1
|
Cros-Perrial E, Jordheim LP. A phenotypic journey into NT5DC proteins in cancer and other diseases. Exp Cell Res 2025; 446:114468. [PMID: 39971176 DOI: 10.1016/j.yexcr.2025.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/27/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
5'-nucleotidases are proteins involved in nucleotide metabolism by dephosphorylating nucleotide monophosphates. A group of four related proteins (NT5DC1-4) has been described and an increasing amount of corresponding data has been published over the last years. Here, we review the current scientific literature on NT5DC proteins, present data on the four proteins, and discuss their potential involvement in cancer and other diseases. It seems that these proteins can have a role in various brain-related diseases, and there is a compelling amount of results showing that in particular NT5DC2 can be considered a drug target in cancer. More work is needed to conclude whether these proteins are involved or not in the nucleotide metabolism and thus potentially in purinergic signaling.
Collapse
Affiliation(s)
- Emeline Cros-Perrial
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France
| | - Lars Petter Jordheim
- Université Claude Bernard Lyon 1, INSERM U-1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69008, Lyon, France.
| |
Collapse
|
2
|
Duan C, Lin X, Zou W, He Q, Wei F, Pan J, Liu C, Jin Y. Targeting DDX3X eliminates leukemia stem cells in chronic myeloid leukemia by blocking NT5DC2 mRNA translation. Oncogene 2025; 44:241-254. [PMID: 39516658 DOI: 10.1038/s41388-024-03215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Tyrosine kinase inhibitors (TKIs) are highly effective in the treatment of patients with chronic myeloid leukemia (CML), but fail to eliminate leukemia stem cells (LSCs), which can lead to disease relapse or progression. It is urgently need to identify the regulators specifically driving LSCs. In this study, we identified DEAD-box helicase 3 X-linked (DDX3X), a ubiquitously expressed RNA helicase, as a critical regulator for CML LSCs by using patient samples and BCR-ABL-driven CML mouse model. We found that DDX3X enhanced the survival, serially plating and long-term engraftment abilities of human primary CML CD34+ cells. Inhibition of DDX3X reduced leukemia burden, eradicated LSCs and extended the survival of CML mice. Mechanistically, we uncovered that DDX3X protein bound to 5'-Nucleotidase Domain Containing 2 (NT5DC2) mRNA and promoted its translation in CML cells. NT5DC2 was a functional mediator in DDX3X regulation of LSCs. Collectively, our findings provide new evidence for RNA helicase facilitating the translation of specific mRNA in LSCs. Targeting DDX3X may represent a promising therapeutic strategy for eradication of LSCs in CML patients.
Collapse
MESH Headings
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- DEAD-box RNA Helicases/antagonists & inhibitors
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Humans
- Animals
- Mice
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/drug effects
- RNA, Messenger/genetics
- Protein Biosynthesis/drug effects
- Cell Line, Tumor
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Chen Duan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaoying Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Waiyi Zou
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qi He
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Fen Wei
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jingxuan Pan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.
| | - Chang Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| | - Yanli Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
- Institute of Tumor Pharmacology, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Kim HJ, Choi Y, Lee Y, Hwangbo M, Kim J. OTUD6A orchestrates complex modulation of TEAD4-mediated transcriptional programs. FEBS Lett 2024; 598:1045-1060. [PMID: 38594215 DOI: 10.1002/1873-3468.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 04/11/2024]
Abstract
TEAD transcription factors play a central role in the Hippo signaling pathway. In this study, we focused on transcriptional enhancer factor TEF-3 (TEAD4), exploring its regulation by the deubiquitinase OTU domain-containing protein 6A (OTUD6A). We identified OTUD6A as a TEAD4-interacting deubiquitinase, positively influencing TEAD-driven transcription without altering TEAD4 stability. Structural analyses revealed specific interaction domains: the N-terminal domain of OTUD6A and the YAP-binding domain of TEAD4. Functional assays demonstrated the positive impact of OTUD6A on the transcription of YAP-TEAD target genes. Despite no impact on TEAD4 nuclear localization, OTUD6A selectively modulated nuclear interactions, enhancing YAP-TEAD4 complex formation while suppressing VGLL4 (transcription cofactor vestigial-like protein 4)-TEAD4 interaction. Critically, OTUD6A facilitated YAP-TEAD4 complex binding to target gene promoters. Our study unveils the regulatory landscape of OTUD6A on TEAD4, providing insights into diseases regulated by YAP-TEAD complexes.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Yunsik Choi
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Yuri Lee
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Mi Hwangbo
- Department of Life Sciences, Sogang University, Seoul, Korea
| | - Jongchan Kim
- Department of Life Sciences, Sogang University, Seoul, Korea
| |
Collapse
|
4
|
Sang R, Yu X, Xia H, Qian X, Yong J, Xu Y, Sun Y, Yao Y, Zhou J, Zhuo S. NT5DC2 knockdown suppresses progression, glycolysis, and neuropathic pain in triple-negative breast cancer by blocking the EGFR pathway. Mol Carcinog 2024; 63:785-796. [PMID: 38289126 DOI: 10.1002/mc.23688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/03/2023] [Accepted: 01/14/2024] [Indexed: 03/16/2024]
Abstract
Triple-negative breast cancer (TNBC) is an exceptionally aggressive breast cancer subtype associated with neuropathic pain. This study explores the effects of 5'-nucleotidase domain-containing protein 2 (NT5DC2) on the progression of TNBC and neuropathic pain. Microarray analysis was conducted to identify differentially expressed genes in TNBC and the pathways involved. Gain- and loss-of-function assays of NT5DC2 were performed in TNBC cells, followed by detection of the extracellular acidification rate, adenosine triphosphate (ATP) levels, lactic acid production, glucose uptake, proliferation, migration, and invasion in TNBC cells. Macrophages were co-cultured with TNBC cells to examine the release of polarization-related factors and cytokines. A xenograft tumor model was established for in vivo validation. In addition, a mouse model of neuropathic pain was established through subepineural injection of TNBC cells, followed by measurement of the sciatic functional index and behavioral analysis to assess neuropathic pain. NT5DC2 was upregulated in TNBC and was positively correlated with epidermal growth factor receptor (EGFR). NT5DC2 interacted with EGFR to promote downstream signal transduction in TNBC cells. NT5DC2 knockdown diminished proliferation, migration, invasion, the extracellular acidification rate, ATP levels, lactic acid production, and glucose uptake in TNBC cells. Co-culture with NT5DC2-knockdown TNBC cells alleviated the M2 polarization of macrophages. Furthermore, NT5DC2 knockdown reduced tumor growth and neuropathic pain in mice. Importantly, activation of the EGFR pathway counteracted the effects of NT5DC2 knockdown. NT5DC2 knockdown protected against TNBC progression and neuropathic pain by inactivating the EGFR pathway.
Collapse
Affiliation(s)
- Rui Sang
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xiaoping Yu
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Han Xia
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Xingxing Qian
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jiacheng Yong
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan Xu
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yan Sun
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yiran Yao
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Jing Zhou
- Health Management Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Shuangshuang Zhuo
- Department of Ultrasound, Medical Imaging Center, Affiliated Hospital of Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
6
|
Ren S, Yu H. The prognostic and biological importance of chromatin regulation-related genes for lung cancer is examined using bioinformatics and experimentally confirmed. Pathol Res Pract 2023; 248:154638. [PMID: 37379709 DOI: 10.1016/j.prp.2023.154638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
BACKGROUND The pathogenesis and clinical diagnosis of lung adenocarcinoma (LUAD), a malignant illness with substantial morbidity and mortality, are still being investigated. Genes involved in chromatin regulation are crucial in the biological function of LUAD. METHODS The prognostic prediction model for LUAD was developed using multivariables and least absolute shrinkage and selection operator (LASSO) regression. It consisted of 10 chromatin regulators. The LUAD has been divided into two groups, high- and low-risk, using a predictive model. The model was shown to be accurate in predicting survival by the nomogram, receiver operating characteristic (ROC) curves, and principal component analysis (PCA). An analysis of differences in immune-cell infiltration, immunologicalfunction, and clinical traits between low- and high-risk populations was conducted. Protein-protein interaction (PPI) networks and Gene Ontology (GO) pathways of differentially expressed genes (DEGs) in the high versus low risk group were also examined to investigate the association between genes and biological pathways. The biological roles of chromatin regulators (CRs) in LUAD were finally estimated using colony formation and cell movement. The important genes' mRNA expression has been measured using real-time polymerase chain reaction (RT-PCR). RESULTS AND CONCLUSION Risk score and stage based on the model could be seen as separate prognostic indicators for patients with LUAD. The main signaling pathway difference across various risk groups was in cell cycle. The immunoinfiltration profile of the tumor microenvironment (TME) and individuals with different risk levels were correlated, suggesting that the interaction of immune cells with the tumor led to the creation of a favorable immunosuppressive microenvironment. These discoveries aid in the creation of individualized therapies for LUAD patients.
Collapse
Affiliation(s)
- Shanshan Ren
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China.
| | - Haiyang Yu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Yu X, Sun R, Yang X, He X, Guo H, Ou C. The NT5DC family: expression profile and prognostic value in pancreatic adenocarcinoma. J Cancer 2023; 14:2274-2288. [PMID: 37576396 PMCID: PMC10414034 DOI: 10.7150/jca.85811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a malignant tumor with high morbidity and mortality rates. The NT5DC family is an evolutionarily-conserved family of 5'-nucleosidases that catalyze the intracellular hydrolysis of nucleotides. Although the NT5DC family has been linked to the initiation and growth of several cancers, its function in PAAD remains unclear. A series of bioinformatic analyses was used to ascertain the expression, prognosis, gene changes, functional enrichment, and immune regulatory functions of the NT5DC family in PAAD. NT5C2 and NT5DC1/2 mRNA and protein levels are increased in PAAD. Furthermore, the high mRNA expressions of NT5C2, NT5DC2, and NT5DC4 indicate a poor prognosis in patients with PAAD. The enrichment of biological processes and gene expression in the NT5DC family in PAAD were investigated using Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses. Further investigations into immune infiltration revealed a close relationship between NT5DC gene expression and immune cell infiltration. These findings provide new insights into the biological function and prognostic value of the NT5DC gene family in PAAD.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ru Sun
- Department of blood transfusion, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuejie Yang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
8
|
Jia Y, Li J, Wu H, Wang W, Sun S, Feng C, Liu X, Li C, Zhang Y, Cai Y, Wei X, Yao P, Liu X, Zhang S, Wu F. Comprehensive analysis of NT5DC family prognostic and immune significance in breast cancer. Medicine (Baltimore) 2023; 102:e32927. [PMID: 36820551 PMCID: PMC9907984 DOI: 10.1097/md.0000000000032927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Among the most common malignancies, breast cancer has a high incidence and mortality rate. NT5DC family is a highly well-conserved 5'-nucleotidase. Previous studies showed that the progression of tumors was associated with some NT5DC family members. However, there are no studies about the comprehensive analysis such as expression, prognosis, and immune properties of NT5DC family in breast cancer. Based on the data from The Cancer Genome Atlas database, we used UALCAN, Tumor Immune Estimation Resource, Breast cancer gene-expression miner (Bc-GenExMiner), Kaplan-Meier Plotter, TISIDB, cBioPortal, GeneMANIA, Search Tool for the Retrieval of Interacting Genes, Metascape, Tumor Immune Single-cell Hub, The Database for Annotation, Visualization and Integrated Discovery, and Gene Set Cancer Analysis databases to explore expression, prognostic and diagnostic value, genetic alterations, biological function, immune value and drug sensitivity of NT5DC family in breast cancer patients. There was a downregulation of NT5C2, NT5DC1, and NT5DC3 in breast cancer compared to normal tissues, and NT5DC2 instead. All NT5DC family members were associated with the clinicopathological parameters of breast cancer patients. Survival and ROC analysis revealed that NT5DC family genes were related to the prognosis and diagnosis of breast cancer. NT5DC family were mainly involved in nucleotide metabolism. Moreover, NT5DC family were significantly associated with tumor immune microenvironment, diverse immune cells, and immune checkpoints in breast cancer. This research showed that NT5DC family might be novel prognostic biomarkers and immunotherapeutic targets of breast cancer.
Collapse
Affiliation(s)
- Yiwei Jia
- Collage of Clinical Medicine, Xi’an Jiaotong University, Xi’an, PR China
| | - Jia Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Huizi Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Weiwei Wang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Shiyu Sun
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Cong Feng
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Xuan Liu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Chaofan Li
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Yu Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Yifan Cai
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Xinyu Wei
- Collage of Clinical Medicine, Xi’an Jiaotong University, Xi’an, PR China
| | - Peizhuo Yao
- Collage of Clinical Medicine, Xi’an Jiaotong University, Xi’an, PR China
| | - Xuanyu Liu
- Collage of Clinical Medicine, Xi’an Jiaotong University, Xi’an, PR China
| | - Shuqun Zhang
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
| | - Fei Wu
- Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, PR China
- * Correspondence: Fei Wu, Department of Oncology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710004, China (e-mail: )
| |
Collapse
|
9
|
Moita MR, Silva MM, Diniz C, Serra M, Hoet RM, Barbas A, Simão D. Transcriptome and proteome profiling of activated cardiac fibroblasts supports target prioritization in cardiac fibrosis. Front Cardiovasc Med 2022; 9:1015473. [PMID: 36531712 PMCID: PMC9751336 DOI: 10.3389/fcvm.2022.1015473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/15/2022] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Activated cardiac fibroblasts (CF) play a central role in cardiac fibrosis, a condition associated with most cardiovascular diseases. Conversion of quiescent into activated CF sustains heart integrity upon injury. However, permanence of CF in active state inflicts deleterious heart function effects. Mechanisms underlying this cell state conversion are still not fully disclosed, contributing to a limited target space and lack of effective anti-fibrotic therapies. MATERIALS AND METHODS To prioritize targets for drug development, we studied CF remodeling upon activation at transcriptomic and proteomic levels, using three different cell sources: primary adult CF (aHCF), primary fetal CF (fHCF), and induced pluripotent stem cells derived CF (hiPSC-CF). RESULTS All cell sources showed a convergent response upon activation, with clear morphological and molecular remodeling associated with cell-cell and cell-matrix interactions. Quantitative proteomic analysis identified known cardiac fibrosis markers, such as FN1, CCN2, and Serpine1, but also revealed targets not previously associated with this condition, including MRC2, IGFBP7, and NT5DC2. CONCLUSION Exploring such targets to modulate CF phenotype represents a valuable opportunity for development of anti-fibrotic therapies. Also, we demonstrate that hiPSC-CF is a suitable cell source for preclinical research, displaying significantly lower basal activation level relative to primary cells, while being able to elicit a convergent response upon stimuli.
Collapse
Affiliation(s)
- Maria Raquel Moita
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta M. Silva
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Cláudia Diniz
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Margarida Serra
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - René M. Hoet
- Department of Pathology, CARIM - School of Cardiovascular Diseases, Maastricht University, Maastricht, Netherlands
| | | | - Daniel Simão
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
10
|
Nishikawa S, Hayashi T, Amano Y, Yaegashi N, Abiko K, Konishi I. Characteristic of Concurrent Uterine Lipoleiomyoma and Hemangioma by Algorithm of Candidate Biomarkers for Uterine Mesenchymal Tumor. Diagnostics (Basel) 2022; 12:diagnostics12102468. [PMID: 36292158 PMCID: PMC9600651 DOI: 10.3390/diagnostics12102468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/23/2022] Open
Abstract
(1) Background/Aim: In clinical practice, uterine lipoleiomyomas are variants of uterine leiomyomas that are often found incidentally and do not require surgical treatment unless the patient is symptomatic. Therefore, these should be clinically differentiated from lesions that need surgical treatment. Conversely, hemangiomas, or blood vessel benign tumors, rarely develop in the uterus; however, many clinical complications such as abdominal pain and excessive vaginal bleeding result from a uterine hemangioma. Hemangiomas can occur at any age and primarily affect pregnant women. (2) Materials and Methods: The oncological properties of uterine lipoleiomyoma and hemangioma in adults were investigated using molecular pathological examination on tissue excised from patients with a uterine tumor. (3) Results: Through molecular pathological studies, which included potential biomarkers for uterine mesenchymal tumors, a differential diagnosis was established for a case of mesenchymal tumor. Herein, we report a 54-year-old non-pregnant woman who presented with vaginal bleeding and underwent hysterectomy after detection of a 140 × 100 mm intramural mass diagnosed as a concurrent uterine hemangioma and lipoleiomyoma after molecular histopathologic examinations. (4) Conclusion: As far as we know, our case is the first patient of concurrent uterine hemangioma and lipoleiomyoma. Hence, the possibility of several types of mesenchymal tumors must be considered in the differential diagnosis of patients with abnormal vaginal bleeding. As such, molecular pathological examination and close monitoring of the MRI results should be conducted by medical staff while considering the patient’s desire for pregnancy, including surgical treatment options for uterine hemangioma.
Collapse
Affiliation(s)
- Shoko Nishikawa
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto 606-8501, Japan
| | - Takuma Hayashi
- Section of Cancer Medicine, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- Seeds Development and Research Infrastructure Division, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
- Correspondence: ; Tel.: +81-263372629
| | - Yasuaki Amano
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto 606-8501, Japan
| | - Nobuo Yaegashi
- Seeds Development and Research Infrastructure Division, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine, Miyagi 980-8575, Japan
| | - Kaoru Abiko
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto 606-8501, Japan
| | - Ikuo Konishi
- Department of Obstetrics and Gynecology, National Hospital Organization Kyoto Medical Center, Kyoto 606-8501, Japan
- Seeds Development and Research Infrastructure Division, Japan Agency for Medical Research and Development (AMED), Tokyo 100-0004, Japan
- Department of Obstetrics and Gynecology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
11
|
Cui Y, Wen Y, Lv C, Zhao D, Yang Y, Qiu H, Wang C. Decreased RNA‑binding protein IGF2BP2 downregulates NT5DC2, which suppresses cell proliferation, and induces cell cycle arrest and apoptosis in diffuse large B‑cell lymphoma cells by regulating the p53 signaling pathway. Mol Med Rep 2022; 26:286. [PMID: 35894142 PMCID: PMC9366151 DOI: 10.3892/mmr.2022.12802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/23/2022] [Indexed: 11/06/2022] Open
Abstract
Diffuse large B‑cell lymphoma (DLBCL) remains difficult to treat clinically due to its highly aggressive characteristics. Insulin‑like growth factor 2 mRNA‑binding protein 2 (IGF2BP2) and 5'‑nucleotidase domain‑containing 2 (NT5DC2) have been suggested as potential regulators in numerous types of cancer. The present study aimed to determine whether downregulation of IGF2BP2 and NT5DC2 suppresses cell proliferation, and induces cell cycle arrest and apoptosis in DLBCL cells by regulating the p53 signaling pathway. The expression levels of IGF2BP2 and NT5DC2 in DLBCL cells were determined by reverse transcription‑quantitative PCR (RT‑qPCR) and western blot analysis. Transfection of cells with IGF2BP2 overexpressing plasmids and NT5DC2 interference plasmids was performed, and the efficacy of transfection was confirmed by RT‑qPCR and western blot analysis. The viability, proliferation, cell cycle progression and apoptosis of DLBCL cells were analyzed by Cell Counting Kit‑8 assay, 5‑bromo‑2‑deoxyuridine staining and flow cytometry. RNA pull‑down and immunoprecipitation assays were used to verify the binding of IGF2BP2 and NT5DC2. The expression levels of apoptosis, cell cycle and p53 pathway‑associated proteins were determined by western blotting. The results revealed that NT5DC2 expression was increased in DLBCL cell lines and was the highest in OCI‑Ly7 cells. IGF2BP2 expression was also increased in OCI‑Ly7 cells and IGF2BP2 bound to NT5DC2. Knockdown of NT5DC2 suppressed cell viability and proliferation, induced cell cycle arrest and promoted apoptosis in DLBCL cells, which was reversed by upregulation of IGF2BP2. In addition, knockdown of NT5DC2 increased the expression of p53 and p21, but suppressed the expression of proliferating cell nuclear antigen, CDK4 and cyclin D1; these effects were reversed by upregulation of IGF2BP2. In conclusion, knockdown of NT5DC2 suppressed cell viability and proliferation, induced cell cycle arrest and promoted apoptosis in DLBCL cells by regulating the p53 signaling pathway and these effects were reversed by upregulation of IGF2BP2.
Collapse
Affiliation(s)
- Yuying Cui
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yu Wen
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Dongmei Zhao
- School of Clinical Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yu Yang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Hongbin Qiu
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China,School of Public Health, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China,Correspondence to: Dr Chennan Wang or Dr Hongbin Qiu, School of Basic Medicine, Jiamusi University, 148 Xuefu Street, Jiamusi, Heilongjiang 154007, P.R. China, E-mail: , E-mail:
| | - Chennan Wang
- School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China,Correspondence to: Dr Chennan Wang or Dr Hongbin Qiu, School of Basic Medicine, Jiamusi University, 148 Xuefu Street, Jiamusi, Heilongjiang 154007, P.R. China, E-mail: , E-mail:
| |
Collapse
|
12
|
Tamura S, Hayashi T, Ichimura T, Yaegashi N, Abiko K, Konishi I. Characteristic of Uterine Rhabdomyosarcoma by Algorithm of Potential Biomarkers for Uterine Mesenchymal Tumor. Curr Oncol 2022; 29:2350-2363. [PMID: 35448164 PMCID: PMC9027675 DOI: 10.3390/curroncol29040190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/03/2022] Open
Abstract
Background/Aim: Patients with uterine sarcoma comprise 2–5% of all patients with uterine malignancies; however, the morbidity of uterine sarcoma is low compared with that of other gynecological cancers. For many cases, malignant uterine tumors are diagnosed during follow-up of benign uterine leiomyoma. Of the uterine sarcomas, rhabdomyosarcoma is considered a mixed tumor containing components of epithelial cells and mesenchymal cells. Therefore, the onset of primary uterine rhabdomyosarcoma during follow-up of uterine leiomyoma is extremely rare. Rhabdomyosarcoma is a relatively common malignant tumor in children, but rhabdomyosarcoma in adults is extremely rare, accounting for approximately 3% of all patients with soft tissue sarcoma. Rhabdomyosarcoma in children is highly sensitive to chemotherapy and radiation therapy; however, the response to chemotherapy and radiation therapy in adult rhabdomyosarcoma is low and survival in adult rhabdomyosarcoma with metastatic lesions to other organs is approximately 14 months. We experienced a case of pleomorphic rhabdomyosarcoma during the follow-up of a uterine leiomyoma. Materials and Methods: We examined the oncological properties of uterine rhabdomyosarcoma in adults using molecular pathological techniques on tissue excised from patients with uterine leiomyoma. Result: A differential diagnosis was made for this case by molecular pathology, which included candidate biomarkers for uterine smooth muscle tumors. The oncological nature of uterine rhabdomyosarcoma was found to be similar to the oncological properties of uterine leiomyosarcoma. However, in uterine rhabdomyosarcoma, LMP2/β1i-positive cells were clearly observed. Conclusion: It is expected that establishing a diagnostic and treatment method targeting characteristics of mesenchymal tumor cells will lead to the treatment of malignant tumors with a low risk of recurrence and metastasis.
Collapse
Affiliation(s)
- Saya Tamura
- National Hospital Organization Kyoto Medical Center, Department of Obstetrics and Gynecology, Kyoto 612-8555, Japan; (S.T.); (K.A.); (I.K.)
| | - Takuma Hayashi
- Section of Cancer Medicine, National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
- START-Program, Japan Science and Technology Agency (JST), Tokyo 102-8666, Japan
- Correspondence: or ; Tel.: +81-263372629
| | - Tomoyuki Ichimura
- Department of Obstetrics and Gynecology, Osaka City University School of Medicine, Osaka 545-8586, Japan;
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University School of Medicine, Miyagi 980-8575, Japan;
| | - Kaoru Abiko
- National Hospital Organization Kyoto Medical Center, Department of Obstetrics and Gynecology, Kyoto 612-8555, Japan; (S.T.); (K.A.); (I.K.)
| | - Ikuo Konishi
- National Hospital Organization Kyoto Medical Center, Department of Obstetrics and Gynecology, Kyoto 612-8555, Japan; (S.T.); (K.A.); (I.K.)
- Department of Obstetrics and Gynecology, Kyoto University School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Ren H, Bazhin AV, Pretzsch E, Jacob S, Yu H, Zhu J, Albertsmeier M, Lindner LH, Knösel T, Werner J, Angele MK, Bösch F. A novel immune-related gene signature predicting survival in sarcoma patients. Mol Ther Oncolytics 2022; 24:114-126. [PMID: 35024438 PMCID: PMC8718575 DOI: 10.1016/j.omto.2021.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/07/2021] [Indexed: 02/08/2023] Open
Abstract
Sarcomas are a heterogeneous group of rare mesenchymal tumors. The migration of immune cells into these tumors and the prognostic impact of tumor-specific factors determining their interaction with these tumors remain poorly understood. The current risk stratification system is insufficient to provide a precise survival prediction and treatment response. Thus, valid prognostic models are needed to guide treatment. This study analyzed the gene expression and outcome of 980 sarcoma patients from seven public datasets. The abundance of immune cells and the response to immunotherapy was calculated. Immune-related genes (IRGs) were screened through a weighted gene co-expression network analysis (WGCNA). A least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish a powerful IRG signature predicting prognosis. The identified IRG signature incorporated 14 genes and identified high-risk patients in sarcoma cohorts. The 14-IRG signature was identified as an independent risk factor for overall and disease-free survival. Moreover, the IRG signature acted as a potential indicator for immunotherapy. The nomogram based on the risk score was built to provide a more accurate survival prediction. The decision tree with IRG risk score discriminated risk subgroups powerfully. This proposed IRG signature is a robust biomarker to predict outcomes and treatment responses in sarcoma patients.
Collapse
Affiliation(s)
- Haoyu Ren
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Elise Pretzsch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Sven Jacob
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Haochen Yu
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Jiang Zhu
- Department of Liver Surgery and Liver Transplantation Centre, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Markus Albertsmeier
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| | - Lars H Lindner
- Department of Medicine III, SarKUM, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Knösel
- Institute of Pathology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Martin K Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Florian Bösch
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, 81377 Munich, Germany
| |
Collapse
|
14
|
High Expression of NT5DC2 Is a Negative Prognostic Marker in Pulmonary Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14061395. [PMID: 35326547 PMCID: PMC8946072 DOI: 10.3390/cancers14061395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/05/2023] Open
Abstract
Via immunohistochemistry (IHC) on tissue micro arrays (TMA) clinical and prognostic impact of p53 co-playing 5′-Nucleotidase Domain-Containing Protein 2 (NT5DC2) protein expression was evaluated in 252 NSCLC patients. Confirmatory, gene expression database. mRNA levels of NT5DC2 were studied in 1925 NSCLC patients. High protein expression of NT5DC2 resulted in reduced median overall survival (OS) of patients with stage I-III adenocarcinoma (ADC) (Log Rank p = 0.026, HR 2.04 (1.08−3.87)), but not in squamous cell carcinoma (SCC) (p = 0.514, HR 0.87 (0.57−1.33)). Findings on OS were reproduced via gene expression analysis in ADC (p < 0.001, HR 1.64 (1.30−2.08)) and SCC (p = 0.217, HR 0.86 (0.68−1.09)). Yet, NT5DC2 mRNA levels were higher in SCC compared to ADC (p < 0.001) and in pN2 tumors compared to pN0/1 tumors (p = 0.001). Likewise, NT5DC2 protein expression associated with high-grade SCC. Moreover, NT5DC2 expression was positively correlated with p53 protein (p = 0.018) and TP53 gene expression (p < 0.001) and its survival effect was p53 dependent. While p53 expression was negatively associated with the presence of CD34+ cancer associated fibroblasts (CAFs), NT5DC2 expression insignificantly tended to higher levels of SMA+ CAFs (p = 0.065).
Collapse
|
15
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of the NT5DC Family in Hepatocellular Carcinoma. JOURNAL OF ONCOLOGY 2022; 2022:2607878. [PMID: 35047040 PMCID: PMC8763557 DOI: 10.1155/2022/2607878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/15/2021] [Indexed: 12/05/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, and its incidence is obviously increasing. The NT5DC family has been shown to be involved in the progression of many tumors. However, the biological function of NT5DC family members in HCC is still not well understood. Methods Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), UALCAN, Kaplan–Meier plotter, cBioPortal, GeneMANIA, Metascape, and TIMER were applied to assess the biological function of NT5DC family members in HCC. Results Most of the NT5DC family members were highly expressed in HCC. High expression of NT5C2, NT5DC2, and NT5DC3 was closely associated with higher tumor stage and poor overall survival (OS). In addition, high NT5DC2 and NT5DC3 expression also predicted poor disease-free survival (DFS). Enrichment analysis revealed that the NT5DC family in HCC mainly involved the IMP metabolic process, purine ribonucleoside monophosphate metabolic process, and purine nucleoside monophosphate metabolic process. The expression of NT5DC family members was closely related to the infiltration of some immune cells, such as B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Conclusion Our findings provided new insights into the biological function and prognostic value of NT5DC family members in HCC.
Collapse
|
16
|
Zou X, Hu X, He F, Zhang M, Kong X, Rui S, Liu Y, Wang L, Zheng X, Liu J, Li Z, Luo H. LncRNA LINC00152 promotes oral squamous cell carcinoma growth via enhancing Upstream Transcription Factor 1 mediated Mitochondrial Ribosomal Protein L52 transcription. J Oral Pathol Med 2021; 51:454-463. [PMID: 34664331 DOI: 10.1111/jop.13253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 10/15/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND LINC00152 (long intergenic non-protein coding RNA 152) was identified as an oncogenic lncRNA in multiple cancers. In the current study, we aimed to explore the transcriptional profile of LINC00152 in oral squamous cell carcinoma (OSCC) and its regulations at the transcriptional level. METHODS Bioinformatic analysis was performed by extracting the OSCC subset from The Cancer Genome Atlas (TCGA)-Head and Neck Squamous Cell Carcinoma (HNSC). LINC00152 subcellular localization and its interacting transcriptional factors (TFs) were explored. Dual-luciferase assay and ChIP-qPCR were applied to study transcriptional regulation. In vitro and in-vivo tumor cell growth models were used for functional assays. RESULTS NR_024206.2 was the dominant isoform that accounts for 80% of all transcripts of LINC00152. LINC00152 upregulation was associated with unfavorable survival of patients with OSCC. LINC00152 knockdown significantly impaired OSCC cell growth in vitro and in vivo. RNA FISH assay confirmed nuclear and cytoplasmic distribution of LINC00152. It physically interacted with Upstream Transcription Factor 1 (USF1), a common transcription factor in mammalian cells. USF1 could bind to the promoter region of MRPL52 (Mitochondrial Ribosomal Protein L52) and activate its transcription. LINC00152 could enhance the binding, thereby indirectly elevating MRPL52 expression. USF1 or MRPL52 knockdown slowed the proliferation of OSCC cells and partly canceled LINC00152 mediated growth-promoting effects. CONCLUSION This study revealed a novel LINC00152-USF1/MRPL52 axis promoting OSCC tumor growth.
Collapse
Affiliation(s)
- Xiuhe Zou
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaokun Hu
- Outpatient department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fenghui He
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Outpatient department, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Zhang
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China
| | - Xiangyu Kong
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China medical school, Sichuan University, Chengdu, Sichuan, China
| | - Shu Rui
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China medical school, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China medical school, Sichuan University, Chengdu, Sichuan, China
| | - Liying Wang
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,West China medical school, Sichuan University, Chengdu, Sichuan, China
| | - Xun Zheng
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaye Liu
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhihui Li
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Li R, Li W, He F, Zhang M, Luo H, Tang H. Systematic screening identifies a TEAD4-S100A13 axis modulating cisplatin sensitivity of oral squamous cell carcinoma cells. J Oral Pathol Med 2021; 50:882-890. [PMID: 34358353 DOI: 10.1111/jop.13224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND This study aimed to screen prognosis-related S100 protein family members in human paxpillomaviruses (HPV)-negative oral squamous cell carcinoma (OSCC) and their molecular regulations. METHODS Bioinformatic screening was conducted based on single-cell RNA-seq data from Puram 2017 dataset and bulk-seq data from the Cancer Genome Atlas (TCGA). HPV-negative OSCC cell lines CAL-27 and SCC-4 were used as in vitro cell models. RESULTS Among 21 S100 protein family member genes, S100A13 upregulation was associated with unfavorable progression-free survival and disease-specific survival of OSCC patients. Gene Set Enrichment Analysis showed that the higher S100A13 expression group had elevated genes enriched in DNA repair and oxidative phosphorylation. S100A13 knockdown increased cisplatin sensitivity, while its overexpression decreased the sensitivity of CAL-27 and SCC-4 cells. S100A13 gene had complex alternative transcription patterns. ENST00000440685 is one of the major protein-coding transcripts and was the only transcript elevated in the tumor group. TEAD4 could bind to the promoter of ENST00000440685 and increase its transcription. TEAD4 overexpression alleviated the tumor-suppressive effect of cisplatin in terms of colony formation, the expression of apoptotic proteins, and DNA damage. However, S100A13 knockdown partly abrogated the protective effects of TEAD4 overexpression. CONCLUSION This study revealed a novel TEAD4-S100A13 axis that might modulate cisplatin sensitivity of OSCC tumor cells.
Collapse
Affiliation(s)
- Ruicen Li
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| | - Wenyu Li
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| | - Fenghui He
- Tongren Municipal People's Hospital, Guizhou, China.,Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China
| | - Ming Zhang
- Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China.,Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Han Luo
- Department of Thyroid and Breast Surgery, Pingluo People's Hospital, Ningxia, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Huairong Tang
- Health Promotion Center, West China hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Hu B, Zhou S, Hu X, Zhang H, Lan X, Li M, Wang Y, Hu Q. NT5DC2 promotes leiomyosarcoma tumour cell growth via stabilizing unpalmitoylated TEAD4 and generating a positive feedback loop. J Cell Mol Med 2021; 25:5976-5987. [PMID: 33993634 PMCID: PMC8366447 DOI: 10.1111/jcmm.16409] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/03/2021] [Accepted: 02/13/2021] [Indexed: 02/05/2023] Open
Abstract
5'-Nucleotidase Domain Containing 2 (NT5DC2) is a novel oncoprotein, the regulatory effects of which have not been well characterized. This study aimed to investigate the expression profile and functional regulation of NT5DC2 and its potential interplay with TEAD4 in leiomyosarcoma (LMS). Bioinformatic analysis was conducted using data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) program. LMS cell lines SK-LMS-1 and SK-UT-1 were used for both in vitro and in vivo analysis. Results showed that NT5DC2 is aberrantly upregulated in LMS. Its overexpression was associated with unfavourable survival. Deletion of NT5DC2 significantly reduced the expression of cyclin B1, cyclin A2, cyclin E1 and CDK1 and increased G1 phase arrest in LMS cell lines, and suppressed their proliferation both in vitro and in vivo. NT5DC2 interacted with unpalmitoylated TEAD4, and this association reduced TEAD4 degradation via the ubiquitin-proteasome pathway. TRIM27 is a novel E3 ubiquitin ligase that induces K27/48-linked ubiquitination of unpalmitoylated TEAD4 at Lys278. TEAD4 inhibition significantly suppressed LMS cell growth both in vitro and in vivo. Dual-luciferase assay demonstrated that TEAD4 could bind to the NT5DC2 promoter and activate its transcription. Based on these findings, we infer that the NT5DC2-TEAD4 positive feedback loop plays an important role in LMS development and might serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Bowen Hu
- Department of OrthopedicsOrthopedics Research InstituteWest China HospitalSichuan UniversityChengduChina
| | - Shijie Zhou
- Cancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Xuefeng Hu
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Hua Zhang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Xiaorong Lan
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Mei Li
- Department of Head & Neck CancerCancer CenterWest China HospitalSichuan UniversityChengduChina
| | - Yunbing Wang
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| | - Qinsheng Hu
- Department of OrthopedicsOrthopedics Research InstituteWest China HospitalSichuan UniversityChengduChina
- National Engineering Research Center for BiomaterialsSichuan UniversityChengduChina
| |
Collapse
|