1
|
Huang Q, Tang J, Xiang Y, Shang X, Li K, Chen L, Hu J, Li H, Pi Y, Yang H, Zhang H, Tan H, Xiyang Y, Jin H, Li X, Chen M, Mao R, Wang Q. 4-Benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione rescues oligodendrocytes ferroptosis leading to myelin loss and ameliorates neuronal injury facilitating memory in neonatal hypoxic-ischemic brain damage. Exp Neurol 2025; 390:115262. [PMID: 40246011 DOI: 10.1016/j.expneurol.2025.115262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 04/08/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Neonatal brain hypoxia-ischemia (HI) is proved to cause white matter injury (WMI), which resulted in behavioral disturbance. Myelin formed by oligodendrocytes vulnerable to hypoxia-ischemia (HI), regulating motor and cognitive function, is easily damaged by HI causing myelin loss. 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8) has a potential rescue role in neuronal death post HI. Studies reported that neuronal ferroptosis could be induced by HI and linked to behavioral abnormalities. However, the effect of TDZD-8 on WMI and its involvement in memory recovery remains unclear. In this study, our HIBD model showed impaired memory function caused by neuronal injury and myelin loss. TDZD-8 effectively reversed this pathology. Underlying mechanistic exploration implied that TDZD-8 ameliorating myelin loss via ferroptosis pathway was involved in the process of TDZD-8 treating neonatal HIBD. In conclusion, our data demonstrated that combined effect of white matter repairment and neuronal protection achieved the therapeutic role of TDZD-8 in neonatal HIBD, and suggested that white matter repairment also could be a considerable clinical therapy for neonatal HIBD.
Collapse
Affiliation(s)
- Qiyi Huang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Jiahang Tang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - You Xiang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xinying Shang
- Department of Emergency Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Kunlin Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lijia Chen
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Junnan Hu
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Han Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yanxiong Pi
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Haiyan Yang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Huijia Zhang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Heng Tan
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Yanbin Xiyang
- Institution of Neuroscience, Kunming Medical University, Kunming 650500, China
| | - Huiyan Jin
- Department of Functional Experiment, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Xia Li
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Manjun Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Rongrong Mao
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| | - Qian Wang
- Department of Pathology and Pathophysiology, Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
| |
Collapse
|
2
|
Guo Q, Mao Y, Zhang J, Zhou Y, Zhao Y, Li Y, Lv J, Yang H, Liu B. Oridonin combined with cisplatin synergistically induces apoptosis by activating the NOXA-BCL2 axis in esophageal squamous cell carcinoma. Biochem Pharmacol 2025; 237:116953. [PMID: 40250733 DOI: 10.1016/j.bcp.2025.116953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/04/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Esophageal cancer, a malignant neoplasm originating from the epithelial cells of the esophagus, predominantly manifests as esophageal squamous cell carcinoma (ESCC) in approximately 90% of cases in China. Cisplatin-based chemotherapy regimens remain the first-line therapeutic option for ESCC, however, the five-year overall survival rate of patients is disappointingly low. Oridonin, a bioactive diterpenoid extracted from the traditional Chinese medicine herb Donglingcao, has demonstrated inhibitory effects against various malignancies. Currently, research on the combination of oridonin and cisplatin for the treatment of ESCC is limited. This study aims to elucidate the potential synergistic anti-cancer effects of oridonin in combination with cisplatin on ESCC, along with the underlying synergistic molecular mechanisms. In vitro experiments revealed that the combination of oridonin and cisplatin could synergistically inhibit ESCC cell proliferation, migration, invasion. The synergistic effect also induced cell cycle arrest and promoted apoptosis via the mitochondrial pathway by augmenting NOXA transcriptional activity and activating the NOXA-BCL2 axis. In vivo experiments corroborated these findings, showing a marked reduction in the growth of subcutaneous xenograft tumors in mice treated with the combination, without exacerbating the cisplatin-associated side effects such as weight loss or hepatic and renal toxicity. In conclusion, the combination of oridonin and cisplatin can synergistically inhibit the development of ESCC through the activation of the NOXA-BCL2 axis signaling pathway. This treatment is both safe and effective,presenting a promising prospect for combined therapeutic application in ESCC management.
Collapse
Affiliation(s)
- Qihang Guo
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Yue Mao
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China; Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Jiyu Zhang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Yangyang Zhou
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000 Hubei, China
| | - Yue Zhao
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Ying Li
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Jinglong Lv
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China
| | - Huiyu Yang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China.
| | - Bingrong Liu
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052 Henan, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou 450052 Henan, China.
| |
Collapse
|
3
|
Xia X, Chen W, Zhou T, Zhou F, Lu C, Yan Z, Zhao Q, Su Q. TEPP-46 inhibits glycolysis to promote M2 polarization of microglia after ischemic stroke. Int Immunopharmacol 2025; 149:114148. [PMID: 39904037 DOI: 10.1016/j.intimp.2025.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/12/2025] [Accepted: 01/21/2025] [Indexed: 02/06/2025]
Abstract
Following an ischemic stroke, neuroinflammation is triggered and is often typified by microglial activation. According to recent research, increased glycolysis metabolism frequently occurs when microglia become activated in an inflammatory response. In this study, we found that the PKM2 expression of microglia was gradually increased during the activation of microglia in ischemic stroke. TEPP-46, the activator of PKM2, enhanced the M2 polarization and promoted phagocytosis of microglia both in vivo and in vitro. Meanwhile, TEPP-46 administration ameliorated neuroinflammation and neuronal injuries and reduced the infarct volume of tMCAO mice. Mechanistically, we demonstrated that TEPP-46 suppressed the nuclear translocation of PKM2 and the interaction of PKM2 and HIF-1α, and inhibited glycolysis of microglia. According to our research, PKM2 modulation in microglia may be a viable therapeutic approach to lessen neuroinflammation following ischemic stroke, and TEPP-46 may be able to polarize microglia from an M1 to an M2 phenotype after ischemia/reperfusion damage.
Collapse
Affiliation(s)
- Xiaomei Xia
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China; Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000 China
| | - Wenli Chen
- Department of Rehabilitation Medicine, ZhongDa Hospital Southeast University, Nanjing 210009 China
| | - Ting Zhou
- Department of Rehabilitation Medicine, Kangda College of Nanjing Medical University, Lianyungang 222000 China
| | - Fang Zhou
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Can Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Zhenzhuang Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China
| | - Qin Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China.
| | - Qinglun Su
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang 222000 China.
| |
Collapse
|
4
|
Zhu J, Ding D, Sun T, Zhang Y, Miao H, Gu Y, Dai M, Zhu M. Oridonin Preserves Retinal Pigmented Epithelial Cell Tight Junctions and Ameliorates Choroidal Neovascularization. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 39982392 PMCID: PMC11855140 DOI: 10.1167/iovs.66.2.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/26/2025] [Indexed: 02/22/2025] Open
Abstract
Purpose To investigate the role and mechanism of oridonin (ORI), a bioactive diterpenoid extracted from the Chinese herbal medicine Rabdosia rubescens, on the integrity of outer blood-retinal barrier (oBRB) during choroidal neovascularization (CNV). Methods ARPE-19 cells were exposed to hypoxia and treated with ORI. The expression of ZO-1 and occludin in the axis of TGFβR/SUV39H1/KLF11 was detected by WB, chromatin immunoprecipitation, luciferin report activity assay, and immunofluorescence assay (IF), and the effect of ORI on the barrier properties of ARPE-19 cells was studied. A laser-induced mouse CNV model was constructed, and ORI was administrated by oral gavage. IF on mouse choroid flat mounts was done to confirm the effect of ORI on BRB integrity. Indocyanine green angiography and IF on mouse retina-RPE-choroid flat mounts were performed to determine the effect of ORI on CNV formation and retinal function. Hematoxylin and eosin staining and TUNEL staining were carried out to appraise ocular and systemic cytotoxicity caused by ORI. Results ORI protected ARPE-19 cells from hypoxia-induced destruction of barrier properties and promoted the expression of ZO-1 and occludin by the TGFβR/SUV39H1/KLF11 axis, maintaining barrier properties of ARPE-19 cells with hypoxia. ORI improved BRB integrity during laser-induced CNV in mice and mitigated laser-induced CNV formation in mice without any ocular or systemic cytotoxicity (n = 4-5 in each group). Conclusions ORI ameliorates BRB integrity and subsequent formation of CNV via regulating the TGFβR/SUV39H1/KLF11 pathway in RPE cells.
Collapse
Affiliation(s)
- Juming Zhu
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Dongmei Ding
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Tao Sun
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Yuting Zhang
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huizi Miao
- Department of Ophthalmology, Huizhou Hospital of Traditional Chinese Medicine, Huizhou, Guangzhou, China
| | - Yunjie Gu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ming Dai
- Department of Ophthalmology, The First People's Hospital of Yancheng, The Yancheng Clinical College of Xuzhou Medical University, Yancheng, Jiangsu, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
6
|
Chen J, Wang B, Meng T, Li C, Liu C, Liu Q, Wang J, Liu Z, Zhou Y. Oxidative Stress and Inflammation in Myocardial Ischemia-Reperfusion Injury: Protective Effects of Plant-Derived Natural Active Compounds. J Appl Toxicol 2024. [PMID: 39482870 DOI: 10.1002/jat.4719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/12/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Acute myocardial infarction (AMI) remains a leading cause of death among patients with cardiovascular diseases. Percutaneous coronary intervention (PCI) has been the preferred clinical treatment for AMI due to its safety and efficiency. However, research indicates that the rapid restoration of myocardial oxygen supply following PCI can lead to secondary myocardial injury, termed myocardial ischemia-reperfusion injury (MIRI), posing a grave threat to patient survival. Despite ongoing efforts, the mechanisms underlying MIRI are not yet fully elucidated. Among them, oxidative stress and inflammation stand out as critical pathophysiological mechanisms, playing significant roles in MIRI. Natural compounds have shown strong clinical therapeutic potential due to their high efficacy, availability, and low side effects. Many current studies indicate that natural compounds can mitigate MIRI by reducing oxidative stress and inflammatory responses. Therefore, this paper reviews the mechanisms of oxidative stress and inflammation during MIRI and the role of natural compounds in intervening in these processes, aiming to provide a basis and reference for future research and development of drugs for treating MIRI.
Collapse
Affiliation(s)
- Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Boyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Tianwei Meng
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chengjia Li
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Changxing Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qingnan Liu
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jiameng Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiping Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yabin Zhou
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Zhang S, Wang J, Xin Z, Sun C, Ju Z, Xue X, Jiang W, Xin Q, Wang J, Zhang Z, Luan Y. Effect of Oridonin on Experimental Animal Model of Bronchopulmonary Dysplasia. J Cell Biochem 2024; 125:e30632. [PMID: 39014931 DOI: 10.1002/jcb.30632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Bronchopulmonary dysplasia (BPD) is a serious disease that occurs in premature and low-birth-weight infants. In recent years, the incidence of BPD has not decreased, and there is no effective treatment for it. Oridonin (Ori) is a traditional Chinese medicine with a wide range of biological activities, especially pharmacological and anti-inflammatory. It is well known that inflammation plays a key role in BPD. However, the therapeutic effect of Ori on BPD has not been studied. Therefore, in the present study, we will observe the anti-inflammatory activity of Ori in an experimental animal model of BPD. Here, we showed that Ori could significantly decrease hyperoxia-induced alveolar injury, inhibit neutrophil recruitment, myeloperoxidase concentrations, and release inflammatory factors in BPD neonatal rats. Taken together, the experimental results suggested that Ori can significantly improve BPD in neonatal rats by inhibiting inflammatory response.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Emergency, The Second Hospital of Shandong University, Jinan, China
| | - Junfu Wang
- College of Pharmacy, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhihong Xin
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Chao Sun
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Zhiye Ju
- Department of Ultrasound, Shandong Provincial Public Health Clinical Center, Jinan, China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wen Jiang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Qian Xin
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Jue Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Zhaohua Zhang
- Department of Obstetrics, The Second Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Luan
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
- Renal Multidisciplinary Innovation Medical Center, The Second Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, Zhang XY, Shi HB, Liu S, Sun XL. Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res 2024; 61:133-149. [PMID: 37572732 PMCID: PMC11258661 DOI: 10.1016/j.jare.2023.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/09/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023] Open
Abstract
INTRODUCTION Lipid metabolism dysfunction is widely involved in the pathological process of acute ischemic stroke (AIS). The coordination of lipid metabolism between neurons and astrocytes is of great significance. However, the full scope of lipid dynamic changes and the function of key lipids during AIS remain unknown. Hence, identifying lipid alterations and characterizing their key roles in AIS is of great importance. METHODS Untargeted and targeted lipidomic analyses were applied to profile lipid changes in the ischemic penumbra and peripheral blood of transient middle cerebral artery occlusion (tMCAO) mice as well as the peripheral blood of AIS patients. Infarct volume and neurological deficits were assessed after tMCAO. The cell viability and dendritic complexity of primary neurons were evaluated by CCK8 assay and Sholl analysis. Seahorse, MitoTracker Green, tetramethyl rhodamine methyl ester (TMRM), 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSOX were used as markers of mitochondrial health. Fluorescent and isotopic free fatty acid (FFA) pulse-chase assays were used to track FFA flux in astrocytes. RESULTS Long-chain acylcarnitines (LCACs) were the lipids with the most dramatic changes in the ischemic penumbra and peripheral blood of tMCAO mice. LCACs were significantly elevated on admission in AIS patients and associated with poor outcomes in AIS patients. Increasing LCACs through a bolus administration of palmitoylcarnitine amplified stroke injury, while decreasing LCACs by overexpressing carnitine palmitoyltransferase 2 (CPT2) ameliorated stroke injury. Palmitoylcarnitine aggravated astrocytic mitochondrial damage after OGD/R, while CPT2 overexpression in astrocytes ameliorated cocultured neuron viability. Further study revealed that astrocytes stimulated by OGD/R liberated FFAs from lipid droplets into mitochondria to form LCACs, resulting in mitochondrial damage and lowered astrocytic metabolic support and thereby aggravated neuronal damage. CONCLUSION LCACs could accumulate and damage neurons by inducing astrocytic mitochondrial dysfunction in AIS. LCACs play a crucial role in the pathology of AIS and are novel promising diagnostic and prognostic biomarkers for AIS.
Collapse
Affiliation(s)
- Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Run-Hao Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jinjun Shan
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Hai-Bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
9
|
Zhao T, Zhang X, Cui X, Su S, Li L, Chen Y, Wang N, Sun L, Zhao J, Zhang J, Han X, Cao J. Oridonin exerts anticonvulsant profile and neuroprotective activity in epileptic mice by inhibiting NLRP3-mediated pyroptosis. Int Immunopharmacol 2024; 134:112247. [PMID: 38759374 DOI: 10.1016/j.intimp.2024.112247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Epilepsy is a chronic disabling disease poorly controlled by available antiseizure medications. Oridonin, a bioactive alkaloid with anti-inflammatory properties and neuroprotective effects, can inhibit the increased excitability of neurons caused by glutamate accumulation at the cellular level. However, whether oridonin affects neuronal excitability and whether it has antiepileptic potential has not been reported in animal models or clinical studies. METHOD Pentylenetetrazol was injected into mice to create a model of chronic epilepsy. Seizure severity was assessed using the Racine scale, and the duration and latency of seizures were observed. Abnormal neuronal discharge was detected using electroencephalography, and neuronal excitability was assessed using calcium imaging. Damage to hippocampal neurons was evaluated using Hematoxylin-Eosin and Nissl staining. The expression of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome and other pyroptosis-related proteins was determined using western blotting and immunofluorescence. A neuronal pyroptosis model was established using the supernatant of BV2 cells treated with lipopolysaccharide and adenosine triphosphate to stimulate hippocampal neurons. RESULTS Oridonin (1 and 5 mg/kg) reduced neuronal damage, increased the latency of seizures, and shortened the duration of fully kindled seizures in chronic epilepsy model mice. Oridonin decreased abnormal discharge during epileptic episodes and suppressed increased neuronal excitability. In vitro experiments showed that oridonin alleviated pyroptosis in hippocampal HT22 neurons. CONCLUSION Oridonin exerts neuroprotective effects by inhibiting pyroptosis through the NLRP3/caspase-1 pathway in chronic epilepsy model mice. It also reduces pyroptosis in hippocampal neurons in vitro, suggesting its potential as a therapy for epilepsy.
Collapse
Affiliation(s)
- Ting Zhao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xuefei Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Xiaoxiao Cui
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Songxue Su
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Li
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yanan Chen
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Na Wang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Lei Sun
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Jianyuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jiewen Zhang
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Xiong Han
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Jing Cao
- Department of Neurology and Basic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan 450000, China.
| |
Collapse
|
10
|
Luo L, Wang S, Liu W, Zhang Z, Zhao M, Liu A. Narirutin Attenuates Cerebral Ischemia-Reperfusion Injury by Suppressing the TXNIP/NLRP3 Pathway. Neurochem Res 2024; 49:692-705. [PMID: 38047987 DOI: 10.1007/s11064-023-04062-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/07/2023] [Accepted: 11/07/2023] [Indexed: 12/05/2023]
Abstract
Narirutin (Nar) is a flavonoid that is abundantly present in citrus fruits and has attracted considerable attention because of its diverse pharmacological activities and low toxicity. Here, we evaluated the preventive effects of Nar in middle cerebral artery occlusion/reperfusion (MCAO/R)-injured mice and oxygen-glucose deprivation/reperfusion (OGD/R)-injured bEnd.3 cells. Pretreatment with Nar (150 mg/kg) for 7 days effectively reduced infarct volume, improved neurological deficits, and significantly inhibited neuronal death in the hippocampus and cortex in MCAO/R-injured mice. Moreover, anti-apoptotic effects of Nar (50 µM) were observed in OGD/R-injured bEnd.3 cells. In addition, Nar pre-administration regulated blood-brain barrier function by increasing tight junction-related protein expression after MCAO/R and OGD/R injury. Nar also inhibited NOD-like receptor protein 3 (NLRP3) inflammasome activation by reducing the expression of thioredoxin-interacting protein (TXNIP) in vivo and in vitro. Taken together, these results provide new evidence for the use of Nar in the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Li Luo
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Saiying Wang
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Wenna Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China
| | - Zimei Zhang
- Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Minggao Zhao
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| | - An Liu
- Department of Pharmacy, Precision Pharmacy & Drug Development Center, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, China.
| |
Collapse
|
11
|
Zhang Y, Gong X. Fat mass and obesity associated protein inhibits neuronal ferroptosis via the FYN/Drp1 axis and alleviate cerebral ischemia/reperfusion injury. CNS Neurosci Ther 2024; 30:e14636. [PMID: 38430221 PMCID: PMC10908355 DOI: 10.1111/cns.14636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/05/2024] [Accepted: 01/25/2024] [Indexed: 03/03/2024] Open
Abstract
OBJECTIVES FTO is known to be involved in cerebral ischemia/reperfusion (I/R) injury. However, its related specific mechanisms during this condition warrant further investigations. This study aimed at exploring the impacts of FTO and the FYN/DRP1 axis on mitochondrial fission, oxidative stress (OS), and ferroptosis in cerebral I/R injury and the underlying mechanisms. METHODS The cerebral I/R models were established in mice via the temporary middle cerebral artery occlusion/reperfusion (tMCAO/R) and hypoxia/reoxygenation models were induced in mouse hippocampal neurons via oxygen-glucose deprivation/reoxygenation (OGD/R). After the gain- and loss-of-function assays, related gene expression was detected, along with the examination of mitochondrial fission, OS- and ferroptosis-related marker levels, neuronal degeneration and cerebral infarction, and cell viability and apoptosis. The binding of FTO to FYN, m6A modification levels of FYN, and the interaction between FYN and Drp1 were evaluated. RESULTS FTO was downregulated and FYN was upregulated in tMCAO/R mouse models and OGD/R cell models. FTO overexpression inhibited mitochondrial fission, OS, and ferroptosis to suppress cerebral I/R injury in mice, which was reversed by further overexpressing FYN. FTO overexpression also suppressed mitochondrial fission and ferroptosis to increase cell survival and inhibit cell apoptosis in OGD/R cell models, which was aggravated by additionally inhibiting DRP1. FTO overexpression inhibited FYN expression via the m6A modification to inactive Drp1 signaling, thus reducing mitochondrial fission and ferroptosis and enhancing cell viability in cells. CONCLUSIONS FTO overexpression suppressed FYN expression through m6A modification, thereby subduing Drp1 activity and relieving cerebral I/R injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Emergency, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| | - Xin Gong
- Department of Neurosurgery, Hunan Provincial People's HospitalThe First Affiliated Hospital of Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
12
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
13
|
Qi L, Wang F, Sun X, Li H, Zhang K, Li J. Recent advances in tissue repair of the blood-brain barrier after stroke. J Tissue Eng 2024; 15:20417314241226551. [PMID: 38304736 PMCID: PMC10832427 DOI: 10.1177/20417314241226551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/31/2023] [Indexed: 02/03/2024] Open
Abstract
The selective permeability of the blood-brain barrier (BBB) enables the necessary exchange of substances between the brain parenchyma and circulating blood and is important for the normal functioning of the central nervous system. Ischemic stroke inflicts damage upon the BBB, triggering adverse stroke outcomes such as cerebral edema, hemorrhagic transformation, and aggravated neuroinflammation. Therefore, effective repair of the damaged BBB after stroke and neovascularization that allows for the unique selective transfer of substances from the BBB after stroke is necessary and important for the recovery of brain function. This review focuses on four important therapies that have effects of BBB tissue repair after stroke in the last seven years. Most of these new therapies show increased expression of BBB tight-junction proteins, and some show beneficial results in terms of enhanced pericyte coverage at the injured vessels. This review also briefly outlines three effective classes of approaches and their mechanisms for promoting neoangiogenesis following a stroke.
Collapse
Affiliation(s)
- Liujie Qi
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Fei Wang
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Xiaojing Sun
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Hang Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, PR China
| | - Jingan Li
- School of Material Science and Engineering & Henan Key Laboratory of Advanced Magnesium Alloy & Key Laboratory of Materials Processing and Mold (Ministry of Education), Zhengzhou University, Zhengzhou, PR China
| |
Collapse
|
14
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
15
|
Pinky, Neha, Ali M, Tiwari P, Alam MM, Hattiwale HM, Jamal A, Parvez S. Unravelling of molecular biomarkers in synaptic plasticity of Alzheimer's disease: Critical role of the restoration of neuronal circuits. Ageing Res Rev 2023; 91:102069. [PMID: 37696304 DOI: 10.1016/j.arr.2023.102069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Learning and memory storage are the fundamental activities of the brain. Aberrant expression of synaptic molecular markers has been linked to memory impairment in AD. Aging is one of the risk factors linked to gradual memory loss. It is estimated that approximately 13 million people worldwide will have AD by 2050. A massive amount of oxidative stress is kept under control by a complex network of antioxidants, which occasionally fails and results in neuronal oxidative stress. Increasing evidence suggests that ROS may affect many pathological aspects of AD, including Aβ accumulation, tau hyperphosphorylation, synaptic plasticity, and mitochondrial dysfunction, which may collectively result in neurodegeneration in the brain. Further investigation into the relationship between oxidative stress and AD may provide an avenue for effective preservation and pharmacological treatment of this neurodegenerative disease. In this review, we briefly summarize the cellular mechanism underlying Aβ induced synaptic dysfunction. Since oxidative stress is common in the elderly and may contribute to the pathogenesis of AD, we also shed light on the role of antioxidant and inflammatory pathways in oxidative stress adaptation, which has a potential therapeutic target in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pinky
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Neha
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mubashshir Ali
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Prachi Tiwari
- Department of Physiotherapy, School of Nursing Sciences and Allied Health, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammad Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Haroonrashid M Hattiwale
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Azfar Jamal
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia; Health and Basic Science Research Centre, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
16
|
Li H, Zhang C, Zhou Y, Deng Y, Zheng X, Xue X. Neurovascular protection of alisol A on cerebral ischemia mice through activating the AKT/GSK3β pathway. Aging (Albany NY) 2023; 15:11639-11653. [PMID: 37889534 PMCID: PMC10637819 DOI: 10.18632/aging.205151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Alisol A, a triterpene isolated from Alisma Orientale, has been shown to exhibit anti-inflammatory effects and vascular protection. This study was designed to observe the effect of alisol A on cerebral ischemia (CI)-induced neurovascular dysfunction in the hippocampus and to further explore the potential mechanisms. The results showed that alisol A treatment improved the neurological deficits and cognitive impairment of CI mice. Alisol A reduced gliosis and improved neuronal/glial metabolism. Accordingly, alisol A inhibited inflammatory factors IL-6 and IL-1β induced by overactivation of astrocytes and microglia, thus protecting the neurovasculature. Furthermore, alisol A promoted the survival of neurons by decreasing the ratio of Bax/Bcl-2, and protected brain microvascular endothelial cells (BMECs) by upregulating the expression of ZO-1, Occludin and CD31. The phosphorylation of protein kinase B (AKT) and glycogen synthase kinase 3β (GSK3β) increased after treatment with alisol A. To explore the underlying mechanism, AKT was inhibited. As expected, the neurovascular protection of alisol A above was eliminated by AKT inhibition. The present study primarily suggested that alisol A could exert neurovascular protection in the hippocampus of CI mice by activating the AKT/GSK3β pathway and may potentially be used for the treatment of CI.
Collapse
Affiliation(s)
- Huihong Li
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Caiyun Zhang
- The Zhangpu Hospital of Traditional Chinese Medicine, Zhangzhou, Fujian, China
| | - Yangjie Zhou
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yunfei Deng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiaoqing Zheng
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiehua Xue
- The Affiliated Rehabilitation Hospital, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Key Laboratory of Cognitive Rehabilitation of Fujian Province, Fuzhou, China
| |
Collapse
|
17
|
Li L, Cheng SQ, Sun YQ, Yu JB, Huang XX, Dong YF, Ji J, Zhang XY, Hu G, Sun XL. Resolvin D1 reprograms energy metabolism to promote microglia to phagocytize neutrophils after ischemic stroke. Cell Rep 2023; 42:112617. [PMID: 37285269 DOI: 10.1016/j.celrep.2023.112617] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 03/27/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Neutrophil aggregation and clearance are important factors affecting neuroinflammatory injury during acute ischemic stroke. Emerging evidence suggests that energy metabolism is essential for microglial functions, especially microglial phagocytosis, which determines the degree of brain injury. Here, we demonstrate that Resolvin D1 (RvD1), a lipid mediator derived from docosahexaenic acid (DHA), promotes the phagocytosis of neutrophils by microglia, thereby reducing neutrophil accumulation in the brain and alleviating neuroinflammation in the ischemic brain. Further studies reveal that RvD1 reprograms energy metabolism from glycolysis to oxidative phosphorylation (OXPHOS), providing sufficient energy for microglial phagocytosis. Moreover, RvD1 enhances microglial glutamine uptake and stimulates glutaminolysis to support OXPHOS to boost ATP production depending on adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) activation. Overall, our results reveal that RvD1 reprograms energy metabolism to promote the microglial phagocytosis of neutrophils after ischemic stroke. These findings may guide perspectives for stroke therapy from modulating microglial immunometabolism.
Collapse
Affiliation(s)
- Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Jian-Bing Yu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xi-Yue Zhang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China; Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
18
|
Li L, Song JJ, Zhang MX, Zhang HW, Zhu HY, Guo W, Pan CL, Liu X, Xu L, Zhang ZY. Oridonin ameliorates caspase-9-mediated brain neuronal apoptosis in mouse with ischemic stroke by inhibiting RIPK3-mediated mitophagy. Acta Pharmacol Sin 2023; 44:726-740. [PMID: 36216897 PMCID: PMC10042824 DOI: 10.1038/s41401-022-00995-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/02/2022] [Indexed: 12/11/2022]
Abstract
Neuronal loss is a primary factor in determining the outcome of ischemic stroke. Oridonin (Ori), a natural diterpenoid compound extracted from the Chinese herb Rabdosia rubescens, has been shown to exert anti-inflammatory and neuroregulatory effects in various models of neurological diseases. In this study we investigated whether Ori exerted a protective effect against reperfusion injury-induced neuronal loss and the underlying mechanisms. Mice were subjected to transient middle cerebral artery occlusion (tMCAO), and were injected with Ori (5, 10, 20 mg/kg, i.p.) at the beginning of reperfusion. We showed that Ori treatment rescued neuronal loss in a dose-dependent manner by specifically inhibiting caspase-9-mediated neuronal apoptosis and exerted neuroprotective effects against reperfusion injury. Furthermore, we found that Ori treatment reversed neuronal mitochondrial damage and loss after reperfusion injury. In N2a cells and primary neurons, Ori (1, 3, 6 μM) exerted similar protective effects against oxygen-glucose deprivation and reoxygenation (OGD/R)-induced injury. We then conducted an RNA-sequencing assay of the ipsilateral brain tissue of tMCAO mice, and identified receptor-interacting protein kinase-3 (RIPK3) as the most significantly changed apoptosis-associated gene. In N2a cells after OGD/R and in the ipsilateral brain region, we found that RIPK3 mediated excessive neuronal mitophagy by activating AMPK mitophagy signaling, which was inhibited by Ori or 3-MA. Using in vitro and in vivo RIPK3 knockdown models, we demonstrated that the anti-apoptotic and neuroprotective effects of Ori were RIPK3-dependent. Collectively, our results show that Ori effectively inhibits RIPK3-induced excessive mitophagy and thereby rescues the neuronal loss in the early stage of ischemic stroke.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jing-Jing Song
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Meng-Xue Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hui-Wen Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Hai-Yan Zhu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Guo
- Department of Urology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Cai-Long Pan
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xue Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Lu Xu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Zhi-Yuan Zhang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Department of Neurology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
19
|
Yu D, Li J, Wang Y, Guo D, Zhang X, Chen M, Zhou Z. Oridonin ameliorates acetaminophen-induced acute liver injury through ATF4/PGC-1α pathway. Drug Dev Res 2022; 84:211-225. [PMID: 36567664 DOI: 10.1002/ddr.22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/26/2022] [Accepted: 12/04/2022] [Indexed: 12/27/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (ALI) causes hepatocyte cell death, oxidative stress, and inflammation. Oridonin (Ori), a covalent NLRP3-inflammasome inhibitor, ameliorates APAP-induced ALI through an unclear molecular mechanism. This study found that Ori decreased hepatic cytochrome P450 2E1 level and increased glutathione content to prevent APAP metabolism, and then reduced the necrotic area, improved liver function, and inhibited APAP-induced proinflammatory cytokines and oxidative stress. Ori also decreased activating transcription factor 4 (ATF4) protein levels and increased peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) to reduce APAP-induced endoplasmic reticulum stress activation and mitochondrial dysfunction. Furthermore, western blot and luciferase assay found that ATF4 inhibited transcription in the PGC-1α promoter -507 to -495 region to reduce PGC-1α levels, while ATF4 knockdown neutralized the hepatoprotective effect of Ori. Molecular docking showed that Ori bound to ATF4's amino acid residue glutamate 302 through 6, 7, and 18 hydroxyl bands. Our findings demonstrated that Ori prevented metabolic activation of APAP and further inhibited the ATF4/PGC-1α pathway to alleviate APAP overdose-induced hepatic toxicity, which illuminated its potential therapeutic effects on ALI.
Collapse
Affiliation(s)
- Dongsheng Yu
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiye Li
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Yu Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Danfeng Guo
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Xiaodan Zhang
- Henan Research Centre for Organ Transplantation, Zhengzhou, China.,Henan Key Laboratory for Digestive Organ Transplantation, Zhengzhou, China
| | - Mingming Chen
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.,Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Zheng Zhou
- Department of Chinese Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
20
|
Yan N, Jing H, Wang J, Li Z, Xu K, Wang Q, Zheng J, Shi L, Cao X, Duan X. Arsenic Induces Blood‒Brain Barrier Disruption and Regulates T Lymphocyte Subpopulation Differentiation in the Cerebral Cortex and Hippocampus Associated with the Nrf2 Pathway In Vivo. Biol Trace Elem Res 2022:10.1007/s12011-022-03500-3. [PMID: 36435854 DOI: 10.1007/s12011-022-03500-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
Increasing evidence has confirmed that the nervous system shows innate and adaptive immunity, which also participates in nerve damage. This study aimed to explore the neuroimmune imbalance induced by arsenic and its possible mechanism. Mice were exposed to NaAsO2 (0, 5, 10, 25, and 50 mg/L) for 1 month by drinking water. Y-maze and Morris water maze tests revealed that arsenic impaired learning and memory. The optical density of Evans blue showed a marked dose-dependent increase in the brain, and the mRNA and protein levels of the BBB tight junctions (TJs), occludin at 25 and 50 mg/L arsenic, and claudin-5 at 50 mg/L arsenic, were markedly decreased in the cerebral cortex. Arsenic downregulated occludin and claudin-5 mRNA expression at 50 mg/L and protein expression at 25 and 50 mg/L in the hippocampus. Immunohistochemical staining showed that 50 mg/L arsenic increased corticocerebral and hippocampal CD3+ T, CD4+ T, and CD8+ T cells; CD4 and CD8 proteins were increased with 25 and 50 mg/L arsenic. Arsenic decreased the corticocerebral and hippocampal Th1, Th17, and regulatory Treg transcription factors T-bet, Rorγt, and Foxp3 and the cytokine IFN-γ, IL-17, and TGF-β mRNA levels and increased the Th2 transcription factor GATA3 and cytokine IL-4 mRNA levels. Moreover, arsenic enhanced the expression of nuclear factor E2-related factor (Nrf2) and its downstream enzymes heme oxygenase-1 (HO-1) and glutathione-S-transferase (GST). In conclusion, these results demonstrate that arsenic exposure induces BBB dysfunction and T lymphocyte infiltration and affects CD4+ T lymphocyte differentiation, which may be associated with Nrf2 activation.
Collapse
Affiliation(s)
- Nan Yan
- Department of Medical Applied Technology, Shenyang Medical College, Liaoning, Shenyang, China
| | - Hui Jing
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jie Wang
- Department of Scientific Research, Shenyang Medical College, Liaoning, Shenyang, China
| | - Zhou Li
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Kangjie Xu
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Qian Wang
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Jingwen Zheng
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China
| | - Lei Shi
- Affiliated Health School, Shenyang Medical College, Liaoning, Shenyang, China
| | - Xiankui Cao
- Department of General Surgery, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), Liaoning, Shenyang, China.
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Liaoning, Shenyang, China.
| |
Collapse
|
21
|
Huang X, Jiang R, Xu X, Wang W, Sun Y, Li L, Shi H, Liu S. Gadolinium retention in the ischemic cerebrum: Implications for pain, neuron loss, and neurological deficits. Magn Reson Med 2022; 89:384-395. [DOI: 10.1002/mrm.29443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Xin‐Xin Huang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Run‐Hao Jiang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Xiao‐Quan Xu
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Wei Wang
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Yu‐Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration Nanjing Medical University Nanjing China
| | - Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration Nanjing Medical University Nanjing China
| | - Hai‐Bin Shi
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| | - Sheng Liu
- Department of Interventional Radiology The First Affiliated Hospital of Nanjing Medical University Nanjing China
| |
Collapse
|
22
|
Zhao X, Liu Y, Wang L, Yan C, Liu H, Zhang W, Zhao H, Cheng C, Chen Z, Xu T, Li K, Cai J, Qiao T. Oridonin attenuates hind limb ischemia-reperfusion injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115206. [PMID: 35301099 DOI: 10.1016/j.jep.2022.115206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 05/25/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Oridonin (Ori), extracted from Isodon rubescens (Hemsl.) H.Hara, is a well-known traditional Chinese herbal medicinal product that possesses antioxidant and anti-inflammatory activities. Oxidative stress and inflammation are the main pathophysiological mechanisms in hindlimb IR injury. However, whether Ori has a protective effect on hind limb IR injury is unknown. AIM OF THE STUDY The present study was designed to determine the effect of Ori on hindlimb IR injury and its relationship with oxidative stress and inflammation. MATERIALS AND METHODS The hind limb IR injury model in mice was used to evaluate the protective effect and related mechanisms of Ori. Forty-eight C57BL/6 mice (n = 12 per group) were randomly divided into four groups: Sham group; IR group; IR + Ori (10 mg/kg) group and IR + Ori (20 mg/kg) group. Mice in the IR and IR + Ori groups were subjected to hindlimb IR injury, while mice in the Sham group were subjected to no hindlimb IR injury. HE staining, Masson's staining, TTC staining, DHE staining, TUNEL staining, western blotting analysis and quantitative real-time PCR were employed to explore the mechanisms by which Ori exerts a protective effect on a classical hindlimb IR model in mice. RESULTS We found that Ori pretreatment prevented muscle damage and decreased cell apoptosis levels compared with the vehicle control. Moreover, the SOD2, CAT, MDA and ROS levels in muscle showed that Ori could significantly reduce oxidative stress in hindlimb IR mice, while the IL-1β and TNF-α levels in muscle showed that Ori could significantly attenuate IR-induced inflammation. We also found that Ori could increase the expression of Nrf2 and its downstream protein HO-1 and inhibit the expression levels of NLRP3-related proteins (NLRP3, ASC and Caspase-1) in vivo. CONCLUSIONS Our study suggested that Ori has a protective effect on hindlimb IR injury, which may be related to Nrf2-mediated oxidative stress and NLRP3-mediated inflammasome activation.
Collapse
Affiliation(s)
- Xiaoqi Zhao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Yutong Liu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Lei Wang
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chaolong Yan
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Han Liu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Hongting Zhao
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Chen Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Zhipeng Chen
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tianze Xu
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jing Cai
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Tong Qiao
- Department of Vascular Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
23
|
Wang L, Ren W, Wu Q, Liu T, Wei Y, Ding J, Zhou C, Xu H, Yang S. NLRP3 Inflammasome Activation: A Therapeutic Target for Cerebral Ischemia–Reperfusion Injury. Front Mol Neurosci 2022; 15:847440. [PMID: 35600078 PMCID: PMC9122020 DOI: 10.3389/fnmol.2022.847440] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 04/06/2022] [Indexed: 12/16/2022] Open
Abstract
Millions of patients are suffering from ischemic stroke, it is urgent to figure out the pathogenesis of cerebral ischemia–reperfusion (I/R) injury in order to find an effective cure. After I/R injury, pro-inflammatory cytokines especially interleukin-1β (IL-1β) upregulates in ischemic brain cells, such as microglia and neuron. To ameliorate the inflammation after cerebral I/R injury, nucleotide-binding oligomerization domain (NOD), leucine-rich repeat (LRR), and pyrin domain-containing protein 3 (NLRP3) inflammasome is well-investigated. NLRP3 inflammasomes are complicated protein complexes that are activated by endogenous and exogenous danger signals to participate in the inflammatory response. The assembly and activation of the NLRP3 inflammasome lead to the caspase-1-dependent release of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18. Furthermore, pyroptosis is a pro-inflammatory cell death that occurs in a dependent manner on NLRP3 inflammasomes after cerebral I/R injury. In this review, we summarized the assembly and activation of NLRP3 inflammasome; moreover, we also concluded the pivotal role of NLRP3 inflammasome and inhibitors, targeting the NLRP3 inflammasome in cerebral I/R injury.
Collapse
Affiliation(s)
- Lixia Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Qingjuan Wu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tianzhu Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Ying Wei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiru Ding
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhou
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Houping Xu
- Preventive Treatment Center, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- Houping Xu
| | - Sijin Yang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: Sijin Yang
| |
Collapse
|
24
|
Wang N, Zhu Y, Li D, Basang W, Huang Y, Liu K, Luo Y, Chen L, Li C, Zhou X. 2-Methyl Nonyl Ketone From Houttuynia Cordata Thunb Alleviates LPS-Induced Inflammatory Response and Oxidative Stress in Bovine Mammary Epithelial Cells. Front Chem 2022; 9:793475. [PMID: 35174140 PMCID: PMC8842123 DOI: 10.3389/fchem.2021.793475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
Mastitis is one of the most common diseases in dairy cows, causing huge economic losses to the dairy industry every year. Houttuynia Cordata Thunb (H.cordata) is a traditional Chinese herbal medicine that is widely used in clinical treatment. However, the therapeutic effect of 2-methyl nonyl ketone (MNK), the main volatile oil component in the aqueous vapor extract of H. cordata, on mastitis has been less studied. The purpose of this study was to investigate the protective effect and mechanism of MNK against lipopolysaccharide (LPS)-induced mastitis in vitro. The results showed that MNK pretreatment of the bovine mammary epithelial cell line (MAC-T) enhanced cell viability and inhibited LPS-induced reactive oxygen species (ROS) production and inflammatory response. MNK reduced the production of pro-inflammatory cytokines such as interleukin (IL) and tumor necrosis factor-α (TNF-α) by repressing LPS-induced activation of Toll-like receptor 4-nuclear factor-κB (TLR4-NF-κB) signaling pathway. In addition, MNK protected cells from inflammatory responses by blocking the downstream signaling of inflammatory factors. MNK also induced Heme Oxygenase-1 (HO-1) production by Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through AKT and extracellular signal-regulated kinase (ERK) pathways, thereby reducing LPS-induced oxidative damage for MAC-T cells. In conclusion, MNK played a protective role against LPS-induced cell injury. This provides a theoretical basis for the research and development of MNK as a novel therapeutic agent for mastitis.
Collapse
Affiliation(s)
- Nan Wang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yanbin Zhu
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Dandan Li
- Reproductive Medical Center, Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Wangdui Basang
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Institute of Veterinary and Animal Husbandry, Lhasa, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, China
| | - Yiqiu Huang
- College of Animal Sciences, Jilin University, Changchun, China
| | - Kening Liu
- College of Animal Sciences, Jilin University, Changchun, China
| | - Yuxin Luo
- College of Animal Sciences, Jilin University, Changchun, China
| | - Lu Chen
- College of Animal Sciences, Jilin University, Changchun, China
| | - Chunjin Li
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| | - Xu Zhou
- College of Animal Sciences, Jilin University, Changchun, China
- *Correspondence: Chunjin Li, ; Xu Zhou,
| |
Collapse
|
25
|
Li L, Cheng SQ, Guo W, Cai ZY, Sun YQ, Huang XX, Yang J, Ji J, Chen YY, Dong YF, Cheng H, Sun XL. Oridonin prevents oxidative stress-induced endothelial injury via promoting Nrf-2 pathway in ischaemic stroke. J Cell Mol Med 2021; 25:9753-9766. [PMID: 34514714 PMCID: PMC8505855 DOI: 10.1111/jcmm.16923] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/29/2021] [Accepted: 09/01/2021] [Indexed: 12/19/2022] Open
Abstract
Oridonin, a natural diterpenoid compound extracted from a Chinese herb, has been proved to exert anti‐oxidative stress effects in various disease models. The aim of the present study was to investigate the protective effects of oridonin on oxidative stress‐induced endothelial injury in ischaemic stroke. We found oridonin repaired blood‐brain barrier (BBB) integrity presented with upregulation of tight junction proteins (TJ proteins) expression, inhibited the infiltration of periphery inflammatory cells and neuroinflammation and thereby reduced infarct volume in ischaemic stroke mice. Furthermore, our results showed that oridonin could protect against oxidative stress‐induced endothelial injury via promoting nuclear translocation of nuclear factor‐erythroid 2 related factor 2 (Nrf‐2). The specific mechanism could be the activation of AKT(Ser473)/GSK3β(Ser9)/Fyn signalling pathway. Our findings revealed the therapeutic effect and mechanism of oridonin in ischaemic stroke, which provided fundamental evidence for developing the extracted compound of Chinese herbal medicine into an innovative drug for ischaemic stroke treatment.
Collapse
Affiliation(s)
- Lei Li
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Shu-Qi Cheng
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Wei Guo
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Zhen-Yu Cai
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yu-Qin Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Xin-Xin Huang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Juan Ji
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Ya-Yun Chen
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China
| | - Yin-Feng Dong
- Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong Cheng
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiu-Lan Sun
- Neuroprotective Drug Discovery Key Laboratory, Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, China.,Nanjing University of Chinese Medicine, the Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|