancer drug resistance, are also described and discussed herein. Despite the latest scientific advances in the field of EVs, this is still a challenging area of research, particularly in the clinical setting. Therefore, further investigation is needed to assess the relevance of EVs to the failure of cancer patients to drug treatment, to identify biomarkers of drug resistance in the EV's cargo, and to develop effective therapeutic strategies to surmount drug resistance. This up-to-date review summarizes relevant literature on the role of EVs in the transfer of drug resistance competences to cancer cells, and the relevance of tumor cells and of TME cells in this process. Finally, this knowledge is integrated with a discussion of possible future clinical applications of EVs as biomarkers of drug resistance.
Collapse
Affiliation(s)
- Cristina P R Xavier
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | | | - Rita Rebelo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal.
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa 3200000, Israel.
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Fondazione Pisana per La Scienza, Pisa, Italy.
| | | | - M Helena Vasconcelos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, 4200-135 Porto, Portugal; Department of Biological Sciences, FFUP - Faculty of Pharmacy of the University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
Wu Z, Ju Q. Non-Coding RNAs Implicated in the Tumor Microenvironment of Colorectal Cancer: Roles, Mechanisms and Clinical Study. Front Oncol 2022; 12:888276. [PMID: 35574420 PMCID: PMC9096125 DOI: 10.3389/fonc.2022.888276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors. The morbidity and mortality rates have been increasing all over the world. It is critical to elucidate the mechanism of CRC occurrence and development. However, tumor microenvironment (TME) includes immune cells, fibroblasts, endothelial cells, cytokines, chemokines and other components that affect the progression of CRC and patients' prognosis. Non-coding RNAs (ncRNAs) including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) without protein-coding ability have been shown to engage in tumor microenvironment-mediated angiogenesis and metastasis. Therefore, clarifying the mechanism of ncRNAs regulating the microenvironment is very important to develop the therapeutic target of CRC and improve the survival time of patients. This review focuses on the role and mechanism of ncRNAs in the CRC microenvironment and puts forward possible clinical treatment strategies.
Collapse
Affiliation(s)
| | - Qiang Ju
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
44
|
Mostafazadeh M, Kahroba H, Haiaty S, TazeKand AP, Samadi N, Rahbarghazi R, Nouri M. In vitro exosomal transfer of Nrf2 led to the oxaliplatin resistance in human colorectal cancer LS174T cells. Cell Biochem Funct 2022; 40:391-402. [PMID: 35474580 DOI: 10.1002/cbf.3703] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Chemotherapy resistance is a serious pitfall in the treatment of colon cancers (CCs). Previous studies have found that exosomes (Exo) play a pivotal role in tumor drug resistance via the transfer of proteins and genetic materials to the acceptor cells. To date, the mechanisms orchestrating Exo-derived resistance in cancer cells have been the center of attention. Herein, we aimed to evaluate the role of exosomal nuclear factor erythroid 2-related factor 2 (Nrf2) on oxaliplatin (1-OHP) resistance in human colorectal cancer LS174T cells in vitro. To this end, exosomal-Nrf2-mediated 1-OHP resistance was examined using different assays. Exo was isolated from resistant LS174T cells (LS174T/R) and added to the culture medium of sensitive LS174T cells (LS174T/S). According to our data, LS174T/S cells successfully adsorbed PKH26-Exo driven from LS174T/R cells. Western blotting showed an increased Nrf2 level in Exo isolated from LS174T/R cells compared to LS174T/S cell-derived Exo (p < .05). The incubation of LS174T/S cells with LS174T/R-derived Exo increased half-maximal inhibitory concentration values in response to treatment with 1-OHP (p < .05). Besides this, the apoptotic changes were diminished in LS174T/S cells after incubation with LS174T/R-derived Exo. Of note, the exposure of LS174T/S cells to LS174T/R cell-derived Exo increased the expression of Nrf2 and P-glycoprotein (P-gp) compared to the nontreated LS174T/S cells (p < .05). In line with these changes, lower intracellular Rhodamin 123 content was detected in Exo-treated cells compared to the nontreated LS174T/S cells. Exo increased migration and clonogenic capacity of LS174T/S cells after incubation with Exo-derived from resistant cells. Of note, inhibition of Nrf2 with a specific blocker, brusatol, blunted these effects. Taken together, Exo-mediated transfer of Nrf2 is involved in the development of oxaliplatin resistance in CC cells by upregulating P-gp.
Collapse
Affiliation(s)
- Mostafa Mostafazadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Department of Toxicogenomics, GROW School for Oncology and Developmental Biology, Maastricht University, Maastrich, The Netherlands.,Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Sanya Haiaty
- Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran
| | - Abbas P TazeKand
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Research Center of Infectious Diseases and Tropical Medicine, Tabriz University of Medical Science, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
45
|
Shi Y, Qiu B, Huang L, Lin J, Li Y, Ze Y, Huang C, Yao Y. Exosomes and ferroptosis: roles in tumour regulation and new cancer therapies. PeerJ 2022; 10:e13238. [PMID: 35497192 PMCID: PMC9053300 DOI: 10.7717/peerj.13238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Research on the biological role of exosomes is rapidly developing, and recent evidence suggests that exosomal effects involve ferroptosis. Exosomes derived from different tissues inhibit ferroptosis, which increases tumour cell chemoresistance. Therefore, exosome-mediated regulation of ferroptosis may be leveraged to design anticancer drugs. This review discusses three pathways of exosome-mediated inhibition of ferroptosis: (1) the Fenton reaction; (2) the ferroptosis defence system, including the Xc-GSH-GPX4 axis and the FSP1/CoQ10/NAD(P)H axis; and (3) lipid peroxidation. We also summarize three recent approaches for combining exosomes and ferroptosis in oncology therapy: (1) promoting exosome-inhibited ferroptosis to enhance chemotherapy; (2) encapsulating exosomes with ferroptosis inducers to inhibit cancers; and (3) developing therapies that combine exosomal inhibitors and ferroptosis inducers. This review will contribute toward establishing effective cancer therapies.
Collapse
Affiliation(s)
- Yixin Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingrun Qiu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yiting Ze
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglong Huang
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
46
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
47
|
Lampropoulou DI, Pliakou E, Aravantinos G, Filippou D, Gazouli M. The Role of Exosomal Non-Coding RNAs in Colorectal Cancer Drug Resistance. Int J Mol Sci 2022; 23:1473. [PMID: 35163397 PMCID: PMC8835818 DOI: 10.3390/ijms23031473] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common types of cancer diagnosed worldwide with high morbidity; drug resistance is often responsible for treatment failure in CRC. Non-coding RNAs (ncRNAs) play distinct regulatory roles in tumorigenesis, cancer progression and chemoresistance. METHODS A literature search was conducted in PubMed database in order to sum up and discuss the role of exosomal ncRNAs (ex-ncRNAs) in CRC drug resistance/response and their possible mechanisms. RESULTS Thirty-six (36) original research articles were identified; these included exosome or extracellular vesicle (EV)-containing microRNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and small-interfering (siRNAs). No studies were found for piwi-interacting RNAs. CONCLUSIONS Exosomal transfer of ncRNAs has been documented as a new mechanism of CRC drug resistance. Despite being in its infancy, it has emerged as a promising field for research in order to (i) discover novel biomarkers for therapy monitoring and/or (ii) reverse drug desensitization.
Collapse
Affiliation(s)
- Dimitra Ioanna Lampropoulou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 14564 Athens, Greece; (D.I.L.); (E.P.); (G.A.)
| | - Evangelia Pliakou
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 14564 Athens, Greece; (D.I.L.); (E.P.); (G.A.)
| | - Gerasimos Aravantinos
- Second Department of Medical Oncology, General Oncology Hospital of Kifissia “Agioi Anargiroi”, 14564 Athens, Greece; (D.I.L.); (E.P.); (G.A.)
| | - Dimitrios Filippou
- Department of Anatomy and Surgical Anatomy, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
48
|
Vokurka M, Lacina L, Brábek J, Kolář M, Ng YZ, Smetana K. Cancer-Associated Fibroblasts Influence the Biological Properties of Malignant Tumours via Paracrine Secretion and Exosome Production. Int J Mol Sci 2022; 23:964. [PMID: 35055153 PMCID: PMC8778626 DOI: 10.3390/ijms23020964] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are an essential component of the tumour microenvironment. They represent a heterogeneous group of cells that are under the control of cancer cells and can reversely influence the cancer cell population. They affect the cancer cell differentiation status, and the migration and formation of metastases. This is achieved through the production of the extracellular matrix and numerous bioactive factors. IL-6 seems to play the central role in the communication of noncancerous and cancer cells in the tumour. This review outlines the role of exosomes in cancer cells and cancer-associated fibroblasts. Available data on the exosomal cargo, which can significantly intensify interactions in the tumour, are summarised. The role of exosomes as mediators of the dialogue between cancer cells and cancer-associated fibroblasts is discussed together with their therapeutic relevance. The functional unity of the paracrine- and exosome-mediated communication of cancer cells with the tumour microenvironment represented by CAFs is worthy of attention.
Collapse
Affiliation(s)
- Martin Vokurka
- Institute of Pathological Physiology, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic;
| | - Lukáš Lacina
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
- Department of Dermatovenereology, First Faculty of Medicine, Charles University and General University Hospital, 120 00 Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, 120 00 Prague 2, Czech Republic;
- BIOCEV, Faculty of Science, Charles University, 252 50 Vestec, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague 4, Czech Republic;
| | - Yi Zhen Ng
- A*STAR Skin Research Labs (A*SRL)—Biopolis, Skin Research Institute of Singapore, 8A Biomedical Grove #06-06 Immunos Singapore, Singapore 138665, Singapore;
| | - Karel Smetana
- Institute of Anatomy, First Faculty of Medicine, Charles University, 120 00 Prague 2, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic
| |
Collapse
|
49
|
Villegas-Pineda JC, Lizarazo-Taborda MDR, Ramírez-de-Arellano A, Pereira-Suárez AL. Exosomal miRNAs and lncRNAs: The Modulator Keys of Cancer-Associated Fibroblasts in the Genesis and Progression of Malignant Neoplasms. Front Cell Dev Biol 2021; 9:717478. [PMID: 34912797 PMCID: PMC8667074 DOI: 10.3389/fcell.2021.717478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is made up of a universe of molecular and cellular components that promote or inhibit the development of neoplasms. Among the molecular elements are cytokines, metalloproteinases, proteins, mitochondrial DNA, and nucleic acids, within which the ncRNAs: miRNAs and lncRNAs stand out due to their direct modulating effects on the genesis and progression of various cancers. Regarding cellular elements, the solid tumor microenvironment is made up of tumor cells, healthy adjacent epithelial cells, immune system cells, endothelial cells, and stromal cells, such as cancer-associated fibroblasts, which are capable of generating a modulating communication network with the other components of the tumor microenvironment through, among other mechanisms, the secretion of exosomal vesicles loaded with miRNAs and lncRNAs. These ncRNAs are key pieces in developing neoplasms since they have diverse effects on cancer cells and healthy cells, favoring or negatively regulating protumoral cellular events, such as migration, invasion, proliferation, metastasis, epithelial-mesenchymal transition, and resistance to treatment. Due to the growing number of relevant evidence in recent years, this work focused on reviewing, analyzing, highlighting, and showing the current state of research on exosomal ncRNAs derived from cancer-associated fibroblasts and their effects on different neoplasms. A future perspective on using these ncRNAs as real therapeutic tools in the treatment of cancer patients is also proposed.
Collapse
Affiliation(s)
- Julio César Villegas-Pineda
- Doctorado en Ciencias Biomédicas, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | | | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
50
|
Deng L, Jiang N, Zeng J, Wang Y, Cui H. The Versatile Roles of Cancer-Associated Fibroblasts in Colorectal Cancer and Therapeutic Implications. Front Cell Dev Biol 2021; 9:733270. [PMID: 34660589 PMCID: PMC8517274 DOI: 10.3389/fcell.2021.733270] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/14/2021] [Indexed: 01/07/2023] Open
Abstract
The tumor microenvironment (TME) is populated by abundant cancer-associated fibroblasts (CAFs) that radically influence the disease progression across many cancers, including the colorectal cancer (CRC). In theory, targeting CAFs holds great potential in optimizing CRC treatment. However, attempts to translate the therapeutic benefit of CAFs into clinic practice face many obstacles, largely due to our limited understanding of the heterogeneity in their origins, functions, and mechanisms. In recent years, accumulating evidence has uncovered some cellular precursors and molecular markers of CAFs and also revealed their versatility in impacting various hallmarks of CRC, together helping us to better define the population of CAFs and also paving the way toward their future therapeutic targeting for CRC treatment. In this review, we outline the emerging concept of CAFs in CRC, with an emphasis on their origins, biomarkers, prognostic significance, as well as their functional roles and underlying mechanisms in CRC biology. At last, we discuss the prospect of harnessing CAFs as promising therapeutic targets for the treatment of patients with CRC.
Collapse
Affiliation(s)
- Longfei Deng
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Nianfen Jiang
- Health Management Center, Southwest University Hospital, Chongqing, China
| | - Jun Zeng
- Department of Genetics and Cell Biology, College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yi Wang
- Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Hongjuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China.,Department of General Surgery, The Ninth People's Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China.,State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|