1
|
Li G, Zhao D, Ouyang B, Chen Y, Zhao Y. Intestinal microbiota as biomarkers for different colorectal lesions based on colorectal cancer screening participants in community. Front Microbiol 2025; 16:1529858. [PMID: 39990152 PMCID: PMC11844352 DOI: 10.3389/fmicb.2025.1529858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Introduction The dysregulation of intestinal microbiota has been implicated in the pathogenesis of colorectal cancer (CRC). However, the utilization of intestinal microbiota for identify the lesions in different procedures in CRC screening populations remains limited. Methods A total of 529 high-risk individuals who underwent CRC screening were included, comprising 13 advanced adenomas (Aade), 5 CRC, 59 non-advanced adenomas (Nade), 129 colon polyps (Pol), 99 cases of colorectal inflammatory disease (Inf), and 224 normal controls (Nor). 16S rRNA gene sequencing was used to profile the intestinal microbiota communities. The Gut Microbiota Health Index (GMHI) and average variation degree (AVD) were employed to assess the health status of the different groups. Results Our findings revealed that the Nor group exhibited significantly higher GMHIs and the lowest AVD compared to the four Lesion groups. The model incorporating 13 bacterial genera demonstrated optimal efficacy in distinguishing CRC and Aade from Nor, with an area under the curve (AUC) of 0.81 and a 95% confidence interval (CI) of 0.72 to 0.89. Specifically, the 55 bacterial genera combination model exhibited superior performance in differentiating CRC from Nor (AUC 0.98; 95% CI, 0.96-1), the 25 bacterial genera combination showed superior performance in distinguishing Aade from Nor (AUC 0.95). Additionally, the 27 bacterial genera combination demonstrated superior efficacy in differentiating Nade from Nor (AUC 0.82). The 13 bacterial genera combination exhibited optimal performance in distinguishing Inf from Nor (AUC 0.71). Discussion Our study has identified specific microbial biomarkers that can differentiate between colorectal lesions and healthy individuals. The intestinal microbiota markers identified may serve as valuable tools in community-based CRC screening programs.
Collapse
Affiliation(s)
- Gairui Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Dan Zhao
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Binfa Ouyang
- Shenzhen Nanshan Center for Chronic Disease Control, Shenzhen, Guangdong, China
| | - Yinggang Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Valciukiene J, Lastauskiene E, Laurinaviciene A, Jakubauskas M, Kryzauskas M, Valkiuniene RB, Augulis R, Garnelyte A, Kavoliunas J, Silinskaite U, Poskus T. Interaction of human gut microbiota and local immune system in progression of colorectal adenoma (MIMICA-1): a protocol for a prospective, observational cohort study. Front Oncol 2025; 14:1495635. [PMID: 39834942 PMCID: PMC11743970 DOI: 10.3389/fonc.2024.1495635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025] Open
Abstract
INTRODUCTION The current understanding of colorectal carcinogenesis is based on the adenoma-carcinoma sequence, where genetics, intestinal microbiota changes and local immunity shifts seem to play the key roles. Despite the emerging evidence of dysbiotic intestinal state and immune-cell infiltration changes in patients with colorectal adenocarcinoma, early and advanced adenoma as precursors of colorectal cancer, and carcinoma in situ as the following progression, are rather less studied. The newly colon-site adapted AI-based analysis of immune infiltrates is able to predict long-term outcomes of colon carcinoma. Though it could also facilitate the pathologic evaluation of precancerous lesion's potential to progress. Therefore, the purpose of this prospective cohort study (MIMICA-1) is, firstly, to identify the intestinal microbiota and immune infiltration patterns around the normal bowel tissue, early and advanced adenoma, carcinoma in situ, and adenocarcinoma, and secondly, to analyze the immune - microbiome interplay along the steps of conventional colorectal tumorigenesis. METHODS AND ANALYSES This study aims to prospectively recruit 40 patients (10 per group) with confirmed colorectal dysplasia undergoing endoscopic polypectomy, endoscopic mucosal resection for colorectal small (≤1cm), and large (>1cm) adenoma or carcinoma in situ, or biopsy and subsequent colon resection for invasive colorectal cancer, and 10 healthy patients undergoing screening colonoscopy. Stool samples will be collected prior to bowel preparation for the analysis of fecal (luminal) microbiota composition. Biopsy specimens will be taken from the terminal ileum, right colon, left colon, and a pathological lesion in the colon (if present) to assess mucosa-associated microbiota composition and intestinal immunity response. DNA will be extracted from all samples and sequenced using the Illumina MiSeq platform. Unifrac and Bray-Curtis methods will be used to assess microbial diversity. The intestinal immune system response will be examined using digital image analysis where primarily immunohistochemistry procedures for CD3, CD8, CD20 and CD68 immune cell markers will be performed. Thereafter, the count, density and distribution of immunocompetent cells in epithelial and stromal tissue compartments will be evaluated using AI-based platform. The interaction between the microbial shifts and intestinal immune system response in adenoma-carcinoma sequence and the healthy patients will be examined. In addition, fecal samples will be explored for gut microbiota's composition, comparing fecal- and tissue-derived bacterial patterns in healthy gut and along the adenoma-carcinoma sequence. DISCUSSION We hypothesize that changes within the human gut microbiota led to detectable alterations of the local immune response and correlate with the progression from normal mucosa to colorectal adenoma and invasive carcinoma. It is expectable to find more severe gut immune infiltration at dysplasia site, though analyzing invasive colorectal cancer we expect to detect broader mucosa-associated and luminal microbiota changes with subsequent local immune response at near-lesion site and possibly throughout the entire colon. We believe that specific compositional differences detected around premalignant colorectal lesions are critically important for its primary role in initiation and acceleration of colorectal carcinogenesis. Thus, these microbial patterns could potentially supplement fecal immunohistochemical tests for the early non-invasive detection of colorectal adenoma. Moreover, AI-based analysis of immune infiltrates could become additional diagnostic and prognostic tool in precancerous lesions prior to the development of colorectal cancer. REGISTRATION The study is registered at the Australian New Zealand Clinical Trials Registry (ACTRN12624000976583) https://www.anzctr.org.au/.
Collapse
Affiliation(s)
- Jurate Valciukiene
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Egle Lastauskiene
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Aida Laurinaviciene
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Matas Jakubauskas
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Marius Kryzauskas
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ruta Barbora Valkiuniene
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Renaldas Augulis
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
- Department of Pathology, Forensic Medicine and Pharmacology, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ausra Garnelyte
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Justinas Kavoliunas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Tomas Poskus
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Chowdhury D, Das A, Mishra M, Khutere T, Bodakhe SH. Physiological markers for immunotherapeutics: a review. J Chemother 2024:1-24. [PMID: 39711144 DOI: 10.1080/1120009x.2024.2443701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024]
Abstract
Immunotherapy has been advanced through multiple approaches, including immunogenic cytokines, monoclonal antibodies, therapeutic vaccinations, adoptive cell transfer, stem cell transplantation, and oncolytic viruses. This review analyses various strategies in genomics, transcriptomics, single-cell techniques, computational analysis, big data, and imaging technologies for the identification of tumour microbiota and microenvironments. Immunotherapy is becoming acknowledged as a feasible cancer treatment method, facilitating innovative cancer medicines and personalized medicine techniques.
Collapse
Affiliation(s)
- Durlav Chowdhury
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Ashmita Das
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Mrityunjay Mishra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Trinkal Khutere
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| | - Surendra H Bodakhe
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, Chhattisgarh, India
| |
Collapse
|
4
|
Huang Y, Wang Y, Huang X, Yu X. Unveiling the overlooked fungi: the vital of gut fungi in inflammatory bowel disease and colorectal cancer. Gut Pathog 2024; 16:59. [PMID: 39407244 PMCID: PMC11481806 DOI: 10.1186/s13099-024-00651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
The fungi of the human microbiota play important roles in the nutritional metabolism and immunological balance of the host. Recently, research has increasingly emphasised the role of fungi in modulating inflammation in intestinal diseases and maintaining health in this environment. It is therefore necessary to understand more clearly the interactions and mechanisms of the microbiota/pathogen/host relationship and the resulting inflammatory processes, as well as to offer new insights into the prevention, diagnosis and treatment of inflammatory bowel disease (IBD), colorectal cancer (CRC) and other intestinal pathologies. In this review, we comprehensively elucidate the fungal-associated pathogenic mechanisms of intestinal inflammation in IBD and related CRC, with an emphasis on three main aspects: the direct effects of fungi and their metabolites on the host, the indirect effects mediated by interactions with other intestinal microorganisms and the immune regulation of the host. Understanding these mechanisms will enable the development of innovative approaches based on the use of fungi from the resident human microbiota such as dietary interventions, fungal probiotics and faecal microbiota transplantation in the prevention, diagnosis and treatment of intestinal diseases.
Collapse
Affiliation(s)
- Yilin Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
- Huankui Academy, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yang Wang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Xiaotian Huang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| | - Xiaomin Yu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China.
| |
Collapse
|
5
|
Güven Gülhan Ü, Nikerel E, Çakır T, Erdoğan Sevilgen F, Durmuş S. Species-level identification of enterotype-specific microbial markers for colorectal cancer and adenoma. Mol Omics 2024; 20:397-416. [PMID: 38780313 DOI: 10.1039/d4mo00016a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Enterotypes have been shown to be an important factor for population stratification based on gut microbiota composition, leading to a better understanding of human health and disease states. Classifications based on compositional patterns will have implications for personalized microbiota-based solutions. There have been limited enterotype based studies on colorectal adenoma and cancer. Here, an enterotype-based meta-analysis of fecal shotgun metagenomic studies was performed, including 1579 samples of healthy controls (CTR), colorectal adenoma (ADN) and colorectal cancer (CRC) in total. Gut microbiota of healthy people were clustered into three enterotypes (Ruminococcus-, Bacteroides- and Prevotella-dominated enterotypes). Reference-based enterotype assignments were performed for CRC and ADN samples, using the supervised machine learning algorithm, K-nearest neighbors. Differential abundance analyses and random forest classification were conducted on each enterotype between healthy controls and CRC-ADN groups, revealing novel enterotype-specific microbial markers for non-invasive CRC screening strategies. Furthermore, we identified microbial species unique to each enterotype that play a role in the production of secondary bile acids and short-chain fatty acids, unveiling the correlation between cancer-associated gut microbes and dietary patterns. The enterotype-based approach in this study is promising in elucidating the mechanisms of differential gut microbiome profiles, thereby improving the efficacy of personalized microbiota-based solutions.
Collapse
Affiliation(s)
- Ünzile Güven Gülhan
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
| | - Emrah Nikerel
- Department of Genetics and Bioengineering, Yeditepe University, Istanbul, TR 34755, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| | - Fatih Erdoğan Sevilgen
- The Institute for Data Science & Artificial Intelligence, Boğaziçi University, Istanbul, TR 34342, Turkey
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| | - Saliha Durmuş
- Department of Bioengineering, Gebze Technical University, Gebze, TR 41400, Turkey.
- PhiTech Bioinformatics, Gebze, TR 41470, Turkey
| |
Collapse
|
6
|
Feng Y, Lu J, Jiang J, Wang M, Guo K, Lin S. Berberine: Potential preventive and therapeutic strategies for human colorectal cancer. Cell Biochem Funct 2024; 42:e4033. [PMID: 38742849 DOI: 10.1002/cbf.4033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024]
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor, with incidences continuing to rise. Although modern medicine has extended the survival time of CRC patients, its adverse effects and the financial burden cannot be ignored. CRC is a multi-step process and can be caused by the disturbance of gut microbiome and chronic inflammation's stimulation. Additionally, the presence of precancerous lesions is also a risk factor for CRC. Consequently, scientists are increasingly interested in identifying multi-target, safe, and economical herbal medicine and natural products. This paper summarizes berberine's (BBR) regulatory mechanisms in the occurrence and development of CRC. The findings indicate that BBR regulates gut microbiome homeostasis and controls mucosal inflammation to prevent CRC. In the CRC stage, BBR inhibits cell proliferation, invasion, and metastasis, blocks the cell cycle, induces cell apoptosis, regulates cell metabolism, inhibits angiogenesis, and enhances chemosensitivity. BBR plays a role in the overall management of CRC. Therefore, using BBR as an adjunct to CRC prevention and treatment could become a future trend in oncology.
Collapse
Affiliation(s)
- Yuqian Feng
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jiamin Lu
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Jiang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Menglei Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Yadav A, Kaushik M, Tiwari P, Dada R. From microbes to medicine: harnessing the gut microbiota to combat prostate cancer. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:187-197. [PMID: 38803512 PMCID: PMC11129862 DOI: 10.15698/mic2024.05.824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 05/29/2024]
Abstract
The gut microbiome (GM) has been identified as a crucial factor in the development and progression of various diseases, including cancer. In the case of prostate cancer, commensal bacteria and other microbes are found to be associated with its development. Recent studies have demonstrated that the human GM, including Bacteroides, Streptococcus, Bacteroides massiliensis, Faecalibacterium prausnitzii, Eubacterium rectale, and Mycoplasma genitalium, are involved in prostate cancer development through both direct and indirect interactions. However, the pathogenic mechanisms of these interactions are yet to be fully understood. Moreover, the microbiota influences systemic hormone levels and contributes to prostate cancer pathogenesis. Currently, it has been shown that supplementation of prebiotics or probiotics can modify the composition of GM and prevent the onset of prostate cancer. The microbiota can also affect drug metabolism and toxicity, which may improve the response to cancer treatment. The composition of the microbiome is crucial for therapeutic efficacy and a potential target for modulating treatment response. However, their clinical application is still limited. Additionally, GM-based cancer therapies face limitations due to the complexity and diversity of microbial composition, and the lack of standardized protocols for manipulating gut microbiota, such as optimal probiotic selection, treatment duration, and administration timing, hindering widespread use. Therefore, this review provides a comprehensive exploration of the GM's involvement in prostate cancer pathogenesis. We delve into the underlying mechanisms and discuss their potential implications for both therapeutic and diagnostic approaches in managing prostate cancer. Through this analysis, we offer valuable insights into the pivotal role of the microbiome in prostate cancer and its promising application in future clinical settings.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | | | - Prabhakar Tiwari
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| | - Rima Dada
- Department of Anatomy, Institute of Medical Sciences (AIIMS)India.
| |
Collapse
|
8
|
McAuliffe T, Anderson JC, Larson RJ, Robertson DJ. Systematic scoping review: Use of the faecal immunochemical test residual buffer to enhance colorectal cancer screening. Aliment Pharmacol Ther 2024; 59:1033-1048. [PMID: 38534182 DOI: 10.1111/apt.17947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/07/2023] [Accepted: 03/03/2024] [Indexed: 03/28/2024]
Abstract
BACKGROUND The faecal immunochemical test (FIT) is an inexpensive and convenient modality to screen for colorectal cancer. However, its one-time sensitivity for detecting colorectal cancer and cancer precursors is limited. There is growing interest in using the non-haemoglobin contents of FIT residual buffer to enhance colonic neoplasia detection. AIM To establish from the literature a framework to catalogue candidate biomarkers within FIT residual buffer for non-invasive colorectal cancer screening. METHODS The search strategy evaluated PubMed, Scopus, Web of Science, Embase, and Google Scholar for publications through 25 October 2023, with search terms including FIT, buffer, OC-sensor, biomarkers, microbiome, microRNA (miR), colon, rectum, screening, neoplasm, and early detection. Studies employing home-based collection samples using quantitative FIT first processed for haemoglobin were included. One author reviewed all articles; a second author completed a 20% full-text audit to ensure adherence to eligibility criteria. RESULTS A broad search yielded 1669 studies and application of eligibility criteria identified 18 relevant studies. Multiple protein, DNA/RNA, and microbiome biomarkers (notably haptoglobin, miR-16, miR-27a-3p, miR-92a, miR-148a-3p, miR-223, miR-421, let-7b-5p, and Tyzzerella 4) were associated with colorectal neoplasia. Furthermore, studies highlighted the short-term stability of biomarkers for clinical use and long-term stability for research purposes. CONCLUSIONS This scoping review summarises the framework and progress of research on stability of biomarkers in FIT residual buffer and their associations with colorectal neoplasia to guide opportunities for further confirmatory studies to enhance colorectal cancer screening.
Collapse
Affiliation(s)
| | - Joseph C Anderson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, USA
| | - Robin J Larson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- The Dartmouth Institute for Health Policy and Clinical Practice, Lebanon, New Hampshire, USA
| | - Douglas J Robertson
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Veterans Affairs Medical Center, White River Junction, Vermont, USA
| |
Collapse
|
9
|
Abo-Hammam RH, Salah M, Shabayek S, Hanora A, Zakeer S, Khattab RH. Metagenomic analysis of fecal samples in colorectal cancer Egyptians patients post colectomy: A pilot study. AIMS Microbiol 2024; 10:148-160. [PMID: 38525041 PMCID: PMC10955169 DOI: 10.3934/microbiol.2024008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024] Open
Abstract
One of the most prevalent malignancies that significantly affects world health is colorectal cancer (CRC). While genetics are involved in a portion of CRC patients, most cases are sporadic. The microbiome composition could be a new source of tumor initiation and progression. This research was conducted to investigate the microbiota composition of CRC patients post colectomy at taxonomic and functional levels. Using a next-generation sequencing approach, using an Illumina Novaseq 6000, the fecal samples of 13 patients were analyzed and the obtained data was subjected to a bioinformatics analysis. The bacterial abundance and uniqueness varied in CRC patients alongside differences in bacterial counts between patients. Bacteroides fragilis, Bacteroides vulgatus, Escherichia coli, and Fusobacterium nucleatum were among the pro-cancerous microorganisms found. Concurrently, bacteria linked to CRC progression were detected that have been previously linked to metastasis and recurrence. At the same time, probiotic bacteria such as Bifidobacterium dentium, Bifidobacterium bifidum, and Akkermansia muciniphila increased in abundance after colectomies. Additionally, numerous pathways were deferentially enriched in CRC, which emerged from functional pathways based on bacterial shotgun data. CRC-specific microbiome signatures include an altered bacterial composition. Our research showed that microbial biomarkers could be more usefully employed to explore the link between gut microbiota and CRC using metagenomic techniques in the diagnosis, prognosis, and remission of CRC, thereby opening new avenues for CRC treatment.
Collapse
Affiliation(s)
- Rana H. Abo-Hammam
- Forensic toxicologist and narcotics expert, Ministry of Justice, Tanta, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port-Said University, Port-Said, Egypt
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Amro Hanora
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Randa H. Khattab
- Department of Microbiology and Immunology, Al-Salam University, Tanta, Egypt
| |
Collapse
|
10
|
Masoud A, Mohamadynejad P. Identification of lncRNA PCAT19 as potential novel biomarker for colorectal cancer. Gene 2024; 891:147828. [PMID: 37748628 DOI: 10.1016/j.gene.2023.147828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/15/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
Long non-coding RNAs have been implicated in biological processes, and are dysregulated in types of cancer. Studies have shown that PCAT19 and CKMT2-AS1 lncRNAs promote tumor growth, invasion, and metastasis by regulating signaling pathways and modulating the gene expression. This study investigated the expression levels of lncRNAs PCAT19 and CKMT2-AS1 in colorectal tumors and normal tissues. First, Using GEPIA2 database, we compared the expression level of target lncRNAs between primary colon adenocarcinoma tumor and normal tissues. Then, the expression levels of lncRNAs PCAT19 and CKMT2-AS1 were detected in 35 colorectal tumors and paired adjacent tissues using qRT-PCR. A receiver operating characteristic (ROC) curve was used to evaluate the value of these lncRNAs as biomarkers. Statistical analysis based on GEPIA2 showed that both lncRNAs PCAT19 and CKMT2-AS1 were significantly decreased in colon adenocarcinoma compared to the normal group (P < 0.001). Experimental analysis showed that the expression level of lncRNA PCAT19 was decreased in colorectal tumors (p < 0.0001) compared to normal tissues. While the expression level of lncRNA CKMT2-AS1 did not change in tumor tissues, it decreased in non-metastatic tumors compared to normal tissues (p = 0.04). The significantly downregulation of lncRNA PCAT19 expression in both metastatic and non-metastatic colorectal tumors compared to normal tissue suggests that PCAT19 may play a role in the carcinogenesis and progression of colorectal cancer and may provide potential therapeutic targets for colorectal cancer. Based on the results of ROC curve analysis, lncRNA PCAT19 may also serves as a novel potential good biomarker in diagnosis colorectal cancer (AUC = 0.94, p < 0.0001) but no significant was found for lncRNA CKMT2-AS1 (p > 0.05).
Collapse
Affiliation(s)
- Atousa Masoud
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| |
Collapse
|
11
|
Chorawala MR, Postwala H, Prajapati BG, Shah Y, Shah A, Pandya A, Kothari N. Impact of the microbiome on colorectal cancer development. COLORECTAL CANCER 2024:29-72. [DOI: 10.1016/b978-0-443-13870-6.00021-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Jiang S, Ma W, Ma C, Zhang Z, Zhang W, Zhang J. An emerging strategy: probiotics enhance the effectiveness of tumor immunotherapy via mediating the gut microbiome. Gut Microbes 2024; 16:2341717. [PMID: 38717360 PMCID: PMC11085971 DOI: 10.1080/19490976.2024.2341717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 05/12/2024] Open
Abstract
The occurrence and progression of tumors are often accompanied by disruptions in the gut microbiota. Inversely, the impact of the gut microbiota on the initiation and progression of cancer is becoming increasingly evident, influencing the tumor microenvironment (TME) for both local and distant tumors. Moreover, it is even suggested to play a significant role in the process of tumor immunotherapy, contributing to high specificity in therapeutic outcomes and long-term effectiveness across various cancer types. Probiotics, with their generally positive influence on the gut microbiota, may serve as effective agents in synergizing cancer immunotherapy. They play a crucial role in activating the immune system to inhibit tumor growth. In summary, this comprehensive review aims to provide valuable insights into the dynamic interactions between probiotics, gut microbiota, and cancer. Furthermore, we highlight recent advances and mechanisms in using probiotics to improve the effectiveness of cancer immunotherapy. By understanding these complex relationships, we may unlock innovative approaches for cancer diagnosis and treatment while optimizing the effects of immunotherapy.
Collapse
Affiliation(s)
- Shuaiming Jiang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wenyao Ma
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Chenchen Ma
- Department of Human Cell Biology and Genetics, Southern University of Science and Technology, Shenzhen, PR China
| | - Zeng Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| | - Jiachao Zhang
- School of Food Science and Engineering, Hainan University, Haikou, PR China
| |
Collapse
|
13
|
Olovo CV, Wiredu Ocansey DK, Ji Y, Huang X, Xu M. Bacterial membrane vesicles in the pathogenesis and treatment of inflammatory bowel disease. Gut Microbes 2024; 16:2341670. [PMID: 38666762 PMCID: PMC11057571 DOI: 10.1080/19490976.2024.2341670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and debilitating condition of relapsing and remitting inflammation in the gastrointestinal tract. Conventional therapeutic approaches for IBD have shown limited efficacy and detrimental side effects, leading to the quest for novel and effective treatment options for the disease. Bacterial membrane vesicles (MVs) are nanosized lipid particles secreted by lysis or blebbing processes from both Gram-negative and Gram-positive bacteria. These vesicles, known to carry bioactive components, are facsimiles of the parent bacterium and have been implicated in the onset and progression, as well as in the amelioration of IBD. This review discusses the overview of MVs and their impact in the pathogenesis, diagnosis, and treatment of IBD. We further discuss the technical challenges facing this research area and possible research questions addressing these challenges. We summarize recent advances in the diverse relationship between IBD and MVs, and the application of this knowledge as a viable and potent therapeutic strategy for IBD.
Collapse
Affiliation(s)
- Chinasa Valerie Olovo
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Nigeria
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, P.R. China
- Department of Medical Laboratory Science, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Ying Ji
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xinxiang Huang
- Department of Biochemistry and Molecular Biology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Xu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Digestive Diseases, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
Pham TD, Sun X. Wavelet scattering networks in deep learning for discovering protein markers in a cohort of Swedish rectal cancer patients. Cancer Med 2023; 12:21502-21518. [PMID: 38014709 PMCID: PMC10726782 DOI: 10.1002/cam4.6672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/25/2023] [Accepted: 10/20/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Cancer biomarkers play a pivotal role in the diagnosis, prognosis, and treatment response prediction of the disease. In this study, we analyzed the expression levels of RhoB and DNp73 proteins in rectal cancer, as captured in immunohistochemical images, to predict the 5-year survival time of two patient groups: one with preoperative radiotherapy and one without. METHODS The utilization of deep convolutional neural networks in medical research, particularly in clinical cancer studies, has been gaining substantial attention. This success primarily stems from their ability to extract intricate image features that prove invaluable in machine learning. Another innovative method for extracting features at multiple levels is the wavelet-scattering network. Our study combines the strengths of these two convolution-based approaches to robustly extract image features related to protein expression. RESULTS The efficacy of our approach was evaluated across various tissue types, including tumor, biopsy, metastasis, and adjacent normal tissue. Statistical assessments demonstrated exceptional performance across a range of metrics, including prediction accuracy, classification accuracy, precision, and the area under the receiver operating characteristic curve. CONCLUSION These results underscore the potential of dual convolutional learning to assist clinical researchers in the timely validation and discovery of cancer biomarkers.
Collapse
Affiliation(s)
- Tuan D. Pham
- Barts and The London School of Medicine and Dentistry Queen MaryUniversity of London Turner StreetLondonUK
| | - Xiao‐Feng Sun
- Division of Oncology Department of Biomedical and Clinical SciencesLinkoping UniversityLinkopingSweden
| |
Collapse
|
15
|
Sánchez-Terrón G, Martínez R, Ruiz J, Luna C, Estévez M. Impact of Sustained Fructose Consumption on Gastrointestinal Function and Health in Wistar Rats: Glycoxidative Stress, Impaired Protein Digestion, and Shifted Fecal Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16270-16285. [PMID: 37859404 PMCID: PMC10623553 DOI: 10.1021/acs.jafc.3c04515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
The gastrointestinal tract (GIT) is the target of assorted pathological conditions, and dietary components are known to affect its functionality and health. In previous in vitro studies, we observed that reducing sugars induced protein glycoxidation and impaired protein digestibility. To gain further insights into the pathophysiological effects of dietary sugars, Wistar rats were provided with a 30% (w/v) fructose water solution for 10 weeks. Upon slaughter, in vivo protein digestibility was assessed, and the entire GIT (digests and tissues) was analyzed for markers of oxidative stress and untargeted metabolomics. Additionally, the impact of sustained fructose intake on colonic microbiota was also evaluated. High fructose intake for 10 weeks decreased protein digestibility and promoted changes in the physiological digestion of proteins, enhancing intestinal digestion rather than stomach digestion. Moreover, at colonic stages, the oxidative stress was harmfully increased, and both the microbiota and the intraluminal colonic metabolome were modified.
Collapse
Affiliation(s)
- Guadalupe Sánchez-Terrón
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Remigio Martínez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, Universidad of Extremadura (UEX), Cáceres 10003, Spain
- Animal Health Department, GISAZ Research Group, ENZOEM Competitive Research Unit, Universidad of Córdoba (UCO), Córdoba 14014, Spain
| | - Jorge Ruiz
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| | - Carolina Luna
- Emergency Unit, Servicio Extremeño de Salud, SES, Junta de Extremadura, Cáceres 10003, Spain
| | - Mario Estévez
- TECAL Research Group, Meat and Meat Products Research Institute (IPROCAR), Universidad de Extremadura (UEX), Cáceres 10003, Spain
| |
Collapse
|
16
|
Alrushaid N, Khan FA, Al-Suhaimi E, Elaissari A. Progress and Perspectives in Colon Cancer Pathology, Diagnosis, and Treatments. Diseases 2023; 11:148. [PMID: 37987259 PMCID: PMC10660546 DOI: 10.3390/diseases11040148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/03/2023] [Accepted: 10/17/2023] [Indexed: 11/22/2023] Open
Abstract
Worldwide, colon cancer is the third most frequent malignancy and the second most common cause of death. Although it can strike anybody at any age, colon cancer mostly affects the elderly. Small, non-cancerous cell clusters inside the colon, commonly known as polyps, are typically where colon cancer growth starts. But over time, if left untreated, these benign polyps may develop into malignant tissues and develop into colon cancer. For the diagnosis of colon cancer, with routine inspection of the colon region for polyps, several techniques, including colonoscopy and cancer scanning, are used. In the case identifying the polyps in the colon area, efforts are being taken to surgically remove the polyps as quickly as possible before they become malignant. If the polyps become malignant, then colon cancer treatment strategies, such as surgery, chemotherapy, targeted therapy, and immunotherapy, are applied to the patients. Despite the recent improvements in diagnosis and prognosis, the treatment of colorectal cancer (CRC) remains a challenging task. The objective of this review was to discuss how CRC is initiated, and its various developmental stages, pathophysiology, and risk factors, and also to explore the current state of colorectal cancer diagnosis and treatment, as well as recent advancements in the field, such as new screening methods and targeted therapies. We examined the limitations of current methods and discussed the ongoing need for research and development in this area. While this topic may be serious and complex, we hope to engage and inform our audience on this important issue.
Collapse
Affiliation(s)
- Noor Alrushaid
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Ebtesam Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Abdelhamid Elaissari
- Universite Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69100 Villeurbanne, France;
| |
Collapse
|
17
|
Emencheta SC, Olovo CV, Eze OC, Kalu CF, Berebon DP, Onuigbo EB, Vila MMDC, Balcão VM, Attama AA. The Role of Bacteriophages in the Gut Microbiota: Implications for Human Health. Pharmaceutics 2023; 15:2416. [PMID: 37896176 PMCID: PMC10609668 DOI: 10.3390/pharmaceutics15102416] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteriophages (phages) are nano-sized viruses characterized by their inherent ability to live off bacteria. They utilize diverse mechanisms to absorb and gain entry into the bacterial cell wall via the release of viral genetic material, which uses the replication mechanisms of the host bacteria to produce and release daughter progeny virions that attack the surrounding host cells. They possess specific characteristics, including specificity for particular or closely related bacterial species. They have many applications, including as potential alternatives to antibiotics against multi-resistant bacterial pathogens and as control agents in bacteria-contaminated environments. They are ubiquitously abundant in nature and have diverse biota, including in the gut. Gut microbiota describes the community and interactions of microorganisms within the intestine. As with bacteria, parasitic bacteriophages constantly interact with the host bacterial cells within the gut system and have obvious implications for human health. However, it is imperative to understand these interactions as they open up possible applicable techniques to control gut-implicated bacterial diseases. Thus, this review aims to explore the interactions of bacteriophages with bacterial communities in the gut and their current and potential impacts on human health.
Collapse
Affiliation(s)
- Stephen C. Emencheta
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Chinasa V. Olovo
- Department of Microbiology, University of Nigeria, Nsukka 410001, Nigeria;
| | - Osita C. Eze
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Chisom F. Kalu
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Dinebari P. Berebon
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Ebele B. Onuigbo
- Department of Pharmaceutical Microbiology and Biotechnology, University of Nigeria, Nsukka 410001, Nigeria; (S.C.E.); (O.C.E.); (C.F.K.); (E.B.O.)
| | - Marta M. D. C. Vila
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
| | - Victor M. Balcão
- VBlab—Laboratory of Bacterial Viruses, University of Sorocaba, Sorocaba 18023-000, Brazil; (M.M.D.C.V.); (V.M.B.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
| | - Anthony A. Attama
- Department of Pharmaceutics, University of Nigeria, Nsukka 410001, Nigeria
- Institute for Drug-Herbal Medicine-Excipient Research and Development, University of Nigeria, Nsukka 410001, Nigeria
| |
Collapse
|
18
|
Wang X, Li X, Zhang L, An L, Guo L, Huang L, Gao W. Recent progress in plant-derived polysaccharides with prebiotic potential for intestinal health by targeting gut microbiota: a review. Crit Rev Food Sci Nutr 2023; 64:12242-12271. [PMID: 37651130 DOI: 10.1080/10408398.2023.2248631] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Natural products of plant origin are of high interest and widely used, especially in the food industry, due to their low toxicity and wide range of bioactive properties. Compared to other plant components, the safety of polysaccharides has been generally recognized. As dietary fibers, plant-derived polysaccharides are mostly degraded in the intestine by polysaccharide-degrading enzymes secreted by gut microbiota, and have potential prebiotic activity in both non-disease and disease states, which should not be overlooked, especially in terms of their involvement in the treatment of intestinal diseases and the promotion of intestinal health. This review elucidates the regulatory effects of plant-derived polysaccharides on gut microbiota and summarizes the mechanisms involved in targeting gut microbiota for the treatment of intestinal diseases. Further, the structure-activity relationships between different structural types of plant-derived polysaccharides and the occurrence of their prebiotic activity are further explored. Finally, the practical applications of plant-derived polysaccharides in food production and food packaging are summarized and discussed, providing important references for expanding the application of plant-derived polysaccharides in the food industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Xiaozhen Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
19
|
Khattab RH, Abo-Hammam RH, Salah M, Hanora AM, Shabayek S, Zakeer S. Multi-omics analysis of fecal samples in colorectal cancer Egyptians patients: a pilot study. BMC Microbiol 2023; 23:238. [PMID: 37644393 PMCID: PMC10464353 DOI: 10.1186/s12866-023-02991-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a public health concern and the second most common disease worldwide. This is due to genetic coding and is influenced by environmental aspects, in which the gut microbiota plays a significant role. The purpose of this study was to compare the microbiota makeup of CRC patients with that of healthy control and to identify upregulated and downregulated proteins and metabolites in CRC patients. Using a next-generation sequencing approach, fecal samples of five females (4 CRC patients and one healthy control) were analyzed by BGI DNBSEQ-T7, Hong Kong, China. Furthermore, proteomics and metabolomics analysis were performed using LC-MS/MS technique. RESULTS Dysbiosis of gut microbiota has been observed in patients with CRC, with an increase in microbiota diversity at all taxonomic levels relative to healthy control. Where, at the functional level the bacterial species participate in many different pathways among them de novo nucleotide synthesis and amino acids pathways were aberrantly upregulated in CRC patients. Proteomics and metabolomics profiles of CRC patients showed different proteins and metabolites, a total of 360 and 158 proteins and metabolites, respectively were highly expressed compared to healthy control with fold change ≥ 1.2. Among the highly expressed proteins were transketolase, sushi domain-containing protein, sulfide quinone oxidoreductase protein, AAA family ATPase protein, carbonic anhydrase, IgG Fc-binding protein, nucleoside diphosphate kinase protein, arylsulfatase, alkaline phosphatase protein, phosphoglycerate kinase, protein kinase domain-containing protein, non-specific serine/threonine protein kinase, Acyl-CoA synthetase and EF-hand domain-containing protein. Some of the differential metabolites, Taurine, Taurocholic acid, 7-ketodeoxycholic acid, Glycochenodeoxycholic acid, Glycocholic acid, and Taurochenodeoxycholic acid that belong to bile acids metabolites. CONCLUSIONS Some bacterial species, proteins, and metabolites could be used as diagnostic biomarkers for CRC. Our study paves an insight into using multi-omics technology to address the relationship between gut microbiota and CRC.
Collapse
Affiliation(s)
- Randa H Khattab
- Department of Microbiology and Immunology, Al-Salam University, Tanta, Egypt
| | - Rana H Abo-Hammam
- Forensic toxicologist and narcotics expert, Ministry of Justice, Tanta, Egypt
| | - Mohammed Salah
- Department of Microbiology and Immunology, Faculty of pharmacy, Port-Said University, Port-Said, Egypt
| | - Amro M Hanora
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt.
| | - Sarah Shabayek
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| | - Samira Zakeer
- Department of Microbiology and Immunology, Faculty of pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
20
|
Fan JQ, Zhao WF, Lu QW, Zha FR, Lv LB, Ye GL, Gao HL. Fecal microbial biomarkers combined with multi-target stool DNA test improve diagnostic accuracy for colorectal cancer. World J Gastrointest Oncol 2023; 15:1424-1435. [PMID: 37663945 PMCID: PMC10473925 DOI: 10.4251/wjgo.v15.i8.1424] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/20/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a major global health burden. The current diagnostic tests have shortcomings of being invasive and low accuracy. AIM To explore the combination of intestinal microbiome composition and multi-target stool DNA (MT-sDNA) test in the diagnosis of CRC. METHODS We assessed the performance of the MT-sDNA test based on a hospital clinical trial. The intestinal microbiota was tested using 16S rRNA gene sequencing. This case-control study enrolled 54 CRC patients and 51 healthy controls. We identified biomarkers of bacterial structure, analyzed the relationship between different tumor markers and the relative abundance of related flora components, and distinguished CRC patients from healthy subjects by the linear discriminant analysis effect size, redundancy analysis, and random forest analysis. RESULTS MT-sDNA was associated with Bacteroides. MT-sDNA and carcinoembryonic antigen (CEA) were positively correlated with the existence of Parabacteroides, and alpha-fetoprotein (AFP) was positively associated with Faecalibacterium and Megamonas. In the random forest model, the existence of Streptococcus, Escherichia, Chitinophaga, Parasutterella, Lachnospira, and Romboutsia can distinguish CRC from health controls. The diagnostic accuracy of MT-sDNA combined with the six genera and CEA in the diagnosis of CRC was 97.1%, with a sensitivity and specificity of 98.1% and 92.3%, respectively. CONCLUSION There is a positive correlation of MT-sDNA, CEA, and AFP with intestinal microbiome. Eight biomarkers including six genera of gut microbiota, MT-sDNA, and CEA showed a prominent sensitivity and specificity for CRC prediction, which could be used as a non-invasive method for improving the diagnostic accuracy for this malignancy.
Collapse
Affiliation(s)
- Jin-Qing Fan
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Wang-Fang Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Qi-Wen Lu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Fu-Rong Zha
- Department of Bioinformation Analysis, Shanghai BIOZERON Biotechnology Co., Shanghai 201800, China
| | - Le-Bin Lv
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Guo-Liang Ye
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| | - Han-Lu Gao
- Department of Preventive Medicine, The First Affiliated Hospital of Ningbo University, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
21
|
Katsaounou K, Yiannakou D, Nikolaou E, Brown C, Vogazianos P, Aristodimou A, Chi J, Costeas P, Agapiou A, Frangou E, Tsiaoussis G, Potamitis G, Antoniades A, Shammas C, Apidianakis Y. Fecal Microbiota and Associated Volatile Organic Compounds Distinguishing No-Adenoma from High-Risk Colon Adenoma Adults. Metabolites 2023; 13:819. [PMID: 37512526 PMCID: PMC10383435 DOI: 10.3390/metabo13070819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Microbiota and the metabolites they produce within the large intestine interact with the host epithelia under the influence of a range of host-derived metabolic, immune, and homeostatic factors. This complex host-microbe interaction affects intestinal tumorigenesis, but established microbial or metabolite profiles predicting colorectal cancer (CRC) risk are missing. Here, we aimed to identify fecal bacteria, volatile organic compounds (VOC), and their associations that distinguish healthy (non-adenoma, NA) from CRC prone (high-risk adenoma, HRA) individuals. Analyzing fecal samples obtained from 117 participants ≥15 days past routine colonoscopy, we highlight the higher abundance of Proteobacteria and Parabacteroides distasonis, and the lower abundance of Lachnospiraceae species, Roseburia faecis, Blautia luti, Fusicatenibacter saccharivorans, Eubacterium rectale, and Phascolarctobacterium faecium in the samples of HRA individuals. Volatolomic analysis of samples from 28 participants revealed a higher concentration of five compounds in the feces of HRA individuals, isobutyric acid, methyl butyrate, methyl propionate, 2-hexanone, and 2-pentanone. We used binomial logistic regression modeling, revealing 68 and 96 fecal bacteria-VOC associations at the family and genus level, respectively, that distinguish NA from HRA endpoints. For example, isobutyric acid associations with Lachnospiraceae incertae sedis and Bacteroides genera exhibit positive and negative regression lines for NA and HRA endpoints, respectively. However, the same chemical associates with Coprococcus and Colinsella genera exhibit the reverse regression line trends. Thus, fecal microbiota and VOC profiles and their associations in NA versus HRA individuals indicate the significance of multiple levels of analysis towards the identification of testable CRC risk biomarkers.
Collapse
Affiliation(s)
- Kyriaki Katsaounou
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | | | | | - Agapios Agapiou
- Department of Chemistry, University of Cyprus, Nicosia 2109, Cyprus
| | | | | | | | | | | | - Yiorgos Apidianakis
- Department of Biological Sciences, University of Cyprus, Nicosia 2109, Cyprus
| |
Collapse
|
22
|
Maryam S, Krukiewicz K, Haq IU, Khan AA, Yahya G, Cavalu S. Interleukins (Cytokines) as Biomarkers in Colorectal Cancer: Progression, Detection, and Monitoring. J Clin Med 2023; 12:jcm12093127. [PMID: 37176567 PMCID: PMC10179696 DOI: 10.3390/jcm12093127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer is the primary cause of death in economically developed countries and the second leading cause in developing countries. Colorectal cancer (CRC) is the third most common cause of cancer-related deaths worldwide. Risk factors for CRC include obesity, a diet low in fruits and vegetables, physical inactivity, and smoking. CRC has a poor prognosis, and there is a critical need for new diagnostic and prognostic biomarkers to reduce related deaths. Recently, studies have focused more on molecular testing to guide targeted treatments for CRC patients. The most crucial feature of activated immune cells is the production and release of growth factors and cytokines that modulate the inflammatory conditions in tumor tissues. The cytokine network is valuable for the prognosis and pathogenesis of colorectal cancer as they can aid in the cost-effective and non-invasive detection of cancer. A large number of interleukins (IL) released by the immune system at various stages of CRC can act as "biomarkers". They play diverse functions in colorectal cancer, and include IL-4, IL-6, IL-8, IL-11, IL-17A, IL-22, IL-23, IL-33, TNF, TGF-β, and vascular endothelial growth factor (VEGF), which are pro-tumorigenic genes. However, there are an inadequate number of studies in this area considering its correlation with cytokine profiles that are clinically useful in diagnosing cancer. A better understanding of cytokine levels to establish diagnostic pathways entails an understanding of cytokine interactions and the regulation of their various biochemical signaling pathways in healthy individuals. This review provides a comprehensive summary of some interleukins as immunological biomarkers of CRC.
Collapse
Affiliation(s)
- Sajida Maryam
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ihtisham Ul Haq
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Awal Ayaz Khan
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad 44000, Pakistan
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Al Sharqia, Egypt
- Department of Molecular Genetics, Faculty of Biology, Technical University of Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
23
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
24
|
Singh S, Sharma P, Sarma DK, Kumawat M, Tiwari R, Verma V, Nagpal R, Kumar M. Implication of Obesity and Gut Microbiome Dysbiosis in the Etiology of Colorectal Cancer. Cancers (Basel) 2023; 15:1913. [PMID: 36980799 PMCID: PMC10047102 DOI: 10.3390/cancers15061913] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/12/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The complexity and variety of gut microbiomes within and among individuals have been extensively studied in recent years in connection to human health and diseases. Our growing understanding of the bidirectional communication between metabolic diseases and the gut microbiome has also highlighted the significance of gut microbiome dysbiosis in the genesis and development of obesity-related cancers. Therefore, it is crucial to comprehend the possible role of the gut microbiota in the crosstalk between obesity and colorectal cancer (CRC). Through the induction of gut microbial dysbiosis, gut epithelial barrier impairment, metabolomic dysregulation, chronic inflammation, or dysregulation in energy harvesting, obesity may promote the development of colorectal tumors. It is well known that strategies for cancer prevention and treatment are most effective when combined with a healthy diet, physical activity, and active lifestyle choices. Recent studies also suggest that an improved understanding of the complex linkages between the gut microbiome and various cancers as well as metabolic diseases can potentially improve cancer treatments and overall outcomes. In this context, we herein review and summarize the clinical and experimental evidence supporting the functional role of the gut microbiome in the pathogenesis and progression of CRC concerning obesity and its metabolic correlates, which may pave the way for the development of novel prognostic tools for CRC prevention. Therapeutic approaches for restoring the microbiome homeostasis in conjunction with cancer treatments are also discussed herein.
Collapse
Affiliation(s)
- Samradhi Singh
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Poonam Sharma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Devojit Kumar Sarma
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Manoj Kumawat
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Rajnarayan Tiwari
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| | - Vinod Verma
- Stem Cell Research Centre, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow 226014, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32302, USA
| | - Manoj Kumar
- Indian Council of Medical Research-National Institute for Research in Environmental Health, Bhopal 462030, India
| |
Collapse
|
25
|
Valciukiene J, Strupas K, Poskus T. Tissue vs. Fecal-Derived Bacterial Dysbiosis in Precancerous Colorectal Lesions: A Systematic Review. Cancers (Basel) 2023; 15:1602. [PMID: 36900392 PMCID: PMC10000868 DOI: 10.3390/cancers15051602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Alterations in gut microbiota play a pivotal role in the adenoma-carcinoma sequence. However, there is still a notable lack of the correct implementation of tissue and fecal sampling in the setting of human gut microbiota examination. This study aimed to review the literature and to consolidate the current evidence on the use of mucosa and a stool-based matrix investigating human gut microbiota changes in precancerous colorectal lesions. A systematic review of papers from 2012 until November 2022 published on the PubMed and Web of Science databases was conducted. The majority of the included studies have significantly associated gut microbial dysbiosis with premalignant polyps in the colorectum. Although methodological differences hampered the precise fecal and tissue-derived dysbiosis comparison, the analysis revealed several common characteristics in stool-based and fecal-derived gut microbiota structures in patients with colorectal polyps: simple or advanced adenomas, serrated lesions, and carcinomas in situ. The mucosal samples considered were more relevant for the evaluation of microbiota's pathophysiological involvement in CR carcinogenesis, while non-invasive stool sampling could be beneficial for early CRC detection strategies in the future. Further studies are required to identify and validate mucosa-associated and luminal colorectal microbial patterns and their role in CRC carcinogenesis, as well as in the clinical setting of human microbiota studies.
Collapse
Affiliation(s)
- Jurate Valciukiene
- Clinic of Gastroenterology, Nephro-Urology, and Surgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania
| | | | | |
Collapse
|
26
|
Laurindo LF, Direito R, Bueno Otoboni AMM, Goulart RA, Quesada K, Barbalho SM. Grape Processing Waste: Effects on Inflammatory Bowel Disease and Colorectal Cancer. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2168281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Lucas Fornari Laurindo
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Rosa Direito
- Department of Pharmacy, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | - Ricardo Alvares Goulart
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| | - Karina Quesada
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology/School of Medicine, UNIMAR, Marília, São Paulo, Brazil
- Department of Biochemistry and Nutrition, FATEC, Avenida Castro Alves, São Paulo, Brazil
- Postgraduate Program (Structural and Functional Interactions in Rehabilitation), UNIMAR, Marília, São Paulo, Brazil
| |
Collapse
|
27
|
Loganathan T, Priya Doss C G. The influence of machine learning technologies in gut microbiome research and cancer studies - A review. Life Sci 2022; 311:121118. [DOI: 10.1016/j.lfs.2022.121118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
|
28
|
C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data. BMC Bioinformatics 2022; 23:468. [DOI: 10.1186/s12859-022-05027-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differential abundance analyses to reveal the disease-related taxa–taxa relationship. In addition, it is also necessary to tighten the co-occurrence network into smaller modules to increase the ability for functional annotation and interpretability of these taxa-taxa relationships. Also, it is critical to retain the phylogenetic relationship among the taxa to identify differential abundance patterns, which can be used to resolve contradicting functions reported by different studies.
Results
In this article, we present Correlation and Consensus-based Cross-taxonomy Network Analysis (C3NA), a user-friendly R package for investigating compositional microbial sequencing data to identify and compare co-occurrence patterns across different taxonomic levels. C3NA contains two interactive graphic user interfaces (Shiny applications), one of them dedicated to the comparison between two diagnoses, e.g., disease versus control. We used C3NA to analyze two well-studied diseases, colorectal cancer, and Crohn’s disease. We discovered clusters of study and disease-dependent taxa that overlap with known functional taxa studied by other discovery studies and differential abundance analyses.
Conclusion
C3NA offers a new microbial data analyses pipeline for refined and enriched taxa–taxa co-occurrence network analyses, and the usability was further expanded via the built-in Shiny applications for interactive investigation.
Collapse
|
29
|
Sattar RSA, Verma R, Nimisha, Kumar A, Dar GM, Apurva, Sharma AK, Kumari I, Ahmad E, Ali A, Mahajan B, Saluja SS. Diagnostic and prognostic biomarkers in colorectal cancer and the potential role of exosomes in drug delivery. Cell Signal 2022; 99:110413. [PMID: 35907519 DOI: 10.1016/j.cellsig.2022.110413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/03/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer with the second most frequent cause of death worldwide. One fourth to one fifth of the CRC cases are detected at advance stage. Early detection of colorectal cancer might help in decreasing mortality and morbidity worldwide. CRC being a heterogeneous disease, new non-invasive approaches are needed to complement and improve the screening and management of CRC. Reliable and early detectable biomarkers would improve diagnosis, prognosis, therapeutic responses, and will enable the prediction of drug response and recurrence risk. Over the past decades molecular research has demonstrated the potentials of CTCs, ctDNAs, circulating mRNAs, ncRNAs, and exosomes as tumor biomarkers. Non-invasive screening approaches using fecal samples for identification of altered gut microbes in CRC is also gaining attention. Exosomes can be potential candidates that can be employed in the drug delivery system. Further, the integration of in vitro, in vivo and in silico models that involve CRC biomarkers will help to understand the interactions occurring at the cellular level. This review summarizes recent update on CRC biomarkers and their application along with the nanoparticles followed by the application of organoid culture in CRC.
Collapse
Affiliation(s)
- Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Renu Verma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ghulam Mehdi Dar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Abhay Kumar Sharma
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Indu Kumari
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Ejaj Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Asgar Ali
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of Biochemistry, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India; Department of GI Surgery, Govind Ballabh Pant Institute of Postgraduate Medical Education and Research (GIPMER), New Delhi, India.
| |
Collapse
|
30
|
Alrahawy M, Javed S, Atif H, Elsanhoury K, Mekhaeil K, Eskander G. Microbiome and Colorectal Cancer Management. Cureus 2022; 14:e30720. [DOI: 10.7759/cureus.30720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
|
31
|
Ji J, Yan N, Zhang Z, Li B, Xue R, Dang Y. Characterized profiles of gut microbiota in morphine abstinence-induced depressive-like behavior. Neurosci Lett 2022; 788:136857. [PMID: 36038030 DOI: 10.1016/j.neulet.2022.136857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 10/15/2022]
Abstract
Morphine is the most widely used analgesic for pain management worldwide. Abstinence of morphine could lead to neuropsychiatric symptoms, including depression. Gut microbiota is believed to contribute to the development of depression. However, the characteristics and potential role of gut microbiota in morphine abstinence-induced depression remain unclear. In the present study, we first established morphine abstinence-induced depressive behavior in mice. After dividing the mice into depressive and non-depressive groups, the gut microbiota of the mice was detected by 16S rRNA gene sequencing. The difference in the diversities and abundance of the gut microbiota were analyzed between groups. Then, the representative microbial markers that could distinguish each group were identified. In addition, gene function prediction of the operational taxonomic units (OTUs) with differential abundance between the depressive and non-depressive groups after morphine abstinence was conducted. Our results suggested that four weeks of abstinence from morphine did not change the richness of the gut microbiota. However, morphine abstinence influenced the gut microbial composition. Several specific genera of gut microbiota were identified as markers for each group. Interestingly, gene function prediction found that the fatty acid metabolism pathway was enriched in the OUTs in the depressive group compared with the non-depressive group after morphine abstinence. Our data suggested that gut microbiota dysbiosis was associated with morphine abstinence-induced depressive behavior, possibly by implicating the fatty acid metabolism pathway.
Collapse
Affiliation(s)
- Jinshan Ji
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ni Yan
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China; Department of Disease Control and Prevention, The Affiliated Ninth Hospital of Xi'an of Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Zhengxiang Zhang
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Baoli Li
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Ruiyang Xue
- Department of Preventive Medicine, Medical College of Yan'an University, Yan'an 716000, Shanxi, China
| | - Yonghui Dang
- Xi'an Jiaotong University Health Science Center, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
32
|
Quaglio AEV, Grillo TG, De Oliveira ECS, Di Stasi LC, Sassaki LY. Gut microbiota, inflammatory bowel disease and colorectal cancer. World J Gastroenterol 2022; 28:4053-4060. [PMID: 36157114 PMCID: PMC9403435 DOI: 10.3748/wjg.v28.i30.4053] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/16/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a complex community of microorganisms that inhabit the digestive tracts of humans, living in symbiosis with the host. Dysbiosis, characterized by an imbalance between the beneficial and opportunistic gut microbiota, is associated with several gastrointestinal disorders, such as irritable bowel syndrome (IBS); inflammatory bowel disease (IBD), represented by ulcerative colitis and Crohn's disease; and colorectal cancer (CRC). Dysbiosis can disrupt the mucosal barrier, resulting in perpetuation of inflammation and carcinogenesis. The increase in some specific groups of harmful bacteria, such as Escherichia coli (E. coli) and enterotoxigenic Bacteroides fragilis (ETBF), has been associated with chronic tissue inflammation and the release of pro-inflammatory and carcinogenic mediators, increasing the chance of developing CRC, following the inflammation-dysplasia-cancer sequence in IBD patients. Therefore, the aim of the present review was to analyze the correlation between changes in the gut microbiota and the development and maintenance of IBD, CRC, and IBD-associated CRC. Patients with IBD and CRC have shown reduced bacterial diversity and abundance compared to healthy individuals, with enrichment of Firmicute sand Bacteroidetes. Specific bacteria are also associated with the onset and progression of CRC, such as Fusobacterium nucleatum, E. coli, Enterococcus faecalis, Streptococcus gallolyticus, and ETBF. Future research can evaluate the advantages of modulating the gut microbiota as preventive measures in CRC high-risk patients, directly affecting the prognosis of the disease and the quality of life of patients.
Collapse
Affiliation(s)
- Ana Elisa Valencise Quaglio
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Thais Gagno Grillo
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Ellen Cristina Souza De Oliveira
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| | - Luiz Claudio Di Stasi
- Departament of Biophysics and Pharmacology, São Paulo State University (Unesp), Institute of Biosciences, Botucatu 18618-689, São Paulo State, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu 18618-686, São Paulo State, Brazil
| |
Collapse
|
33
|
Sadrekarimi H, Gardanova ZR, Bakhshesh M, Ebrahimzadeh F, Yaseri AF, Thangavelu L, Hasanpoor Z, Zadeh FA, Kahrizi MS. Emerging role of human microbiome in cancer development and response to therapy: special focus on intestinal microflora. Lab Invest 2022; 20:301. [PMID: 35794566 PMCID: PMC9258144 DOI: 10.1186/s12967-022-03492-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/20/2022] [Indexed: 12/12/2022]
Abstract
In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches’ therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Collapse
|
34
|
Zhang C, Quan Y, Bai Y, Yang L, Yang Y. The effect and apoptosis mechanism of 6-methoxyflavone in HeLa cells. Biomarkers 2022; 27:470-482. [PMID: 35400257 DOI: 10.1080/1354750x.2022.2062448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Tumor cell apoptosis is a crucial indicator for judging the antiproliferative effects of anti-cancer drugs. The detection of optical and macromolecular biomarkers is the most common method for assessing the level of apoptosis. We aimed to explore the anti-tumor mechanisms of 6-methoxyflavone. MATERIAL AND METHODS Three optical methods, including the percentage of apoptotic cells, cell morphology, and subcellular ultrastructure changes, were obtained using flow cytometry, inverted fluorescence microscopy, and transmission electron microscope imaging. The mRNA or protein expression of macromolecular biomarkers related to common apoptotic pathways was determined via polymerase chain reactions or western blot assays. The functional role of the core gene biomarker was investigated through overexpression, knockdown, and phosphorylation inhibitor (GSK2656157). RESULTS Transcriptome sequencing and the optical biomarkers assays demonstrated that 6-methoxyflavone could induce apoptosis in HeLa cells. The expression of macromolecular biomarkers indicated that 6-methoxyflavone induced apoptosis through the PERK/EIF2α/ATF4/CHOP pathway. Phosphorylated PERK was identified as the core biomarker of this pathway. Both overexpression and GSK2656157 significantly altered the expression level of phosphorylated PERK in 6-methoxyflavone-treated HeLa cells. DISCUSSION AND CONCLUSION Macromolecular biomarkers such as phosphorylated PERK and phosphorylated EIF2α are of great significance for assessing the therapeutic effects of 6-methoxyflavone.
Collapse
Affiliation(s)
- Chaihong Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Yuchong Quan
- College of Basic Medicine, Dalian Medical University, Dalian, China
| | - Yingying Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Lijuan Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China
| | - Yongxiu Yang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China.,Key Laboratory of Gynecological Oncology of Gansu Province, Lanzhou, China.,Department of Obstetrics and Gynecology, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Balaguer-Trias J, Deepika D, Schuhmacher M, Kumar V. Impact of Contaminants on Microbiota: Linking the Gut-Brain Axis with Neurotoxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031368. [PMID: 35162390 PMCID: PMC8835190 DOI: 10.3390/ijerph19031368] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
Abstract
Over the last years, research has focused on microbiota to establish a missing link between neuronal health and intestine imbalance. Many studies have considered microbiota as critical regulators of the gut–brain axis. The crosstalk between microbiota and the central nervous system is mainly explained through three different pathways: the neural, endocrine, and immune pathways, intricately interconnected with each other. In day-to-day life, human beings are exposed to a wide variety of contaminants that affect our intestinal microbiota and alter the bidirectional communication between the gut and brain, causing neuronal disorders. The interplay between xenobiotics, microbiota and neurotoxicity is still not fully explored, especially for susceptible populations such as pregnant women, neonates, and developing children. Precisely, early exposure to contaminants can trigger neurodevelopmental toxicity and long-term diseases. There is growing but limited research on the specific mechanisms of the microbiota–gut–brain axis (MGBA), making it challenging to understand the effect of environmental pollutants. In this review, we discuss the biological interplay between microbiota–gut–brain and analyse the role of endocrine-disrupting chemicals: Bisphenol A (BPA), Chlorpyrifos (CPF), Diethylhexyl phthalate (DEHP), and Per- and polyfluoroalkyl substances (PFAS) in MGBA perturbations and subsequent neurotoxicity. The complexity of the MGBA and the changing nature of the gut microbiota pose significant challenges for future research. However, emerging in-silico models able to analyse and interpret meta-omics data are a promising option for understanding the processes in this axis and can help prevent neurotoxicity.
Collapse
Affiliation(s)
- Jordina Balaguer-Trias
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Deepika Deepika
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Marta Schuhmacher
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
| | - Vikas Kumar
- Environmental Engineering Laboratory, Department of Chemical Engineering, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (J.B.-T.); (D.D.); (M.S.)
- IISPV (Pere Virgili Institute for Health Research), Sant Joan University Hospital, Universitat Rovira i Virgili, 43204 Reus, Spain
- Correspondence: ; Tel.: +34977558576
| |
Collapse
|
36
|
Sainz T, Pignataro V, Bonifazi D, Ravera S, Mellado MJ, Pérez-Martínez A, Escudero A, Ceci A, Calvo C. Human Microbiome in Children, at the Crossroad of Social Determinants of Health and Personalized Medicine. CHILDREN (BASEL, SWITZERLAND) 2021; 8:children8121191. [PMID: 34943387 PMCID: PMC8700538 DOI: 10.3390/children8121191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/28/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
The evolving field of microbiome research offers an excellent opportunity for biomarker identification, understanding drug metabolization disparities, and improving personalized medicine. However, the complexities of host-microbe ecological interactions hinder clinical transferability. Among other factors, the microbiome is deeply influenced by age and social determinants of health, including environmental factors such as diet and lifestyle conditions. In this article, the bidirectionality of social and host-microorganism interactions in health will be discussed. While the field of microbiome-related personalized medicine evolves, it is clear that social determinants of health should be mitigated. Furthermore, microbiome research exemplifies the need for specific pediatric investigation plans to improve children's health.
Collapse
Affiliation(s)
- Talía Sainz
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Valeria Pignataro
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
| | - Donato Bonifazi
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Simona Ravera
- PHArmaceutical Research Management SRL, Via Albert Einstein, 26900 Lodi, Italy;
| | - María José Mellado
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Antonio Pérez-Martínez
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Adela Escudero
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
| | - Adriana Ceci
- Consorzio per Valutazioni Biologiche e Farmacologiche, Via N. Putignani n. 178, 70122 Bari, Italy; (V.P.); (D.B.); (A.C.)
- TEDDY European Network of Excellence for Paediatric Research, Via Luigi Porta 14, 27100 Pavia, Italy
| | - Cristina Calvo
- Hospital La Paz, Pº Castellana 261, 28046 Madrid, Spain; (M.J.M.); (A.P.-M.); (A.E.); (C.C.)
- La Paz Hospital Reserach Institute (IdiPAZ), Pº Castellana 261, 28046 Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERInfec), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|