1
|
Yin J, Wan L, Zhang K, Yang J, Liu M, Zhao M, Li J. Progress of melatonin in the treatment of intervertebral disc degeneration. Front Physiol 2025; 16:1529315. [PMID: 40438255 PMCID: PMC12116318 DOI: 10.3389/fphys.2025.1529315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/23/2025] [Indexed: 06/01/2025] Open
Abstract
The most common degenerative condition affecting the musculoskeletal system, and the leading cause of persistent low back pain, is intervertebral disc degeneration (IDD). IDD is increasingly common with age and has a variety of etiologic factors including inflammation, oxidative stress, extracellular matrix (ECM) degradation, and apoptosis that interact with each other to cause IDD. Because it is difficult to determine the exact pathogenesis of IDD, there is a lack of effective therapeutic agents. Melatonin has been intensively studied for its strong anti-inflammatory, antioxidant, and anti-apoptotic properties. Melatonin is a pleiotropic indole-stimulating hormone produced by the pineal gland, which can be used to treat a wide range of degenerative diseases. Therefore, melatonin supplementation may be a viable treatment for IDD. This article reviews the current mechanisms of IDD and the multiple roles regarding melatonin's anti-inflammatory, antioxidant, anti-apoptotic, and mitigating ECM degradation in IDD, incorporating new current research perspectives, as well as recent studies on drug delivery systems.
Collapse
Affiliation(s)
- Jianlin Yin
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Lei Wan
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Department of Osteology, The Second Affiliated Hospital of Luohe Medical College, Luohe, China
| | - Kuaixiang Zhang
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Jiangjia Yang
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| | - Man Liu
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Mingyu Zhao
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
| | - Jitian Li
- Henan University of Chinese Medicine, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Zhengzhou, China
- Graduate School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
2
|
Li Q, Peng J, Ding F. 1,25(OH)₂D₃ inhibits ferroptosis in nucleus pulposus cells via VDR signaling to mitigate lumbar intervertebral disc degeneration. Sci Rep 2025; 15:7968. [PMID: 40055439 PMCID: PMC11889087 DOI: 10.1038/s41598-025-92405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/27/2025] [Indexed: 03/12/2025] Open
Abstract
Lumbar intervertebral disc degeneration (LIDD) serves as a principal contributor to low back pain, a condition that poses considerable global health and socioeconomic challenges. Recent studies have emphasized the significance of ferroptosis, an iron-dependent mechanism of programmed cell death, in the degeneration of nucleus pulposus cells (NPCs). This research examines the protective role of 1,25-dihydroxyvitamin D₃ [1,25(OH)₂D₃], the active metabolite of Vitamin D (VD), in LIDD through the modulation of ferroptosis. The results indicate that 1,25(OH)₂D₃ significantly inhibits ferroptosis in NPCs through the reduction of lipid peroxidation, restoration of glutathione levels, and enhancement of antioxidant defenses. 1,25(OH)₂D₃ exerts its effects by activating the VD receptor (VDR) signaling pathway, which regulates important ferroptosis-associated molecules, including glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11). The findings indicate the therapeutic potential of 1,25(OH)₂D₃ in alleviating LIDD, presenting a new strategy to inhibit ferroptosis and maintain intervertebral disc function.
Collapse
Affiliation(s)
- Qiang Li
- Department of Spine Surgery, Wuhan Puren Hospital, Wuhan University of Science and Technology, Benxi Rd. 1#, Wuhan, 430000, Hubei, China
| | - Jing Peng
- Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, No. 183, Zhongshan Road West, Guangzhou, 510630, China
| | - Fan Ding
- Department of Spine Surgery, Wuhan Puren Hospital, Wuhan University of Science and Technology, Benxi Rd. 1#, Wuhan, 430000, Hubei, China.
| |
Collapse
|
3
|
Fan S, Wang K, Zhang T, Deng D, Shen J, Zhao B, Fu D, Chen X. Mechanisms and Therapeutic Potential of GPX4 in Pain Modulation. Pain Ther 2025; 14:21-45. [PMID: 39503961 PMCID: PMC11751247 DOI: 10.1007/s40122-024-00673-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/04/2024] [Indexed: 01/23/2025] Open
Abstract
Pain, a complex symptom encompassing both sensory and emotional dimensions, constitutes a significant global public health issue. Oxidative stress is a pivotal factor in the complex pathophysiology of pain, with glutathione peroxidase 4 (GPX4) recognized as a crucial antioxidant enzyme involved in both antioxidant defense mechanisms and ferroptosis pathways. This review systematically explores GPX4's functions across various pain models, including neuropathic, inflammatory, low back, and cancer-related pain. Specifically, the focus includes GPX4's physiological roles, antioxidant defense mechanisms, regulation of ferroptosis, involvement in signal transduction pathways, and metabolic regulation. By summarizing current research, we highlight the potential of GPX4-targeted therapies in pain management.
Collapse
Affiliation(s)
- Shiwen Fan
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
| | - Kaixin Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Tianhao Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Jiwei Shen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China
| | - Bowen Zhao
- Department of Anesthesiology, First Affiliated Hospital of Shihezi University, Shihezi, 832002, China
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Daan Fu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, China.
| |
Collapse
|
4
|
Lv Y, Du J, Xiong H, Feng L, Zhang D, Zhou H, Feng S. Machine learning-based analysis of programmed cell death types and key genes in intervertebral disc degeneration. Apoptosis 2025; 30:250-266. [PMID: 39633111 DOI: 10.1007/s10495-024-02047-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Intervertebral disc degeneration (IVDD) is intricately associated with various forms of programmed cell death (PCD). Identifying key PCD types and associated genes is essential for understanding the molecular mechanisms underlying IVDD and discovering potential therapeutic targets. This study aimed to elucidate core PCD types, related genes, and potential drug interactions in IVDD using comprehensive bioinformatic and experimental approaches. Using datasets GSE167199, GSE176205, GSE34095, GSE56081, and GSE70362, relevant gene expression and clinical data were analyzed. Differential expression gene (DEG) analysis identified upregulated genes linked to 15 PCD types. Gene Set Variation Analysis (GSVA) was employed to pinpoint key PCD types contributing to disc degeneration. Core genes were identified through machine learning techniques, while immune infiltration and single-cell analysis helped identify apoptosis-related cell types. Molecular docking, along with in vivo and in vitro experiments using a murine IVDD model, validated potential drug interactions. The results identified apoptosis, autophagy, ferroptosis, and necroptosis as key PCD types in IVDD. A gene module associated with apoptosis showed a strong correlation with the severity of disc degeneration, revealing 34 central genes in the gene network. Drug screening identified Glibenclamide as effectively interacting with PDCD6 and UBE2K. Subsequent in vitro and in vivo experiments demonstrated that Glibenclamide reduced apoptosis and delayed disc degeneration progression. This study provides a comprehensive bioinformatics analysis of PCD in IVDD, identifying four primary PCD types contributing to the disease's progression. The findings offer novel insights into the molecular pathology of disc degeneration and suggest promising therapeutic strategies for future treatment development.
Collapse
Affiliation(s)
- Yigang Lv
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Jiawei Du
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Haoning Xiong
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Lei Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China
| | - Di Zhang
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
| | - Hengxing Zhou
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Center for Reproductive Medicine, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, 154 Anshan Road, Heping District, Tianjin, 300052, P.R. China.
- Department of Orthopaedics, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University Centre for Orthopaedics, Shandong University, 44 Wenhuaxi Road, Jinan, Shandong, 250012, P.R. China.
- Cheeloo College of Medicine, The Second Hospital of Shandong University, Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250033, P.R. China.
| |
Collapse
|
5
|
Dou Y, Zhang Y, Liu Y, Sun X, Liu X, Li B, Yang Q. Role of macrophage in intervertebral disc degeneration. Bone Res 2025; 13:15. [PMID: 39848963 PMCID: PMC11758090 DOI: 10.1038/s41413-024-00397-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/04/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Intervertebral disc degeneration is a degenerative disease where inflammation and immune responses play significant roles. Macrophages, as key immune cells, critically regulate inflammation through polarization into different phenotypes. In recent years, the role of macrophages in inflammation-related degenerative diseases, such as intervertebral disc degeneration, has been increasingly recognized. Macrophages construct the inflammatory microenvironment of the intervertebral disc and are involved in regulating intervertebral disc cell activities, extracellular matrix metabolism, intervertebral disc vascularization, and innervation, profoundly influencing the progression of disc degeneration. To gain a deeper understanding of the inflammatory microenvironment of intervertebral disc degeneration, this review will summarize the role of macrophages in the pathological process of intervertebral disc degeneration, analyze the regulatory mechanisms involving macrophages, and review therapeutic strategies targeting macrophage modulation for the treatment of intervertebral disc degeneration. These insights will be valuable for the treatment and research directions of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yiming Dou
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Yiming Zhang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China
| | - Yang Liu
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xun Sun
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Bin Li
- Orthopedic Institute, Department of Orthopedic Surgery, The First Affiliated Hospital, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215007, China.
| | - Qiang Yang
- Department of Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin, 300211, China.
- Clinical School of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
6
|
Gao K, Lv L, Li Z, Wang C, Zhang J, Qiu D, Xue H, Xu Z, Tan G. Natural Products in the Prevention of Degenerative Bone and Joint Diseases: Mechanisms Based on the Regulation of Ferroptosis. Phytother Res 2025; 39:162-188. [PMID: 39513459 DOI: 10.1002/ptr.8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/19/2024] [Indexed: 11/15/2024]
Abstract
Degenerative bone and joint diseases (DBJDs), characterized by osteoporosis, osteoarthritis, and chronic inflammation of surrounding soft tissues, are systemic conditions primarily affecting the skeletal system. Ferroptosis, a programmed cell death pathway distinct from apoptosis, autophagy, and necroptosis. Accumulating evidence suggests that ferroptosis is intricately linked to the pathogenesis of DBJDs, and targeting its regulation could be beneficial in managing these conditions. Natural products, known for their anti-inflammatory and antioxidant properties, have shown unique advantages in preventing DBJDs, potentially through modulating ferroptosis. This article provides an overview of the latest research on ferroptosis, with a focus on its role in the pathogenesis of DBJDs and the therapeutic potential of natural products targeting this cell death pathway, offering novel insights for the prevention and treatment of DBJDs.
Collapse
Affiliation(s)
- Kuanhui Gao
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Longlong Lv
- Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhichao Li
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chenmoji Wang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jiahao Zhang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Daodi Qiu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Haipeng Xue
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhanwang Xu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoqing Tan
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Chen H, Tang T, Xue C, Liu X, Xi Z, Xie L, Kang R. Exploration and breakthrough in the mode of intervertebral disc cell death may lead to significant advances in treatments for intervertebral disc degeneration. J Orthop Surg Res 2024; 19:825. [PMID: 39639370 PMCID: PMC11619685 DOI: 10.1186/s13018-024-05280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Low back pain caused by intervertebral disc degeneration (IDD) has emerged as a significant global public health concern, with far-reaching consequences for patients' quality of life and healthcare systems. Although previous research have revealed that the mechanisms of intervertebral disc cell apoptosis, pyroptosis and necroptosis can aggravate IDD damage by mediating inflammation and promoting extracellular matrix degradation, but they cannot explain the connection between different cell death mechanisms and ion metabolism disorders. The latest study shows that cell death mechanisms such as cellular senescence, ferroptosis, and cuproptosis, and PANopotosis have similar roles in the progression of intervertebral disc degeneration, but not exactly the same damage mechanism. This paper summarizes the effects of various cell death patterns on the disease progression of IDD, related molecular mechanisms and signaling pathways, providing new perspectives and potential clinical intervention strategies for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Heng Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Tian Tang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Congyang Xue
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
- Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Lin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
- Jiangsu Academy of Traditional Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
8
|
Sun H, Guo J, Xiong Z, Zhuang Y, Ning X, Liu M. Targeting nucleus pulposus cell death in the treatment of intervertebral disc degeneration. JOR Spine 2024; 7:e70011. [PMID: 39703198 PMCID: PMC11655182 DOI: 10.1002/jsp2.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a progressive age-related disorder characterized by the reduction in the number of nucleus pulposus cells (NPCs) and degradation of extracellular matrix (ECM), thereby leading to chronic pain and disability. The pathogenesis of IDD is multifaceted, and current therapeutic strategies remain limited. The nucleus pulposus (NP), primarily composed of NPCs, proteoglycans, and type II collagen, constitutes essential components for maintaining intervertebral disc (IVD) function and spinal motion. The disturbed homeostasis of NPCs is closely associated with IDD. Accumulating evidence increasingly suggests the crucial role of programmed cell death (PCD) in regulating the homeostasis of NPCs. Aims This review aimed to elucidate various forms of PCD and their respective roles in IDD, and investigate diverse strategies targeting the cell death of NPCs for IDD treatment. Materials & Methods We collected the relevant literature regarding PCD and their roles in the development of IDD. Subsequently, we comprehensively summarized the intricate association between PCD and IDD, and also explored the potential and application of cell therapy and traditional Chinese medicine (TCM) in the prevention and treatment of IDD. Results Current literature indicated that the PCD of NPCs was closely associated with the pathogenesis of IDD. Additionally, the development of targeted pharmaceuticals based on the mechanisms of PCD could effectively impede the loss of NPCs. Conclusion This review demonstrated that targeting the PCD of NPCs may be a promising strategy for the treatment of IDD.
Collapse
Affiliation(s)
- Hong Sun
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Jiajie Guo
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Zhilin Xiong
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
- School of Clinical Medicine, Guizhou Medical UniversityGuiyangChina
| | - Yong Zhuang
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Xu Ning
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| | - Miao Liu
- Department of OrthopaedicsAffiliated Hospital of Guizhou Medical UniversityGuiyangChina
| |
Collapse
|
9
|
Li C, Fei C, Le S, Lai Z, Yan B, Wang L, Zhang Z. Identification and validation of ferroptosis-related biomarkers in intervertebral disc degeneration. Front Cell Dev Biol 2024; 12:1416345. [PMID: 39351146 PMCID: PMC11439793 DOI: 10.3389/fcell.2024.1416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Ferroptosis plays a significant role in intervertebral disc degeneration (IDD). Understanding the key genes regulating ferroptosis in IDD could reveal fundamental mechanisms of the disease, potentially leading to new diagnostic and therapeutic targets. Methods Public datasets (GSE23130 and GSE70362) and the FerrDb database were analyzed to identify ferroptosis-related genes (DE-FRGs) involved in IDD. Single-cell RNA sequencing data (GSE199866) was used to validate the specific roles and expression patterns of these genes. Immunohistochemistry and Western blot analyses were subsequently conducted in both clinical samples and mouse models to assess protein expression levels across different tissues. Results The analysis identified seven DE-FRGs, including MT1G, CA9, AKR1C1, AKR1C2, DUSP1, CIRBP, and KLHL24, with their expression patterns confirmed by single-cell RNA sequencing. Immunohistochemistry and Western blot analysis further revealed that MT1G, CA9, AKR1C1, AKR1C2, DUSP1, and KLHL24 exhibited differential expression during the progression of IDD. Additionally, the study highlighted the potential immune-modulatory functions of these genes within the IDD microenvironment. Discussion Our study elucidates the critical role of ferroptosis in IDD and identifies specific genes, such as MT1G and CA9, as potential targets for diagnosis and therapy. These findings offer new insights into the molecular mechanisms underlying IDD and present promising avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Chenglong Li
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chengshuo Fei
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shiyong Le
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongming Lai
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bo Yan
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Liang Wang
- Department of Orthopedics, The Third Affiliated Hospital, Southern Medical University, Academy of Orthopedics, Guangzhou, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chen J, Yang X, Li Q, Ma J, Li H, Wang L, Chen Z, Quan Z. Inhibiting DNA methyltransferase DNMT3B confers protection against ferroptosis in nucleus pulposus and ameliorates intervertebral disc degeneration via upregulating SLC40A1. Free Radic Biol Med 2024; 220:139-153. [PMID: 38705495 DOI: 10.1016/j.freeradbiomed.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Epigenetic changes are important considerations for degenerative diseases. DNA methylation regulates crucial genes by epigenetic mechanism, impacting cell function and fate. DNA presents hypermethylation in degenerated nucleus pulposus (NP) tissue, but its role in intervertebral disc degeneration (IVDD) remains elusive. This study aimed to demonstrate that methyltransferase mediated hypermethylation was responsible for IVDD by integrative bioinformatics and experimental verification. Methyltransferase DNMT3B was highly expressed in severely degenerated NP tissue (involving human and rats) and in-vitro degenerated human NP cells (NPCs). Bioinformatics elucidated that hypermethylated genes were enriched in oxidative stress and ferroptosis, and the ferroptosis suppressor gene SLC40A1 was identified with lower expression and higher methylation in severely degenerated human NP tissue. Cell culture using human NPCs showed that DNMT3B induced ferroptosis and oxidative stress in NPCs by downregulating SLC40A1, promoting a degenerative cell phenotype. An in-vivo rat IVDD model showed that DNA methyltransferase inhibitor 5-AZA alleviated puncture-induced IVDD. Taken together, DNA methyltransferase DNMT3B aggravates ferroptosis and oxidative stress in NPCs via regulating SLC40A1. Epigenetic mechanism within DNA methylation is a promising therapeutic biomarker for IVDD.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Xinyu Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Qiaochu Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Jingjin Ma
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Huanhuan Li
- Department of Emergency, Chongqing University Three Gorges Hospital, Chongqing, 404000, China
| | - Linbang Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Zhiyu Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China
| | - Zhengxue Quan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China; Orthopedic Laboratory of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
11
|
Wang X, Wang Q, Li G, Xu H, Liu B, Yuan B, Zhou Y, Li Y. Identifying the protective effects of miR-874-3p/ATF3 axis in intervertebral disc degeneration by single-cell RNA sequencing and validation. J Cell Mol Med 2024; 28:e18492. [PMID: 38890795 PMCID: PMC11187931 DOI: 10.1111/jcmm.18492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/14/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Intervertebral disc degeneration (IVDD) severely affects the work and the quality of life of people. We previously demonstrated that silencing activation transcription factor 3 (ATF3) blocked the IVDD pathological process by regulating nucleus pulposus cell (NPC) ferroptosis, apoptosis, inflammation, and extracellular matrix (ECM) metabolism. Nevertheless, whether miR-874-3p mediated the IVDD pathological process by targeting ATF3 remains unclear. We performed single-cell RNA sequencing (scRNA-seq) and bioinformatics analysis to identify ATF3 as a key ferroptosis gene in IVDD. Then, Western blotting, flow cytometry, ELISA, and animal experiments were performed to validate the roles and regulatory mechanisms of miR-874-3p/ATF3 signalling axis in IVDD. ATF3 was highly expressed in IVDD patients and multiple cell types of IVDD rat, as revealed by scRNA-seq and bioinformatics analysis. GO analysis unveiled the involvement of ATF3 in regulating cell apoptosis and ECM metabolism. Furthermore, we verified that miR-874-3p might protect against IVDD by inhibiting NPC ferroptosis, apoptosis, ECM degradation, and inflammatory response by targeting ATF3. In vivo experiments displayed the protective effect of miR-874-3p/ATF3 axis on IVDD. These findings propose the potential of miR-874-3p and ATF3 as biomarkers of IVDD and suggest that targeting the miR-874-3p/ATF3 axis may be a therapeutic target for IVDD.
Collapse
Affiliation(s)
- Xuke Wang
- Department of Minimally Invasive Spine Surgery, Luoyang Orthopedic Hospital of Henan ProvinceOrthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Qingfeng Wang
- Department of Minimally Invasive Spine Surgery, Luoyang Orthopedic Hospital of Henan ProvinceOrthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Guowang Li
- Department of Minimally Invasive Spine SurgeryTianjin University Tianjin HospitalTianjinChina
| | - Haiwei Xu
- Department of Minimally Invasive Spine SurgeryTianjin University Tianjin HospitalTianjinChina
| | - Bangxin Liu
- Department of Minimally Invasive Spine SurgeryTianjin University Tianjin HospitalTianjinChina
| | - Bing Yuan
- Department of OrthopedicsThe Fifth Hospital of Wuhan/The Second Affiliated Hospital of Jianghan UniversityWuhanChina
| | - Yingjie Zhou
- Department of Minimally Invasive Spine Surgery, Luoyang Orthopedic Hospital of Henan ProvinceOrthopedic Hospital of Henan ProvinceLuoyangHenanChina
| | - Yongjin Li
- Department of Minimally Invasive Spine SurgeryTianjin University Tianjin HospitalTianjinChina
| |
Collapse
|
12
|
Huo L, Fu J, Wang S, Wang H, Liu X. Emerging ferroptosis inhibitors as a novel therapeutic strategy for the treatment of neonatal hypoxic-ischemic encephalopathy. Eur J Med Chem 2024; 271:116453. [PMID: 38701713 DOI: 10.1016/j.ejmech.2024.116453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/30/2023] [Accepted: 04/24/2024] [Indexed: 05/05/2024]
Abstract
Neonatal hypoxia-ischemia encephalopathy (NHIE), an oxygen deprivation-mediated brain injury due to birth asphyxia or reduced cerebral blood perfusion, often leads to lifelong sequelae, including seizures, cerebral palsy, and mental retardation. NHIE poses a significant health challenge, as one of the leading causes of neonatal morbidity and mortality globally. Despite this, available therapies are limited. Numerous studies have recently demonstrated that ferroptosis, an iron-dependent non-apoptotic regulated form of cell death characterized by lipid peroxidation (LPO) and iron dyshomeostasis, plays a role in the genesis of NHIE. Moreover, recently discovered compounds have been shown to exert potential therapeutic effects on NHIE by inhibiting ferroptosis. This comprehensive review summarizes the fundamental mechanisms of ferroptosis contributing to NHIE. We focus on various emerging therapeutic compounds exhibiting characteristics of ferroptosis inhibition and delineate their pharmacological benefits for the treatment of NHIE. This review suggests that pharmacological inhibition of ferroptosis may be a potential therapeutic strategy for NHIE.
Collapse
Affiliation(s)
- Liang Huo
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| | - Jianhua Fu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Shimeng Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Hua Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China
| | - Xueyan Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, 11004, China.
| |
Collapse
|
13
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|
14
|
Cheng P, Wei H, Chen H, Wang Z, Mao P, Zhang H. DNMT3a-mediated methylation of PPARγ promote intervertebral disc degeneration by regulating the NF-κB pathway. J Cell Mol Med 2024; 28:e18048. [PMID: 37986543 PMCID: PMC10826446 DOI: 10.1111/jcmm.18048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/22/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a common chronic musculoskeletal disease that causes chronic low back pain and imposes an immense financial strain on patients. The pathological mechanisms underlying IVDD have not been fully elucidated. The development of IVDD is closely associated with abnormal epigenetic changes, suggesting that IVDD progression may be controlled by epigenetic mechanisms. Consequently, this study aimed to investigate the role of epigenetic regulation, including DNA methyltransferase 3a (DNMT3a)-mediated methylation and peroxisome proliferator-activated receptor γ (PPARγ) inhibition, in IVDD development. The expression of DNMT3a and PPARγ in early and late IVDD of nucleus pulposus (NP) tissues was detected using immunohistochemistry and western blotting analyses. Cellularly, DNMT3a inhibition significantly inhibited IL-1β-induced apoptosis and extracellular matrix (ECM) degradation in rat NP cells. Pretreatment with T0070907, a specific inhibitor of PPARγ, significantly reversed the anti-apoptotic and ECM degradation effects of DNMT3a inhibition. Mechanistically, DNMT3a modified PPARγ promoter hypermethylation to activate the nuclear factor-κB (NF-κB) pathway. DNMT3a inhibition alleviated IVDD progression. Conclusively, the results of this study show that DNMT3a activates the NF-κB pathway by modifying PPARγ promoter hypermethylation to promote apoptosis and ECM degradation. Therefore, we believe that the ability of DNMT3a to mediate the PPARγ/NF-κB axis may provide new ideas for the potential pathogenesis of IVDD and may become an attractive target for the treatment of IVDD.
Collapse
Affiliation(s)
- Peng Cheng
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| | - Hang‐Zhi Wei
- Department of Department of General SurgeryLanzhou University Second HospitalLanzhouGansuPR China
| | - Hai‐Wei Chen
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Zhi‐Qiang Wang
- Department of Emergency MedicineLanzhou University Second HospitalLanzhouGansuPR China
| | - Peng Mao
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuPR China
| | - Hai‐Hong Zhang
- Department of OrthopedicsLanzhou University Second HospitalLanzhouGansu ProvincePR China
| |
Collapse
|
15
|
Wang Y, Hu J, Wu S, Fleishman JS, Li Y, Xu Y, Zou W, Wang J, Feng Y, Chen J, Wang H. Targeting epigenetic and posttranslational modifications regulating ferroptosis for the treatment of diseases. Signal Transduct Target Ther 2023; 8:449. [PMID: 38072908 PMCID: PMC10711040 DOI: 10.1038/s41392-023-01720-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/16/2023] [Accepted: 11/18/2023] [Indexed: 12/18/2023] Open
Abstract
Ferroptosis, a unique modality of cell death with mechanistic and morphological differences from other cell death modes, plays a pivotal role in regulating tumorigenesis and offers a new opportunity for modulating anticancer drug resistance. Aberrant epigenetic modifications and posttranslational modifications (PTMs) promote anticancer drug resistance, cancer progression, and metastasis. Accumulating studies indicate that epigenetic modifications can transcriptionally and translationally determine cancer cell vulnerability to ferroptosis and that ferroptosis functions as a driver in nervous system diseases (NSDs), cardiovascular diseases (CVDs), liver diseases, lung diseases, and kidney diseases. In this review, we first summarize the core molecular mechanisms of ferroptosis. Then, the roles of epigenetic processes, including histone PTMs, DNA methylation, and noncoding RNA regulation and PTMs, such as phosphorylation, ubiquitination, SUMOylation, acetylation, methylation, and ADP-ribosylation, are concisely discussed. The roles of epigenetic modifications and PTMs in ferroptosis regulation in the genesis of diseases, including cancers, NSD, CVDs, liver diseases, lung diseases, and kidney diseases, as well as the application of epigenetic and PTM modulators in the therapy of these diseases, are then discussed in detail. Elucidating the mechanisms of ferroptosis regulation mediated by epigenetic modifications and PTMs in cancer and other diseases will facilitate the development of promising combination therapeutic regimens containing epigenetic or PTM-targeting agents and ferroptosis inducers that can be used to overcome chemotherapeutic resistance in cancer and could be used to prevent other diseases. In addition, these mechanisms highlight potential therapeutic approaches to overcome chemoresistance in cancer or halt the genesis of other diseases.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jing Hu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300060, PR China
| | - Shuang Wu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, 430000, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Yinshi Xu
- Department of Outpatient, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Wailong Zou
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, PR China.
| | - Yukuan Feng
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, PR China.
| | - Hongquan Wang
- Department of Pancreatic Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, PR China.
| |
Collapse
|
16
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
17
|
Cao D, Zheng J, Li Z, Yu Y, Chen Z, Wang Q. ACSL4 inhibition prevents macrophage ferroptosis and alleviates fibrosis in bleomycin-induced systemic sclerosis model. Arthritis Res Ther 2023; 25:212. [PMID: 37884942 PMCID: PMC10601156 DOI: 10.1186/s13075-023-03190-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Systemic sclerosis (SSc), with unclear pathophysiology, is a paradigmatic rheumatic disease of immunity dysfunction-driven multi-organ inflammation and ultimate fibrosis. Pathogenesis breakthroughs are urgently needed for available treatments halting its unremitting stiffness. This study aims to investigate whether ferroptosis can regulate the progressive SSc fibrosis. METHODS In vivo, bleomycin (BLM)-induced mice model was subjected to ferroptosis detection using western blotting, malondialdehyde (MDA), and glutathione (GSH) assays. Pharmacological inhibitor of the acyl-CoA synthetase long-chain family member 4 (ACSL4) was utilized to explore its potential therapeutic effects for fibrosis, from histological, biochemical, and molecular analyses. In vitro, bone marrow-derived macrophages (BMDM) were activated into inflammatory phenotype and then the relationship was evaluated between activation level and ferroptosis sensitivity in lipopolysaccharide (LPS) incubation with gradient concentrations. The potential calpain/ACSL4 axis was analyzed after calpain knockdown or over-expression in Raw264.7. RESULTS Both skin and lung tissue ferroptosis were present in SSc mice with enhanced ACSL4 expression, while ACSL4 inhibition effectively halted fibrosis progressing and provides protection from inflammatory milieu. Meanwhile, a positive regulation relationship between LPS-induced macrophage activity and ferroptosis sensitivity can be observed. After calpain knockdown, both inflammatory macrophage ferroptosis sensitivity and ACSL4 expression decreased, while its over-expression renders ACSL4-envoking condition. Also, calpain pharmacological inhibition reduced both ferroptosis and fibrosis aptitude in mice. CONCLUSIONS ACSL4 induces inflammatory macrophage ferroptosis to aggravate fibrosis progressing. ACSL4 and its upregulators of calpains may be potential therapeutic targets for BLM model of SSc.
Collapse
Affiliation(s)
- Dianyu Cao
- Department of Dermatology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Jina Zheng
- Department of Dermatology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China
| | - Zheng Li
- Laboratory Animal Division, Institute of Clinical Science, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, P.R. China
| | - Yong Yu
- Key Laboratory of Viral Heart Diseases, Ministry of Public Health, Zhongshan Hospital, Fudan University, Shanghai, 200032, P.R. China
| | - Zengrui Chen
- Department of Intensive Care Medicine, Yuhuan People's Hospital, No. 18 Changle Road, Yucheng Street, Yuhuan City, Zhejiang, 317600, P.R. China.
| | - Qiang Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, P.R. China.
| |
Collapse
|