1
|
Song Y, Jiao Y, Liu Y, Guo L. Role of Masticatory Force in Modulating Jawbone Immunity and Bone Homeostasis: A Review. Int J Mol Sci 2025; 26:4478. [PMID: 40429623 PMCID: PMC12111287 DOI: 10.3390/ijms26104478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Mastication exerts a significant influence on both the structural and immunological environment of the jawbone. The mechanical stress generated during chewing initiates bone remodeling through the coordinated activities of osteoclasts and osteoblasts, with these processes being modulated by immune cell responses. This review summarizes the interaction between masticatory forces and jawbone immunity, focusing on key mechanisms such as mechanotransduction in osteocytes, macrophage polarization, and the activation of T cells. The review also delves into the role of the receptor activator of nuclear factor κ-B ligand (RANKL), receptor activator of nuclear factor κ-B (RANK), and osteoprotegerin (OPG) signaling pathway, highlighting its critical function in bone resorption and immune regulation. Additionally, the review summarizes how masticatory forces modulate the immune response through changes in immune cells, particularly focusing on cytokines, and the involvement of hormonal and molecular pathways. These findings provide valuable insights into the complex interplay between mechanical forces and immune cells, with implications for bone health.
Collapse
Affiliation(s)
- Yue Song
- Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Scylla alley No. 11, Beijing 100069, China;
| | - Yao Jiao
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China;
| | - Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Tian Tan Xi Li No. 4, Beijing 100050, China;
| | - Lijia Guo
- Department of Orthodontics (WangFuJing Campus), School of Stomatology, Capital Medical University, Scylla alley No. 11, Beijing 100069, China;
| |
Collapse
|
2
|
Wadan AHS, Moshref AS, Emam AM, Bakry YG, Khalil BO, Chaurasia A, Ibrahim RAH, Badawy T, Mehanny SS. Mitochondrial dysfunction as a key player in aggravating periodontitis among diabetic patients: review of the current scope of knowledge. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04025-x. [PMID: 40272516 DOI: 10.1007/s00210-025-04025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 04/25/2025]
Abstract
Periodontitis is a prevalent inflammatory disease that leads to significant periodontal tissue destruction and compromised dental health, with its severity exacerbated in individuals with Diabetes Mellitus (DM). This review explores the complex relationship between mitochondrial dysfunction and periodontitis in diabetic patients. Recent studies indicate that the excessive production of reactive oxygen species (ROS), primarily generated by dysfunctional mitochondrial electron transport chain (ETC) complexes, contributes to oxidative stress (OS) and subsequent periodontal tissue damage. The interplay between impaired mitochondrial biogenesis, apoptosis of periodontal cells, and ROS accumulation highlights a critical area of concern in understanding the pathophysiology of diabetic periodontitis. Furthermore, altered glycemic control due to inflammatory processes associated with periodontitis may perpetuate a cyclical detriment to oral and systemic health. This review aims to highlight the mechanistic roles of mitochondrial dysfunction in the aggravation of periodontitis among diabetic patients, emphasizing further research to identify potential therapeutic targets and improve treatment efficacy for this dual pathology.
Collapse
Affiliation(s)
- Al-Hassan Soliman Wadan
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt.
| | | | | | | | | | - Akhilanand Chaurasia
- Department of Oral Medicine and Radiology, King George'S Medical University, Lucknow, India
| | - Reham A H Ibrahim
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
| | - Tamer Badawy
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Samah S Mehanny
- Department of Oral Biology, Faculty of Dentistry, Galala University, Galala City, Suez, Egypt
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Panahipour L, Abbasabadi AO, Shao F, Gruber R. Oral cell lysates reduce osteoclastogenesis in murine bone marrow cultures. Cytotechnology 2025; 77:39. [PMID: 39781111 PMCID: PMC11707159 DOI: 10.1007/s10616-024-00688-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
Mechanical and thermal cell damage can occur due to invasive procedures related to drilling, the insertion of dental implants, and periodontal treatments. Necrotic cells release the content of their cytoplasm and membrane fragments, thereby signaling the need for repair, which includes bone resorption by osteoclasts and inflammation. Here we screened lysates from human gingival fibroblasts, HSC2 and TR146 oral squamous carcinoma cell lines, as well as murine IDG-SW3 osteocytic and RAW264.7 macrophage cell lines for their potential to modulate in vitro osteoclastogenesis in murine bone marrow cultures. We also tested the impact of necrotic lysates on modulating the expression of inflammatory cues in murine ST2 bone marrow stromal cells. We report here that independent of human or murine origin, all cell lysates significantly reduced in vitro osteoclastogenesis in bone marrow cultures, as indicated by the expression of the osteoclast marker genes cathepsin K and tartrate-resistant acid phosphatase and the respective histochemical staining in multinucleated cells. We also found that lysates from HSC2 and TR146 cells significantly pushed the expression of CCL2, CCL5, CXCL1, IL1, and IL6 in ST2 cells. These findings suggest that oral cell lysates reduce in vitro osteoclastogenesis, but only damaged oral squamous carcinoma cells can force murine stromal cells to produce an inflammatory environment.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Feng Shao
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Fu D, Shu X, Zhou G, Ji M, Liao G, Zou L. Connection between oral health and chronic diseases. MedComm (Beijing) 2025; 6:e70052. [PMID: 39811802 PMCID: PMC11731113 DOI: 10.1002/mco2.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Chronic diseases have emerged as a paramount global health burden, accounting for 74% of global mortality and causing substantial economic losses. The oral cavity serves as a critical indicator of overall health and is inextricably linked to chronic disorders. Neglecting oral health can exacerbate localized pathologies and accelerate the progression of chronic conditions, whereas effective management has the potential to reduce their incidence and mortality. Nevertheless, limited resources and lack of awareness often impede timely dental intervention, delaying optimal therapeutic measures. This review provides a comprehensive analysis of the impact of prevalent chronic diseases-such as diabetes mellitus, rheumatoid arthritis, cardiovascular disorders, and chronic respiratory diseases-on oral health, along with an exploration of how changes in oral health affect these chronic conditions through both deterioration and intervention mechanisms. Additionally, novel insights into the underlying pathophysiological mechanisms governing these relationships are presented. By synthesizing these advancements, this review aims to illuminate the complex interrelationship between oral health and chronic diseases while emphasizing the urgent need for greater collaboration between dental practitioners and general healthcare providers to improve overall health outcomes.
Collapse
Affiliation(s)
- Di Fu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Xingyue Shu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ge Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
| | - Ga Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral DiseasesSichuan UniversityChengduSichuanChina
- Department of Information Management, Department of Stomatology Informatics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
5
|
Zeng X, Feng M, Lu J, Wang R, Deng L, Yang Y, Luo L. Beyond transcription, aryl hydrocarbon receptor plays a protective role in periodontitis by interacting with CaMKII. J Periodontol 2025; 96:67-81. [PMID: 38967396 DOI: 10.1002/jper.24-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/26/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND The aryl hydrocarbon receptor (AhR) has been studied as an intracellular pattern recognition receptor that can identify bacterial pigments. To identify a potential therapeutic target for periodontitis, we investigated the expression of AhR in periodontitis and its role in the pathogenesis of periodontitis. METHODS First, we analyzed AhR expression in a single-cell dataset from human periodontal tissue. Quantitative polymerase chain reaction (qPCR), immunofluorescence, and immunohistochemistry were used to verify the AhR level. Later, we determined the phenotypes of ligature-induced periodontitis in myeloid-specific AhR-deficient mice (Lyz2-Cre+/- AhRfx/fx), after which RNA sequencing (RNA-seq), qPCR, Western blot, immunofluorescence, and immunohistochemistry were used to investigate the impacts of AhR on periodontitis and its mechanism. Finally, we determined the therapeutic effect of AhR agonist 6-Formylindolo[3,2-b]carbazole (FICZ) administration on murine periodontitis and verified the effects of FICZ on macrophage polarization in vitro. RESULTS AhR expression was enhanced in macrophages from periodontitis patients. Deletion of AhR from macrophages aggravated ligature-induced periodontitis and promoted the inflammatory response. Calcium/calmodulin-stimulated protein kinase II (CaMKII) phosphorylation was accelerated in AhR-deficient macrophages. Inhibiting CaMKII phosphorylation ameliorated periodontitis in Lyz2-Cre+/- AhRfx/fx mice. FICZ treatment blocked alveolar bone loss and relieved periodontal inflammation. FICZ diminished M1 macrophage polarization and promoted M2 macrophage polarization upon M1 macrophage induction. CONCLUSION AhR played a protective role in the pathogenesis of periodontitis by orchestrating macrophage polarization via interacting with the CaMKII signaling pathway.
Collapse
Affiliation(s)
- Xuwen Zeng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
- i3S - Instituto de Investigação e Inovação em Saúde (Institute for Research and Innovation in Health), University of Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular (Institute for Molecular and Cell Biology), University of Porto, Porto, Portugal
| | - Meiting Feng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Jiawei Lu
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Ruiling Wang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Li Deng
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yanan Yang
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lijun Luo
- Department of Periodontology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
6
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Novello S, Schoenmaker T, de Vries TJ, Doulabi BZ, Bakker AD, Laine ML, Jansen IDC. Gingival fibroblasts produce paracrine signals that affect osteoclastogenesis in vitro. Bone Rep 2024; 22:101798. [PMID: 39252697 PMCID: PMC11381831 DOI: 10.1016/j.bonr.2024.101798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024] Open
Abstract
In periodontitis, gingival fibroblasts (GF) appear to produce a multitude of paracrine factors. However, the influence of GF-derived soluble factors on osteoclastogenesis remains unclear. In this case study, production of paracrine factors by GF was assessed under inflammatory and non-inflammatory conditions, as well as their effect on osteoclastogenesis. Human primary GF were cultured in a transwell system and primed with a cocktail of IL-1β, IL-6 and TNF-α to mimic inflammation. GF were co-cultured directly and indirectly with human peripheral blood mononuclear cells (PBMC). Cytokines and chemokines in supernatants (flow cytometry based multiplex assay), osteoclastogenesis (TRAcP staining) and gene expression (qPCR) were quantified on days 7 and 21. Results from this case study showed that GF communicated via soluble factors with PBMC resulting in a two-fold induction of osteoclasts. Reversely, PBMC induced gene expression of IL-6, OPG and MCP-1 by GF. Remarkably, after priming of GF with cytokines, this communication was impaired and resulted in fewer osteoclasts. This could be partly explained by an increase in IL-10 expression and a decrease in MCP-1 expression. Intriguingly, the short priming of GF resulted in significantly higher expression of inflammatory cytokines that was sustained at both 7 and 21 days. GF appear to produce paracrine factors capable of stimulating osteoclastogenesis in the absence of physical cell-cell interactions. GF cultured in the presence of PBMC or osteoclasts had a remarkably inflammatory phenotype. Given profound expression of both pro- and anti-inflammatory cytokines after the inflammatory stimulus, it is probably the effector hierarchy that leads to fewer osteoclasts.
Collapse
Affiliation(s)
- Solen Novello
- UF Parodontologie, Pôle d'Odontologie, Centre Hospitalier Universitaire de Rennes, 35000 Rennes, France
- Unité de Formation et de Recherche d'Odontologie, Université de Rennes, 35000 Rennes, France
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Behrouz Zandieh Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Astrid D Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marja L Laine
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Zhang M, Liu Y, Afzali H, Graves DT. An update on periodontal inflammation and bone loss. Front Immunol 2024; 15:1385436. [PMID: 38919613 PMCID: PMC11196616 DOI: 10.3389/fimmu.2024.1385436] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Periodontal disease is a chronic inflammatory condition that affects the supporting structures of the teeth, including the periodontal ligament and alveolar bone. Periodontal disease is due to an immune response that stimulates gingivitis and periodontitis, and its systemic consequences. This immune response is triggered by bacteria and may be modulated by environmental conditions such as smoking or systemic disease. Recent advances in single cell RNA-seq (scRNA-seq) and in vivo animal studies have provided new insight into the immune response triggered by bacteria that causes periodontitis and gingivitis. Dysbiosis, which constitutes a change in the bacterial composition of the microbiome, is a key factor in the initiation and progression of periodontitis. The host immune response to dysbiosis involves the activation of various cell types, including keratinocytes, stromal cells, neutrophils, monocytes/macrophages, dendritic cells and several lymphocyte subsets, which release pro-inflammatory cytokines and chemokines. Periodontal disease has been implicated in contributing to the pathogenesis of several systemic conditions, including diabetes, rheumatoid arthritis, cardiovascular disease and Alzheimer's disease. Understanding the complex interplay between the oral microbiome and the host immune response is critical for the development of new therapeutic strategies for the prevention and treatment of periodontitis and its systemic consequences.
Collapse
Affiliation(s)
- Mingzhu Zhang
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, School of Stomatology, Kunming, China
| | - Yali Liu
- Yunnan Key Laboratory of Stomatology, Kunming Medical University, School of Stomatology, Kunming, China
| | - Hamideh Afzali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Idrus E, Harsono TS, Lestari W, Suniarti DF. Fusobacterium nucleatum mechanism of action in alveolar bone destruction: Scoping review. J Indian Soc Periodontol 2024; 28:290-296. [PMID: 39742069 PMCID: PMC11684578 DOI: 10.4103/jisp.jisp_269_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/30/2024] [Indexed: 01/03/2025] Open
Abstract
Fusobacterium nucleatum is implicated in periodontitis, a chronic inflammatory disease that destroys the periodontal tissue and alveolar bone due to host-microbe dysbiosis. This study focuses on understanding how F. nucleatum contributes to bone destruction in periodontitis. The literature search was conducted using PubMed and Scopus databases based on Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines by entering preselected keyword combinations of inclusion and exclusion criteria. Qualifying literature was evaluated based on four inclusion criteria: research articles, published in English, within the last ten years, and available in full text. The literature search yielded five articles exploring the mechanism of bone resorption by F. nucleatum. It was found that the bacteria increases the production of inflammatory mediators, such as interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-alpha, C-C motif chemokine ligand (CCL) 2, CCL20, and C-X-C motif chemokine ligand 1, which leads to the destruction of alveolar bone. During infection, biomechanical stress also raises levels of prostaglandin E2 and cyclooxygenase-2. The elevated levels of inflammatory mediators and enzymes generate an imbalance in the receptor activator of nuclear factor kappa-B ligand to osteoprotegerin ratio, hindering osteogenic differentiation and heightening bone destruction. In conclusion, F. nucleatum infection promotes alveolar bone destruction by inducing inflammatory responses and inhibiting osteogenic differentiation stimulated by biomechanical loading. More research is essential to explore the connection between F. nucleatum virulence and its alveolar bone degradation mechanisms.
Collapse
Affiliation(s)
- Erik Idrus
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Tashya Shania Harsono
- Department of Oral Biology, Dentistry Study Program, Faculty of Dentistry, Universitas Indonesia, Jakarta Pusat, Indonesia
| | - Widya Lestari
- Department of Fundamental Dental and Medical Sciences, Kulliyyah of Dentistry, International Islamic University Malaysia, Kuantan, Pahang, Malaysia
| | - Dewi Fatma Suniarti
- Department of Oral Biology, Faculty of Dentistry, Universitas Indonesia, Jakarta Pusat, Indonesia
| |
Collapse
|
10
|
Feher B, Kampleitner C, Heimel P, Tangl S, Helms JA, Kuchler U, Gruber R. The effect of osteocyte-derived RANKL on bone graft remodeling: An in vivo experimental study. Clin Oral Implants Res 2023; 34:1417-1427. [PMID: 37792417 DOI: 10.1111/clr.14187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVES Autologous bone is considered the gold standard for grafting, yet it suffers from a tendency to undergo resorption over time. While the exact mechanisms of this resorption remain elusive, osteocytes have been shown to play an important role in stimulating osteoclastic activity through their expression of receptor activator of NF-κB (RANK) ligand (RANKL). The aim of this study was to assess the function of osteocyte-derived RANKL in bone graft remodeling. MATERIALS AND METHODS In Tnfsf11fl/fl ;Dmp1-Cre mice without osteocyte-specific RANKL as well as in Dmp1-Cre control mice, 2.6 mm calvarial bone disks were harvested and transplanted into mice with matching genetic backgrounds either subcutaneously or subperiosteally, creating 4 groups in total. Histology and micro-computed tomography of the grafts and the donor regions were performed 28 days after grafting. RESULTS Histology revealed marked resorption of subcutaneous control Dmp1-Cre grafts and new bone formation around subperiosteal Dmp1-Cre grafts. In contrast, Tnfsf11fl/fl ;Dmp1-Cre grafts showed effectively neither signs of bone resorption nor formation. Quantitative micro-computed tomography revealed a significant difference in residual graft area between subcutaneous and subperiosteal Dmp1-Cre grafts (p < .01). This difference was not observed between subcutaneous and subperiosteal Tnfsf11fl/fl ;Dmp1-Cre grafts (p = .17). Residual graft volume (p = .08) and thickness (p = .13) did not differ significantly among the groups. Donor area regeneration was comparable between Tnfsf11fl/fl ;Dmp1-Cre and Dmp1-Cre mice and restricted to the defect margins. CONCLUSIONS The results suggest an active function of osteocyte-derived RANKL in bone graft remodeling.
Collapse
Affiliation(s)
- Balazs Feher
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Carina Kampleitner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Patrick Heimel
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Stefan Tangl
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Jill A Helms
- Department of Surgery, School of Medicine, Stanford University, Palo Alto, California, USA
| | - Ulrike Kuchler
- Department of Oral Surgery, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Torres HM, Arnold KM, Oviedo M, Westendorf JJ, Weaver SR. Inflammatory Processes Affecting Bone Health and Repair. Curr Osteoporos Rep 2023; 21:842-853. [PMID: 37759135 PMCID: PMC10842967 DOI: 10.1007/s11914-023-00824-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW The purpose of this article is to review the current understanding of inflammatory processes on bone, including direct impacts of inflammatory factors on bone cells, the effect of senescence on inflamed bone, and the critical role of inflammation in bone pain and healing. RECENT FINDINGS Advances in osteoimmunology have provided new perspectives on inflammatory bone loss in recent years. Characterization of so-called inflammatory osteoclasts has revealed insights into physiological and pathological bone loss. The identification of inflammation-associated senescent markers in bone cells indicates that therapies that reduce senescent cell burden may reverse bone loss caused by inflammatory processes. Finally, novel studies have refined the role of inflammation in bone healing, including cross talk between nerves and bone cells. Except for the initial stages of fracture healing, inflammation has predominately negative effects on bone and increases fracture risk. Eliminating senescent cells, priming the osteo-immune axis in bone cells, and alleviating pro-inflammatory cytokine burden may ameliorate the negative effects of inflammation on bone.
Collapse
Affiliation(s)
- Haydee M Torres
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Katherine M Arnold
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Biomedical Engineering and Physiology Track/Regenerative Sciences Program, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, 55905, USA
| | - Manuela Oviedo
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Jennifer J Westendorf
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Samantha R Weaver
- Department of Orthopedic Surgery, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Zhu L, Tang Z, Hu R, Gu M, Yang Y. Ageing and Inflammation: What Happens in Periodontium? Bioengineering (Basel) 2023; 10:1274. [PMID: 38002398 PMCID: PMC10669535 DOI: 10.3390/bioengineering10111274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease with a high incidence and severity in the elderly population, making it a significant public health concern. Ageing is a primary risk factor for the development of periodontitis, exacerbating alveolar bone loss and leading to tooth loss in the geriatric population. Despite extensive research, the precise molecular mechanisms underlying the relationship between ageing and periodontitis remain elusive. Understanding the intricate mechanisms that connect ageing and inflammation may help reveal new therapeutic targets and provide valuable options to tackle the challenges encountered by the rapidly expanding global ageing population. In this review, we highlight the latest scientific breakthroughs in the pathways by which inflammaging mediates the decline in periodontal function and triggers the onset of periodontitis. We also provide a comprehensive overview of the latest findings and discuss potential avenues for future research in this critical area of investigation.
Collapse
Affiliation(s)
| | | | | | | | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR 999077, China; (L.Z.); (Z.T.); (R.H.); (M.G.)
| |
Collapse
|
13
|
Kittaka M, Yoshimoto T, Levitan ME, Urata R, Choi RB, Teno Y, Xie Y, Kitase Y, Prideaux M, Dallas SL, Robling AG, Ueki Y. Osteocyte RANKL Drives Bone Resorption in Mouse Ligature-Induced Periodontitis. J Bone Miner Res 2023; 38:1521-1540. [PMID: 37551879 PMCID: PMC11140853 DOI: 10.1002/jbmr.4897] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Mouse ligature-induced periodontitis (LIP) has been used to study bone loss in periodontitis. However, the role of osteocytes in LIP remains unclear. Furthermore, there is no consensus on the choice of alveolar bone parameters and time points to evaluate LIP. Here, we investigated the dynamics of changes in osteoclastogenesis and bone volume (BV) loss in LIP over 14 days. Time-course analysis revealed that osteoclast induction peaked on days 3 and 5, followed by the peak of BV loss on day 7. Notably, BV was restored by day 14. The bone formation phase after the bone resorption phase was suggested to be responsible for the recovery of bone loss. Electron microscopy identified bacteria in the osteocyte lacunar space beyond the periodontal ligament (PDL) tissue. We investigated how osteocytes affect bone resorption of LIP and found that mice lacking receptor activator of NF-κB ligand (RANKL), predominantly in osteocytes, protected against bone loss in LIP, whereas recombination activating 1 (RAG1)-deficient mice failed to resist it. These results indicate that T/B cells are dispensable for osteoclast induction in LIP and that RANKL from osteocytes and mature osteoblasts regulates bone resorption by LIP. Remarkably, mice lacking the myeloid differentiation primary response gene 88 (MYD88) did not show protection against LIP-induced bone loss. Instead, osteocytic cells expressed nucleotide-binding oligomerization domain containing 1 (NOD1), and primary osteocytes induced significantly higher Rankl than primary osteoblasts when stimulated with a NOD1 agonist. Taken together, LIP induced both bone resorption and bone formation in a stage-dependent manner, suggesting that the selection of time points is critical for quantifying bone loss in mouse LIP. Pathogenetically, the current study suggests that bacterial activation of osteocytes via NOD1 is involved in the mechanism of osteoclastogenesis in LIP. The NOD1-RANKL axis in osteocytes may be a therapeutic target for bone resorption in periodontitis. © 2023 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Mizuho Kittaka
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| | - Tetsuya Yoshimoto
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| | - Marcus E Levitan
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| | - Rina Urata
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| | - Roy B Choi
- Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Yayoi Teno
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| | - Yixia Xie
- Department of Oral and Craniofacial Sciences University of Missouri Kansas City, School of Dentistry Kansas City MO USA
| | - Yukiko Kitase
- Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Matthew Prideaux
- Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences University of Missouri Kansas City, School of Dentistry Kansas City MO USA
| | - Alexander G Robling
- Department of Anatomy, Cell Biology, and Physiology Indiana University School of Medicine Indianapolis IN USA
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health Indiana University School of Medicine Indianapolis IN USA
- Department of Biomedical Sciences and Comprehensive Care Indiana University School of Dentistry Indianapolis IN USA
| |
Collapse
|
14
|
Huang Y, Zhang L, Tan L, Zhang C, Li X, Wang P, Gao L, Zhao C. Interleukin-22 Inhibits Apoptosis of Gingival Epithelial Cells Through TGF-β Signaling Pathway During Periodontitis. Inflammation 2023; 46:1871-1886. [PMID: 37310646 DOI: 10.1007/s10753-023-01847-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic inflammatory disease characterized by the destruction of tooth-supporting tissues. The gingival epithelium is the first barrier of periodontal tissue against oral pathogens and harmful substances. The structure and function of epithelial lining are essential for maintaining the integrity of the epithelial barrier. Abnormal apoptosis can lead to the decrease of functional keratinocytes and break homeostasis in gingival epithelium. Interleukin-22 is a cytokine that plays an important role in epithelial homeostasis in intestinal epithelium, inducing proliferation and inhibiting apoptosis, but its role in gingival epithelium is poorly understood. In this study, we investigated the effect of interleukin-22 on apoptosis of gingival epithelial cells during periodontitis. Interleukin-22 topical injection and Il22 gene knockout were performed in experimental periodontitis mice. Human gingival epithelial cells were co-cultured with Porphyromonas gingivalis with interleukin-22 treatment. We found that interleukin-22 inhibited apoptosis of gingival epithelial cells during periodontitis in vivo and in vitro, decreasing Bax expression and increasing Bcl-xL expression. As for the underlying mechanisms, we found that interleukin-22 reduced the expression of TGF-β receptor type II and inhibited the phosphorylation of Smad2 in gingival epithelial cells during periodontitis. Blockage of TGF-β receptors attenuated apoptosis induced by Porphyromonas gingivalis and increased Bcl-xL expression stimulated by interleukin-22. These results confirmed the inhibitory effect of interleukin-22 on apoptosis of gingival epithelial cells and revealed the involvement of TGF-β signaling pathway in gingival epithelial cell apoptosis during periodontitis.
Collapse
Affiliation(s)
- Yina Huang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Lingping Tan
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Chi Zhang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Xiting Li
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Panpan Wang
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China
| | - Li Gao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| | - Chuanjiang Zhao
- Department of Periodontology, Hospital of Stomatology, Sun Yat-sen University, No.56, Lingyuanxi Road, Yuexiu District, Guangzhou, 510055, China.
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China.
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Shi N, Kong C, Yuan L, Liu L, Zhao K, Lü J, Wang X. The bidirectional relationship between periodontitis and diabetes: New prospects for stem cell-derived exosomes. Biomed Pharmacother 2023; 165:115219. [PMID: 37531782 DOI: 10.1016/j.biopha.2023.115219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Periodontitis and diabetes have a bidirectional link, making therapeutic treatment of periodontitis and diabetes challenging. Numerous factors, including microbes, inflammatory cytokines, immune cell activity, glucose levels, and metabolic disorders, contribute to the bidirectional relationship of periodontitis and diabetes. Basic periodontal treatment, medication, surgical treatment, and combined treatment are the most widely used treatments, but their efficacy are limited. Because of their capacity to support bone remodeling and tissue regeneration and restoration, reduce blood glucose levels, restore islet function, and ameliorate local and systemic inflammation, stem cell-derived exosomes have emerged as a possible therapeutic. In this review, we summarize the utilization of stem cell-derived exosomes in periodontitis and diabetes,discuss their potential mechanisms in periodontitis and diabetes bidirectional promoters. It provides some theoretical basis for using stem cell-derived exosomes to regulate the bidirectional link between periodontitis and diabetes.
Collapse
Affiliation(s)
- Naixu Shi
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chenfei Kong
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Yuan
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lu Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kelin Zhao
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Junfeng Lü
- Department of Radiation, The Second Hospital of Jilin University, Changchun, China
| | - Xiaofeng Wang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Zhao M, Xie Y, Gao W, Li C, Ye Q, Li Y. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol (Lausanne) 2023; 14:1192625. [PMID: 37664859 PMCID: PMC10469003 DOI: 10.3389/fendo.2023.1192625] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetes mellitus is a main risk factor for periodontitis, but until now, the underlying molecular mechanisms remain unclear. Diabetes can increase the pathogenicity of the periodontal microbiota and the inflammatory/host immune response of the periodontium. Hyperglycemia induces reactive oxygen species (ROS) production and enhances oxidative stress (OS), exacerbating periodontal tissue destruction. Furthermore, the alveolar bone resorption damage and the epigenetic changes in periodontal tissue induced by diabetes may also contribute to periodontitis. We will review the latest clinical data on the evidence of diabetes promoting the susceptibility of periodontitis from epidemiological, molecular mechanistic, and potential therapeutic targets and discuss the possible molecular mechanistic targets, focusing in particular on novel data on inflammatory/host immune response and OS. Understanding the intertwined pathogenesis of diabetes mellitus and periodontitis can explain the cross-interference between endocrine metabolic and inflammatory diseases better, provide a theoretical basis for new systemic holistic treatment, and promote interprofessional collaboration between endocrine physicians and dentists.
Collapse
Affiliation(s)
- Mingcan Zhao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yuandong Xie
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Wenjia Gao
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Chunwang Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Qiang Ye
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| | - Yi Li
- Department of Pediatric Dentistry, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, Jilin, China
| |
Collapse
|
17
|
Kitase Y, Prideaux M. Regulation of the Osteocyte Secretome with Aging and Disease. Calcif Tissue Int 2023; 113:48-67. [PMID: 37148298 DOI: 10.1007/s00223-023-01089-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
As the most numerous and long-lived of all bone cells, osteocytes have essential functions in regulating skeletal health. Through the lacunar-canalicular system, secreted proteins from osteocytes can reach cells throughout the bone. Furthermore, the intimate connectivity between the lacunar-canalicular system and the bone vasculature allows for the transport of osteocyte-secreted factors into the circulation to reach the entire body. Local and endocrine osteocyte signaling regulates physiological processes such as bone remodeling, bone mechanoadaptation, and mineral homeostasis. However, these processes are disrupted by impaired osteocyte function induced by aging and disease. Dysfunctional osteocyte signaling is now associated with the pathogenesis of many disorders, including chronic kidney disease, cancer, diabetes mellitus, and periodontitis. In this review, we focus on the targeting of bone and extraskeletal tissues by the osteocyte secretome. In particular, we highlight the secreted osteocyte proteins, which are known to be dysregulated during aging and disease, and their roles during disease progression. We also discuss how therapeutic or genetic targeting of osteocyte-secreted proteins can improve both skeletal and systemic health.
Collapse
Affiliation(s)
- Yukiko Kitase
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Anatomy, Cell Biology and Physiology, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA.
| |
Collapse
|
18
|
Li Y, Huang Z, Pan S, Feng Y, He H, Cheng S, Wang L, Wang L, Pathak JL. Resveratrol Alleviates Diabetic Periodontitis-Induced Alveolar Osteocyte Ferroptosis Possibly via Regulation of SLC7A11/GPX4. Nutrients 2023; 15:2115. [PMID: 37432277 DOI: 10.3390/nu15092115] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 07/12/2023] Open
Abstract
The mode and mechanism of diabetic periodontitis-induced alveolar-osteocyte death are still unclear. This study aimed to investigate the occurrence of ferroptosis in alveolar osteocytes during diabetic periodontitis and the therapeutic potential of resveratrol to alleviate osteocyte ferroptosis. Diabetic periodontitis was induced in C57/BL6-male mice and treated with or without resveratrol. Periodontitis pathogenicity was analyzed by micro-CT and histology, and alveolar-osteocyte ferroptosis was analyzed by immunohistochemistry. MLOY4 osteocytes were treated with P. gingivalis-derived lipopolysaccharide (LPS)+advanced glycosylated end products (AGEs) mimicking diabetic periodontitis condition in vitro, with or without resveratrol or ferrostatin-1 (ferroptosis inhibitor). Osteocyte ferroptosis and expression of inflammatory mediators were analyzed. Diabetic periodontitis aggravated periodontitis pathogenicity and inhibited the expression of GPX4 and SLC7A11 in alveolar osteocytes and resveratrol alleviated these effects. LPS+AGEs triggered osteocyte ferroptosis in vitro as indicated by the downregulated GPX4 and SLC7A11, upregulated malondialdehyde, disrupted mitochondrial morphology, and overexpressed pro-inflammatory mediators IL-1β, TNF-α, SOST, RANKL, and IL-6, and ferrostatin-1 or resveratrol treatment reversed these effects. LPS+AGEs upregulated pIKBα and pNF-κB p65 expression in osteocytes, and resveratrol or ferrostatin-1 reversed this effect. In conclusion, diabetic periodontitis triggers alveolar osteocyte ferroptosis possibly via disruption of the SLC7A11/GPX4 axis, and resveratrol has therapeutic potential to correct this biological event.
Collapse
Affiliation(s)
- Yue Li
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Zhijun Huang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuaifei Pan
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Yuhui Feng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Haokun He
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Shuguang Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| | - Janak Lal Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou 510182, China
| |
Collapse
|
19
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
20
|
Yuan X, Amin V, Zhu T, Kittaka M, Ueki Y, Bellido TM, Turkkahraman H. Type 1 diabetes mellitus leads to gingivitis and an early compensatory increase in bone remodeling. J Periodontol 2023; 94:277-289. [PMID: 35869905 PMCID: PMC9868190 DOI: 10.1002/jper.22-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) and periodontitis have long been thought to be biologically connected. Indeed, T1DM is a risk factor for periodontal disease. With the population of diabetic individuals growing, it is more important than ever to understand the negative consequences of diabetes on the periodontium and the mechanisms. The aim of this study was to find out the early effects of T1DM on the periodontium without any experimentally induced periodontitis. METHODS We established the streptozotocin (STZ)-induced diabetic mouse model and examined the periodontium 8 weeks later by histology, molecular and cellular assays. Microcomputed tomographic (𝜇CT) imaging and in vivo fluorochrome labeling were also used to quantify bone volume and mineral apposition rates (MAR). RESULTS The histologic appearance of epithelium tissue, connective tissue, and periodontal ligament in the diabetic condition was comparable with that of control mice. However, immune cell infiltration in the gingiva was dramatically elevated in the diabetic mice, which was accompanied by unmineralized connective tissue degeneration. Bone resorption activity was significantly increased in the diabetic mice, and quantitative 𝜇CT demonstrated the bone volume, the ratio of bone volume over tissue volume, and cemento-enamel junction to alveolar bone crest (CEJ-ABC) in the diabetic condition were equivalent to those in the control group. In vivo fluorochrome labeling revealed increased MAR and bone remodeling in the diabetic mice. Further investigation found the diabetic mice had more osteoprogenitors recruited to the periodontium, allowing more bone formation to balance the enhanced bone resorption. CONCLUSIONS STZ-induced T1DM mice, at an early stage, have elevated gingival inflammation and soft tissue degeneration and increased bone resorption; but still the alveolar bone was preserved by recruiting more osteoprogenitor cells and increasing the rate of bone formation. We conclude that inflammation and periodontitis precede alveolar bone deterioration in diabetes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Vedanshi Amin
- Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Teresita M. Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
21
|
Kızıldağa A, Alpanb AL, Özdedec M, Aydınd T, Özmene Ö. Therapeutic effects of diosgenin on alveolar bone loss and apoptosis in diabetic rats with experimental periodontitis. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:785-790. [PMID: 37396943 PMCID: PMC10311970 DOI: 10.22038/ijbms.2023.68801.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/15/2023] [Indexed: 07/04/2023]
Abstract
Objectives The present study aims to evaluate the efficacy of administered diosgenin (DG) which has anti-oxidant and anti-inflammatory effects, on alveolar bone loss (ABL) and apoptosis in diabetic rats with periodontitis. Materials and Methods Forty male Wistar albino rats (n=40) were divided into five subgroups; control (non-ligated), periodontitis (P), diabetes mellitus (DM), P+DM, and P+DM+DG. To stimulate experimental periodontitis, a ligature was embedded at the gingival margin of the lower first molars for each rat, and diabetes was induced by streptozotocin (STZ) for DM groups. Then, DG (96 mg/kg daily) was performed on the P+DM+DG group by oral gavage for 29 days. At day 30, all animals were euthanized and the distance from the cement-enamel junction to the alveolar bone margin was measured using cone-beam computed tomography as ABL. In addition, immunohistochemical analyses were used to evaluate the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), bone morphogenetic protein 2 (BMP-2), receptor activator of NF-κB ligand (RANKL), collagen type I (Col-1), B-cell lymphoma-2 (Bcl-2), and Bcl-2-associated X protein (Bax). Results Induction of periodontitis and diabetes significantly increased ABL (P<0.05). DG administration significantly reduced ABL, expression of RANKL and Bax, and enhanced the expression of ALP, OCN, BMP-2, Bcl-2, and Col-1 in the P+DM+DG group compared with the P+DM group (P<0.05). Conclusion It is revealed that DG considerably enhanced bone formation and contributed to periodontal healing in this experimental study performed in diabetic rats.
Collapse
Affiliation(s)
- Alper Kızıldağa
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Aysan Lektemür Alpanb
- Department of Periodontology, Faculty of Dentistry, Pamukkale University, Denizli, Turkey
| | - Melih Özdedec
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Dokuz Eylül University, İzmir, Turkey
| | - Tuğba Aydınd
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Özlem Özmene
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
22
|
Gao B, Wu J, Lv K, Shen C, Yao H. Visualized analysis of hotspots and frontiers in diabetes-associated periodontal disease research: a bibliometric study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1305. [PMID: 36660670 PMCID: PMC9843370 DOI: 10.21037/atm-22-2443] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022]
Abstract
Background Diabetes-associated periodontal disease is caused by diabetes-enhanced host immune-inflammatory responses to bacterial insult. An increasing number of papers related to diabetes-associated periodontal disease have been published. This study analyzed research on diabetes-associated periodontal disease with bibliometrics methods. The objective of this study was to identify hotspots and frontiers in the diabetes-associated periodontal disease research field. Methods Publications were extracted from the Web of Science core collection database, and the document types included were limited to articles and reviews. The bibliometric analysis software CiteSpace5 was used to analyze the number of articles, research fields, countries/regions, institutions, authors, keywords, and other information. Outcomes were visualized to analyze the hotspots and research frontiers of diabetes-associated periodontal disease. Results A total of 3,572 articles were retrieved. Among the research fields, dentistry, oral surgery, and medicine accounted for the highest proportion of publications, and public, environmental, and occupational health had the highest betweenness centrality. The number of publications from the United States ranked first among all the countries, while Columbia University ranked first among all the institutions. Global cooperation was not frequent. Keyword analysis showed that inflammatory pathways were the hotspots. Burst words analysis indicated that early prevention was a research frontier. Conclusions The bibliometric method helped identify research hotspots and frontiers. Inflammatory pathways were hotspots, and early prevention was a frontier in diabetes-associated periodontal disease.
Collapse
|
23
|
Yoshimoto T, Kittaka M, Doan AAP, Urata R, Prideaux M, Rojas RE, Harding CV, Henry Boom W, Bonewald LF, Greenfield EM, Ueki Y. Osteocytes directly regulate osteolysis via MYD88 signaling in bacterial bone infection. Nat Commun 2022; 13:6648. [PMID: 36333322 PMCID: PMC9636212 DOI: 10.1038/s41467-022-34352-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The impact of bone cell activation on bacterially-induced osteolysis remains elusive. Here, we show that matrix-embedded osteocytes stimulated with bacterial pathogen-associated molecular patterns (PAMPs) directly drive bone resorption through an MYD88-regulated signaling pathway. Mice lacking MYD88, primarily in osteocytes, protect against osteolysis caused by calvarial injections of bacterial PAMPs and resist alveolar bone resorption induced by oral Porphyromonas gingivalis (Pg) infection. In contrast, mice with targeted MYD88 restoration in osteocytes exhibit osteolysis with inflammatory cell infiltration. In vitro, bacterial PAMPs induce significantly higher expression of the cytokine RANKL in osteocytes than osteoblasts. Mechanistically, activation of the osteocyte MYD88 pathway up-regulates RANKL by increasing binding of the transcription factors CREB and STAT3 to Rankl enhancers and by suppressing K48-ubiquitination of CREB/CREB binding protein and STAT3. Systemic administration of an MYD88 inhibitor prevents jawbone loss in Pg-driven periodontitis. These findings reveal that osteocytes directly regulate inflammatory osteolysis in bone infection, suggesting that MYD88 and downstream RANKL regulators in osteocytes are therapeutic targets for osteolysis in periodontitis and osteomyelitis.
Collapse
Affiliation(s)
- Tetsuya Yoshimoto
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Mizuho Kittaka
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Andrew Anh Phuong Doan
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Rina Urata
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Matthew Prideaux
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | | | - Clifford V Harding
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - W Henry Boom
- Department of Pathology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Medicine, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
- Department of Molecular Biology and Microbiology, Case Western Reserve University & University Hospitals Cleveland Medical Center, Cleveland, OH, 44106-4960, USA
| | - Lynda F Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Edward M Greenfield
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA
| | - Yasuyoshi Ueki
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, 46202-5126, USA.
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, 46202-5126, USA.
| |
Collapse
|
24
|
Zhu L, Zhou C, Chen S, Huang D, Jiang Y, Lan Y, Zou S, Li Y. Osteoporosis and Alveolar Bone Health in Periodontitis Niche: A Predisposing Factors-Centered Review. Cells 2022; 11:3380. [PMID: 36359775 PMCID: PMC9657655 DOI: 10.3390/cells11213380] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/26/2023] Open
Abstract
Periodontitis is a periodontal inflammatory condition that results from disrupted periodontal host-microbe homeostasis, manifested by the destruction of tooth-supporting structures, especially inflammatory alveolar bone loss. Osteoporosis is characterized by systemic deterioration of bone mass and microarchitecture. The roles of many systemic factors have been identified in the pathogenesis of osteoporosis, including endocrine change, metabolic disorders, health-impaired behaviors and mental stress. The prevalence rate of osteoporotic fracture is in sustained elevation in the past decades. Recent studies suggest that individuals with concomitant osteoporosis are more vulnerable to periodontal impairment. Current reviews of worse periodontal status in the context of osteoporosis are limited, mainly centering on the impacts of menopausal and diabetic osteoporosis on periodontitis. Herein, this review article makes an effort to provide a comprehensive view of the relationship between osteoporosis and periodontitis, with a focus on clarifying how those risk factors in osteoporotic populations modify the alveolar bone homeostasis in the periodontitis niche.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuyu Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Zhou M, Graves DT. Impact of the host response and osteoblast lineage cells on periodontal disease. Front Immunol 2022; 13:998244. [PMID: 36304447 PMCID: PMC9592920 DOI: 10.3389/fimmu.2022.998244] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/12/2022] [Indexed: 12/05/2022] Open
Abstract
Periodontitis involves the loss of connective tissue attachment and alveolar bone. Single cell RNA-seq experiments have provided new insight into how resident cells and infiltrating immune cells function in response to bacterial challenge in periodontal tissues. Periodontal disease is induced by a combined innate and adaptive immune response to bacterial dysbiosis that is initiated by resident cells including epithelial cells and fibroblasts, which recruit immune cells. Chemokines and cytokines stimulate recruitment of osteoclast precursors and osteoclastogenesis in response to TNF, IL-1β, IL-6, IL-17, RANKL and other factors. Inflammation also suppresses coupled bone formation to limit repair of osteolytic lesions. Bone lining cells, osteocytes and periodontal ligament cells play a key role in both processes. The periodontal ligament contains cells that exhibit similarities to tendon cells, osteoblast-lineage cells and mesenchymal stem cells. Bone lining cells consisting of mesenchymal stem cells, osteoprogenitors and osteoblasts are influenced by osteocytes and stimulate formation of osteoclast precursors through MCSF and RANKL, which directly induce osteoclastogenesis. Following bone resorption, factors are released from resorbed bone matrix and by osteoclasts and osteal macrophages that recruit osteoblast precursors to the resorbed bone surface. Osteoblast differentiation and coupled bone formation are regulated by multiple signaling pathways including Wnt, Notch, FGF, IGF-1, BMP, and Hedgehog pathways. Diabetes, cigarette smoking and aging enhance the pathologic processes to increase bone resorption and inhibit coupled bone formation to accelerate bone loss. Other bone pathologies such as rheumatoid arthritis, post-menopausal osteoporosis and bone unloading/disuse also affect osteoblast lineage cells and participate in formation of osteolytic lesions by promoting bone resorption and inhibiting coupled bone formation. Thus, periodontitis involves the activation of an inflammatory response that involves a large number of cells to stimulate bone resorption and limit osseous repair processes.
Collapse
Affiliation(s)
- Mi Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Dana T. Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Dana T. Graves,
| |
Collapse
|
26
|
Baca-Gonzalez L, Serrano Zamora R, Rancan L, González Fernández-Tresguerres F, Fernández-Tresguerres I, López-Pintor RM, López-Quiles J, Leco I, Torres J. Plasma rich in growth factors (PRGF) and leukocyte-platelet rich fibrin (L-PRF): comparative release of growth factors and biological effect on osteoblasts. Int J Implant Dent 2022; 8:39. [PMID: 36184700 PMCID: PMC9527267 DOI: 10.1186/s40729-022-00440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To compare the release of platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), insulin-like growth factor (IGF-I) and interleukin 1β (IL-1β) of plasma rich in growth factors (PRGF) and leucocyte platelet-rich fibrin (L-PRF) and to evaluate their biological implication in osteoblasts. METHODS Blood from 3 healthy volunteers was processed into PRGF, immediate L-PRF (L-PRF 0') and L-PRF 30 min after collection (L-PRF-30') and a control group. Growth factors release were analyzed at 7 times by ELISA. Cell proliferation, collagen-I synthesis and alkaline phosphatase activity were assessed in primary cultures of human osteoblasts. RESULTS A slower controlled release of IGF-I, VEGF and PDGF was observed in the PRGF group at day 14. A higher synthesis of type I collagen was also quantified in PRGF. L-PRF released significantly higher amounts of IL-1β, that was almost absent in the PRGF. CONCLUSIONS The addition of leukocytes dramatically increases the secretion of proinflammatory cytokines, which are likely to negatively influence the synthesis of type I collagen and alkaline phosphatase (ALP) by osteoblasts.
Collapse
Affiliation(s)
- Laura Baca-Gonzalez
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain.
| | - Rebeca Serrano Zamora
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Lisa Rancan
- Department of Biochemistry and Molecular Biology. Faculty of Medicine, Complutense University, Madrid, Spain
| | | | - Isabel Fernández-Tresguerres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Rosa M López-Pintor
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Juan López-Quiles
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Isabel Leco
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| | - Jesús Torres
- Department of Dental Clinical Specialties. Faculty of Dentistry, Complutense University, Pza./Ramón y Cajal s/n., 28040, Madrid, Spain
| |
Collapse
|
27
|
Lee J, Min HK, Park CY, Kang HK, Jung SY, Min BM. A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A. J Clin Periodontol 2022; 49:799-813. [PMID: 35634689 DOI: 10.1111/jcpe.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/21/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022]
Abstract
AIM This study investigated whether a vitronectin-derived peptide (VnP-16) prevents and/or reverses alveolar bone resorption induced by ligature-induced periodontitis in rodents and identified the underlying mechanism. MATERIALS AND METHODS We evaluated the effects of VnP-16 on osteogenic differentiation in human periodontal ligament cells (hPDLCs), lipopolysaccharide-induced inflammatory responses in gingival fibroblasts, and immune response in T lymphocytes. Ligature-induced periodontitis was induced by ligating the bilateral mandibular first molars for 14 days in rats and for 7 days in mice (n = 10/group). VnP-16 (100 μg/10 μl) was applied topically into the gingival sulcus of rats via intra-sulcular injection, whereas the peptide (50 μg/5 μl) was administered directly into the gingiva of mice via intra-gingival injection. To evaluate the preventive and therapeutic effects of VnP-16, micro-computed tomography analysis and histological staining were then performed. RESULTS VnP-16 promoted osteogenic differentiation of periodontal ligament cells and inhibited the production of lipopolysaccharide-induced inflammatory mediators in gingival fibroblasts. Concomitantly, VnP-16 modulated the host immune response by reducing the number of receptor activator of NF-κB ligand (RANKL)-expressing lipopolysaccharide-stimulated CD4+ and CD8+ T cells, and by suppressing RANKL and interleukin (IL)-17A production. Furthermore, local administration of VnP-16 in rats and mice significantly prevented and reversed alveolar bone loss induced by ligature-induced periodontitis. VnP-16 enhanced osteoblastogenesis and simultaneously inhibited osteoclastogenesis and suppressed RANKL and IL-17A expression in vivo. CONCLUSIONS Our findings suggest that VnP-16 acts as a potent therapeutic agent for preventing and treating periodontitis by regulating bone re-modelling and immune and inflammatory responses.
Collapse
Affiliation(s)
- Junbeom Lee
- Department of Periodontology, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hong Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Center, Seoul, South Korea
| | - Cho Yeon Park
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Hyun Ki Kang
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sung Youn Jung
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Byung-Moo Min
- Department of Oral Biochemistry and Program in Cancer and Developmental Biology, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
28
|
Sirisereephap K, Maekawa T, Tamura H, Hiyoshi T, Domon H, Isono T, Terao Y, Maeda T, Tabeta K. Osteoimmunology in Periodontitis: Local Proteins and Compounds to Alleviate Periodontitis. Int J Mol Sci 2022; 23:5540. [PMID: 35628348 PMCID: PMC9146968 DOI: 10.3390/ijms23105540] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 01/25/2023] Open
Abstract
Periodontitis is one of the most common oral diseases resulting in gingival inflammation and tooth loss. Growing evidence indicates that it results from dysbiosis of the oral microbiome, which interferes with the host immune system, leading to bone destruction. Immune cells activate periodontal ligament cells to express the receptor activator of nuclear factor kappa-B (NF-κB) ligand (RANKL) and promote osteoclast activity. Osteocytes have active roles in periodontitis progression in the bone matrix. Local proteins are involved in bone regeneration through functional immunological plasticity. Here, we discuss the current knowledge of cellular and molecular mechanisms in periodontitis, the roles of local proteins, and promising synthetic compounds generating a periodontal regeneration effect. It is anticipated that this may lead to a better perception of periodontitis pathophysiology.
Collapse
Affiliation(s)
- Kridtapat Sirisereephap
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
- Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tomoki Maekawa
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hikaru Tamura
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| | - Takumi Hiyoshi
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Hisanori Domon
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Toshihito Isono
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Yutaka Terao
- Division of Microbiology and Infectious Disease, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (H.D.); (T.I.); (Y.T.)
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (T.H.); (T.M.)
| | - Koichi Tabeta
- Division of Periodontology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (K.S.); (H.T.); (K.T.)
| |
Collapse
|
29
|
Li B, Wang P, Jiao J, Wei H, Xu W, Zhou P. Roles of the RANKL-RANK Axis in Immunity-Implications for Pathogenesis and Treatment of Bone Metastasis. Front Immunol 2022; 13:824117. [PMID: 35386705 PMCID: PMC8977491 DOI: 10.3389/fimmu.2022.824117] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
A substantial amount patients with cancer will develop bone metastases, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis. Despite advancements in systemic therapies for advanced cancer, survival remains poor for those with bone metastases. The interaction between bone cells and the immune system contributes to a better understanding of the role that the immune system plays in the bone metastasis of cancer. The immune and bone systems share various molecules, including transcription factors, signaling molecules, and membrane receptors, which can stimulate the differentiation and activation of bone-resorbing osteoclasts. The process of cancer metastasis to bone, which deregulates bone turnover and results in bone loss and skeletal-related events (SREs), is also controlled by primary cancer-related factors that modulate the intratumoral microenvironment as well as cellular immune process. The nuclear factor kappa B ligand (RANKL) and the receptor activator of nuclear factor kappa B (RANK) are key regulators of osteoclast development, bone metabolism, lymph node development, and T-cell/dendritic cell communication. RANKL is an osteoclastogenic cytokine that links the bone and the immune system. In this review, we highlight the role of RANKL and RANK in the immune microenvironment and bone metastases and review data on the role of the regulatory mechanism of immunity in bone metastases, which could be verified through clinical efficacy of RANKL inhibitors for cancer patients with bone metastases. With the discovery of the specific role of RANK signaling in osteoclastogenesis, the humanized monoclonal antibody against RANKL, such as denosumab, was available to prevent bone loss, SREs, and bone metastases, providing a unique opportunity to target RANKL/RANK as a future strategy to prevent bone metastases.
Collapse
Affiliation(s)
- Bo Li
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pengru Wang
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Jian Jiao
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Haifeng Wei
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wei Xu
- Department of Orthopedic Oncology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Pingting Zhou
- Department of Radiation Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
30
|
Aljuanid MA, Qaid HR, Lashari DM, Ridwan RD, Budi HS, Alkadasi BA, Ramadhani Y, Rahmasari RRP. Nano-emulsion of mangosteen rind extract in a mucoadhesive patch for periodontitis regenerative treatment: An in vivo study. J Taibah Univ Med Sci 2022; 17:910-920. [PMID: 36050950 PMCID: PMC9396070 DOI: 10.1016/j.jtumed.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Objective To investigate the therapeutic potential of nano-emulsion of mangosteen rind extract in a mucoadhesive gingival patch on periodontitis, and its effect on tumor necrosis factor alpha (TNF-α), receptor activator of nuclear factor kappa Β ligand (RANKL), and interleukin 10 (IL-10) expression. Methods Sixty Wistar rats were divided into four groups: positive control group (mucoadhesive patch with doxycycline), negative control group (mucoadhesive patch), treatment group I (mucoadhesive patch with mangosteen rind extract), and treatment group II (mucoadhesive patch with nano-emulsion of mangosteen rind extract). An experimental model of Porphyromonas gingivalis-induced periodontitis was established in rats by treatment with 0.03 mL bacteria locally (1 × 1010 colony-forming units) seven times at 2-day intervals in the gingival sulcus of mandibular anterior teeth. Treatment was 1 h/day for 3 days. On days 3, 5, and 7, five rats from each group were killed. TNF-α, IL-10, and RANKL expression was determined by dissecting the lower jaw for immunohistochemistry. Results The mucoadhesive patch with nano-emulsion mangosteen rind extract significantly decreased TNF-α and RANKL expression and increased IL-10 expression (p < 0.05) compared to the treatment I, positive and negative control groups. Conclusion A mucoadhesive gingival patch with nano-emulsion of mangosteen rind extract has the potential to treat periodontitis by decreasing TNF-α, RANKL, and increasing IL-10 expression.
Collapse
|
31
|
Barutta F, Bellini S, Durazzo M, Gruden G. Novel Insight into the Mechanisms of the Bidirectional Relationship between Diabetes and Periodontitis. Biomedicines 2022; 10:biomedicines10010178. [PMID: 35052857 PMCID: PMC8774037 DOI: 10.3390/biomedicines10010178] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 02/01/2023] Open
Abstract
Periodontitis and diabetes are two major global health problems despite their prevalence being significantly underreported and underestimated. Both epidemiological and intervention studies show a bidirectional relationship between periodontitis and diabetes. The hypothesis of a potential causal link between the two diseases is corroborated by recent studies in experimental animals that identified mechanisms whereby periodontitis and diabetes can adversely affect each other. Herein, we will review clinical data on the existence of a two-way relationship between periodontitis and diabetes and discuss possible mechanistic interactions in both directions, focusing in particular on new data highlighting the importance of the host response. Moreover, we will address the hypothesis that trained immunity may represent the unifying mechanism explaining the intertwined association between diabetes and periodontitis. Achieving a better mechanistic insight on clustering of infectious, inflammatory, and metabolic diseases may provide new therapeutic options to reduce the risk of diabetes and diabetes-associated comorbidities.
Collapse
|
32
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383&set/a 912874875+940716348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
33
|
State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021. [DOI: 10.3390/jcm10225383
expr 893869204 + 932072443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
|
34
|
González-Moles MÁ, Ramos-García P. State of Evidence on Oral Health Problems in Diabetic Patients: A Critical Review of the Literature. J Clin Med 2021; 10:5383. [PMID: 34830663 PMCID: PMC8618619 DOI: 10.3390/jcm10225383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetes mellitus (DM) is a global health problem, having recognized that in the next 20 years the number of diabetic patients in the world will increase to 642 million. DM exerts enormous repercussions on general health diabetic (especially derived from vascular, cardiac, renal, ocular, or neurological affectation). It entails in addition a high number of deaths directly related to the disease, as well as a high health care cost, estimated at $673 billion annually. Oral cavity is found among all the organs and systems affected in the course of DM. Important pathologies are developed with higher prevalence, such as periodontitis (PD), alterations in salivary flow, fungal infections, oral cancer, and oral potentially malignant disorders (OPMD). It has been proven that PD hinders the metabolic control of DM and that the presence of PD increases the possibility for developing diabetes. Despite the relevance of these oral pathologies, the knowledge of primary care physicians and diabetes specialists about the importance of oral health in diabetics, as well as the knowledge of dentists about the importance of DM for oral health of patients is scarce or non-existent. It is accepted that the correct management of diabetic patients requires interdisciplinary teams, including dentists. In this critical review, the existing knowledge and evidence-degree on the preventive, clinical, diagnosis, prognosis, and therapeutic aspects of oral diseases that occur with a significant frequency in the diabetic population are developed in extension.
Collapse
Affiliation(s)
- Miguel Ángel González-Moles
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Pablo Ramos-García
- School of Dentistry, University of Granada, 18010 Granada, Spain;
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
35
|
Marahleh A, Kitaura H, Ohori F, Noguchi T, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Effect of TNF-α on osteocyte RANKL expression during orthodontic tooth movement. J Dent Sci 2021; 16:1191-1197. [PMID: 34484587 PMCID: PMC8403810 DOI: 10.1016/j.jds.2021.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/11/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND/PURPOSE Orthodontic tooth movement (OTM) is facilitated by two events; bone resorption on the compression side and bone formation on the tension side simultaneously termed bone remodeling. Osteocytes play a critical role in bone remodeling during OTM, as they have been described as the critical source of nuclear factor-κB ligand (RANKL) necessary for bone remodeling during OTM. Tumor necrosis factor (TNF)-α is a cytokine that acts by amplifying RANKL expression in osteocytes. In this study, we evaluated the effects of TNF-α on RANKL expression in osteocyte during OTM. MATERIALS AND METHODS We assessed whether TNF-α influenced RANKL expression in osteocyte during orthodontic tooth movement by using wild-type (WT) and TNF receptor I and II deficient (TNFRsKO) mice. A Nickel-titanium closed coil spring was attached to the maxillary alveolar bone near the incisors and the upper left first molar, and the first molars were moved mesially in WT and TNFRsKO mice. After OTM, the number of RANKL-positive osteocytes in the alveolar bone was evaluated by immunohistochemistry. RESULTS The number of RANKL-positive osteocyte in the alveolar bone significantly increased in WT mice than in TNFRsKO mice after OTM. CONCLUSION The results indicate that TNF-α induces the expression of RANKL in osteocyte during OTM.
Collapse
Affiliation(s)
- Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuhiko Nara
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Adya Pramusita
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ria Kinjo
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jinghan Ma
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Kayoko Kanou
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
36
|
Hathaway-Schrader JD, Novince CM. Maintaining homeostatic control of periodontal bone tissue. Periodontol 2000 2021; 86:157-187. [PMID: 33690918 DOI: 10.1111/prd.12368] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alveolar bone is a unique osseous tissue due to the proximity of dental plaque biofilms. Periodontal health and homeostasis are mediated by a balanced host immune response to these polymicrobial biofilms. Dysbiotic shifts within dental plaque biofilms can drive a proinflammatory immune response state in the periodontal epithelial and gingival connective tissues, which leads to paracrine signaling to subjacent bone cells. Sustained chronic periodontal inflammation disrupts "coupled" osteoclast-osteoblast actions, which ultimately result in alveolar bone destruction. This chapter will provide an overview of alveolar bone physiology and will highlight why the oral microbiota is a critical regulator of alveolar bone remodeling. The ecology of dental plaque biofilms will be discussed in the context that periodontitis is a polymicrobial disruption of host homeostasis. The pathogenesis of periodontal bone loss will be explained from both a historical and current perspective, providing the opportunity to revisit the role of fibrosis in alveolar bone destruction. Periodontal immune cell interactions with bone cells will be reviewed based on our current understanding of osteoimmunological mechanisms influencing alveolar bone remodeling. Lastly, probiotic and prebiotic interventions in the oral microbiota will be evaluated as potential noninvasive therapies to support alveolar bone homeostasis and prevent periodontal bone loss.
Collapse
Affiliation(s)
- Jessica D Hathaway-Schrader
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Chad M Novince
- Department of Oral Health Sciences, College of Dental Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
37
|
Abstract
Periodontitis, one of the most common infectious diseases in humans, is characterized by inflammation of the periodontal tissue and subsequent destruction of the alveolar bone, which ultimately leads to tooth loss. Recently, it was revealed that the osteoclastic bone damage that occurs during periodontitis is dependent on the receptor activator of NF-kB ligand (RANKL) produced by osteoblastic cells and periodontal ligament cells. Immune cells provide essential cues for the RANKL induction that takes place during periodontal inflammation. The knowledge accumulated and experimental tools established in the field of "osteoimmunology" have made crucial contributions to a better understanding of periodontitis pathogenesis and, reciprocally, the investigation of periodontitis has provided important insights into the field. This review discusses the molecular mechanisms underlying periodontal bone loss by focusing on the osteoimmune interactions and RANKL.
Collapse
Affiliation(s)
- Masayuki Tsukasaki
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
38
|
Yang N, Liu Y. The Role of the Immune Microenvironment in Bone Regeneration. Int J Med Sci 2021; 18:3697-3707. [PMID: 34790042 PMCID: PMC8579305 DOI: 10.7150/ijms.61080] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 09/03/2021] [Indexed: 01/08/2023] Open
Abstract
Bone is an active tissue, being constantly renewed in healthy individuals with participation of the immune system to a large extent. Any imbalance between the processes of bone formation and bone resorption is linked to various inflammatory bone diseases. The immune system plays an important role in tissue formation and bone resorption. Recently, many studies have demonstrated complex interactions between the immune and skeletal systems. Both of immune cells and cytokines contribute to the regulation of bone homeostasis, and bone cells, including osteoblasts, osteoclasts, osteocytes, also influence the cellular functions of immune cells. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Therefore, the immune microenvironment is crucial in determining the speed and outcome of bone healing, repair, and regeneration. In this review, we summarise the role of the immune microenvironment in bone regeneration from the aspects of immune cells and immune cytokines. The elucidation of immune mechanisms involved in the process of bone regeneration would provide new therapeutic targets for improving the curative effects of bone injury treatment.
Collapse
Affiliation(s)
- Ning Yang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yao Liu
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
39
|
Huang X, Xie M, Xie Y, Mei F, Lu X, Li X, Chen L. The roles of osteocytes in alveolar bone destruction in periodontitis. J Transl Med 2020; 18:479. [PMID: 33308247 PMCID: PMC7733264 DOI: 10.1186/s12967-020-02664-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
Periodontitis, a bacterium-induced inflammatory disease that is characterized by alveolar bone loss, is highly prevalent worldwide. Elucidating the underlying mechanisms of alveolar bone loss in periodontitis is crucial for understanding its pathogenesis. Classically, bone cells, such as osteoclasts, osteoblasts and bone marrow stromal cells, are thought to dominate the development of bone destruction in periodontitis. Recently, osteocytes, the cells embedded in the mineral matrix, have gained attention. This review demonstrates the key contributing role of osteocytes in periodontitis, especially in alveolar bone loss. Osteocytes not only initiate physiological bone remodeling but also assist in inflammation-related changes in bone remodeling. The latest evidence suggests that osteocytes are involved in regulating bone anabolism and catabolism in the progression of periodontitis. The altered secretion of receptor activator of NF-κB ligand (RANKL), sclerostin and Dickkopf-related protein 1 (DKK1) by osteocytes affects the balance of bone resorption and formation and promotes bone loss. In addition, the accumulation of prematurely senescent and apoptotic osteocytes observed in alveolar bone may exacerbate local destruction. Based on their communication with the bloodstream, it is noteworthy that osteocytes may participate in the interaction between local periodontitis lesions and systemic diseases. Overall, further investigations of osteocytes may provide vital insights that improve our understanding of the pathophysiology of periodontitis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Mengru Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanling Xie
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Feng Mei
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaofeng Lu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Xiaoshuang Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Diabetes mellitus is a prevalent chronic disease affecting millions of people in the world. Bone fragility is a complication found in diabetic patients. Although osteoblasts and osteoclasts are directly affected by diabetes, herein we focus on how the diabetic state-based on hyperglycemia and accumulation of advanced glycation end products among other features-impairs osteocyte functions exerting deleterious effects on bone. RECENT FINDINGS In the last years, several studies described that diabetic conditions cause morphological modifications on lacunar-canalicular system, alterations on osteocyte mechanoreceptors and intracellular pathways and on osteocyte communication with other cells through the secretion of proteins such as sclerostin or RANKL. This article gives an overview of events occurring in diabetic osteocytes. In particular, mechanical responses seem to be seriously affected in these conditions, suggesting that mechanical sensibility could be a target for future research in the field.
Collapse
Affiliation(s)
- Arancha R Gortázar
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain.
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU,CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain.
| | - Juan A Ardura
- Bone Physiopathology laboratory, Applied Molecular Medicine Institute (IMMA), Universidad San Pablo-CEU, CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU,CEU Universities, Campus Monteprincipe, 28925, Alcorcón, Madrid, Spain
| |
Collapse
|
41
|
Abstract
Bone homeostasis is maintained by a balance in the levels of osteoclast and osteoblast activity. Osteoclasts are bone-resorbing cells and have been shown to act as key players in various osteolytic diseases. Osteoclasts differentiate from monocyte/macrophage lineage cells in the presence of receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Osteoblasts support osteoclastogenesis by producing several osteoclast differentiation factors. Toll-like receptors (TLRs) are members of the pattern recognition receptor family that are involved in recognizing pathogen-associated molecular patterns and damage-associated molecular patterns in response to pathogen infection. TLRs regulate osteoclastogenesis and bone resorption through either the myeloid differentiation primary response 88 or the Toll/interleukin-1 receptor domain-containing adapter-inducing interferon-β signaling pathways. Since osteoclasts play a central role in the progression of osteolytic diseases, extensive research focusing on TLR downstream signaling in these cells should be conducted to advance the development of effective TLR modulators. In this review, we summarize the currently available information on the role of TLRs in osteoclast differentiation and osteolytic diseases.
Collapse
Affiliation(s)
- Mijung Yim
- College of Pharmacy, Sookmyung Women's University, Seoul, Korea
| |
Collapse
|
42
|
Metzger CE, Anand Narayanan S, Phan PH, Bloomfield SA. Hindlimb unloading causes regional loading-dependent changes in osteocyte inflammatory cytokines that are modulated by exogenous irisin treatment. NPJ Microgravity 2020; 6:28. [PMID: 33083525 PMCID: PMC7542171 DOI: 10.1038/s41526-020-00118-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Disuse-induced bone loss is characterized by alterations in bone turnover. Accruing evidence suggests that osteocytes respond to inflammation and express and/or release pro-inflammatory cytokines; however, it remains largely unknown whether osteocyte inflammatory proteins are influenced by disuse. The goals of this project were (1) to assess osteocyte pro-inflammatory cytokines in the unloaded hindlimb and loaded forelimb of hindlimb unloaded rats, (2) to examine the impact of exogenous irisin during hindlimb unloading (HU). Male Sprague Dawley rats (8 weeks old, n = 6/group) were divided into ambulatory control, HU, and HU with irisin (HU + Ir, 3×/week). Lower cancellous bone volume, higher osteoclast surfaces (OcS), and lower bone formation rate (BFR) were present at the hindlimb and 4th lumbar vertebrae in the HU group while the proximal humerus of HU rats exhibited no differences in bone volume, but higher BFR and lower OcS vs. Con. Osteocyte tumor necrosis factor-α (TNF-α), interleukin-17 (IL-17), RANKL, and sclerostin were elevated in the cancellous bone of the distal femur of HU rats vs. Con, but lower at the proximal humerus in HU rats vs. Con. Exogenous irisin treatment increased BFR, and lowered OcS and osteocyte TNF-α, IL-17, RANKL, and sclerostin in the unloaded hindlimb of HU + Ir rats while having minimal changes in the humerus. In conclusion, there are site-specific and loading-specific alterations in osteocyte pro-inflammatory cytokines and bone turnover with the HU model of disuse bone loss, indicating a potential mechanosensory impact of osteocyte TNF-α and IL-17. Additionally, exogenous irisin significantly reduced the pro-inflammatory status of the unloaded hindlimb.
Collapse
Affiliation(s)
- Corinne E Metzger
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - S Anand Narayanan
- Department of Medical Physiology, Texas A&M Health Science Center, Temple, TX USA
| | - Peter H Phan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| | - Susan A Bloomfield
- Department of Health and Kinesiology, Texas A&M University, College Station, TX USA
| |
Collapse
|
43
|
Schwarze UY, Strauss FJ, Gruber R. Caspase inhibitor attenuates the shape changes in the alveolar ridge following tooth extraction: A pilot study in rats. J Periodontal Res 2020; 56:101-107. [PMID: 32935871 PMCID: PMC7891322 DOI: 10.1111/jre.12798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The aim of the study was to determine whether the inhibition of apoptosis via pan-caspase inhibitors can attenuate the changes in the alveolar ridge upon tooth extraction. BACKGROUND Cells undergoing apoptosis might play a central role in the onset of alveolar bone resorption and the ensuing bone atrophy following tooth extraction. Caspases are proteases that regulate apoptotic cell death. It is, therefore, reasonable to hypothesize that blocking apoptosis with pan-caspase inhibitors attenuates the changes in the alveolar ridge following tooth extraction. METHODS In 16 inbred rats, the mandibular first (M1) and second (M2) molars of one side were extracted. Following random allocation, the rats received either a cell-permeable pan-caspase inhibitor or diluent. After a healing period of 10 days, changes in shape and height of the alveolar ridge were examined using geometric morphometrics and linear measurements based on micro-computed tomography. RESULTS Geometric morphometric analysis revealed that the pan-caspase inhibitor prevented major shape changes of the alveolar ridge following M1 tooth extraction (P < .05). Furthermore, linear measurements confirmed that the pan-caspase inhibitor significantly prevented the atrophy of the alveolar ridge height following M1 tooth extraction compared to the diluent controls (-0.53 mm vs -0.24 mm; P = .012). M2 tooth extraction caused no shape changes of the alveolar ridge, and thus, the pan-caspase inhibitor group did not differ from the control group (-0.14 mm vs -0.05 mm; P = .931). CONCLUSIONS These findings suggest that the inhibition of apoptosis may attenuate shape changes of the alveolar ridge following M1 tooth extraction in rodents.
Collapse
Affiliation(s)
- Uwe Yacine Schwarze
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Division of Oral Surgery and Orthodontics, Department of Dental Medicine and Oral Health, Medical University of Graz, Graz, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Franz-Josef Strauss
- Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.,Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
44
|
LAMP-2 Is Involved in Surface Expression of RANKL of Osteoblasts In Vitro. Int J Mol Sci 2020; 21:ijms21176110. [PMID: 32854285 PMCID: PMC7504075 DOI: 10.3390/ijms21176110] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Lysosome associated membrane proteins (LAMPs) are involved in several processes, among which is fusion of lysosomes with phagosomes. For the formation of multinucleated osteoclasts, the interaction between receptor activator of nuclear kappa β (RANK) and its ligand RANKL is essential. Osteoclast precursors express RANK on their membrane and RANKL is expressed by cells of the osteoblast lineage. Recently it has been suggested that the transport of RANKL to the plasma membrane is mediated by lysosomal organelles. We wondered whether LAMP-2 might play a role in transportation of RANKL to the plasma membrane of osteoblasts. To elucidate the possible function of LAMP-2 herein and in the formation of osteoclasts, we analyzed these processes in vivo and in vitro using LAMP-2-deficient mice. We found that, in the presence of macrophage colony stimulating factor (M-CSF) and RANKL, active osteoclasts were formed using bone marrow cells from calvaria and long bone mouse bone marrow. Surprisingly, an almost complete absence of osteoclast formation was found when osteoclast precursors were co-cultured with LAMP-2 deficient osteoblasts. Fluorescence-activated cell sorting FACS analysis revealed that plasma membrane-bound RANKL was strongly decreased on LAMP-2 deficient osteoblasts. These results suggest that osteoblastic LAMP-2 is required for osteoblast-induced osteoclast formation in vitro.
Collapse
|
45
|
Osteocyte-Related Cytokines Regulate Osteoclast Formation and Bone Resorption. Int J Mol Sci 2020; 21:ijms21145169. [PMID: 32708317 PMCID: PMC7404053 DOI: 10.3390/ijms21145169] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023] Open
Abstract
The process of bone remodeling is the result of the regulated balance between bone cell populations, namely bone-forming osteoblasts, bone-resorbing osteoclasts, and the osteocyte, the mechanosensory cell type. Osteoclasts derived from the hematopoietic stem cell lineage are the principal cells involved in bone resorption. In osteolytic diseases such as rheumatoid arthritis, periodontitis, and osteoporosis, the balance is lost and changes in favor of bone resorption. Therefore, it is vital to elucidate the mechanisms of osteoclast formation and bone resorption. It has been reported that osteocytes express Receptor activator of nuclear factor κΒ ligand (RANKL), an essential factor for osteoclast formation. RANKL secreted by osteocytes is the most important factor for physiologically supported osteoclast formation in the developing skeleton and in pathological bone resorption such as experimental periodontal bone loss. TNF-α directly enhances RANKL expression in osteocytes and promotes osteoclast formation. Moreover, TNF-α enhances sclerostin expression in osteocytes, which also increases osteoclast formation. These findings suggest that osteocyte-related cytokines act directly to enhance osteoclast formation and bone resorption. In this review, we outline the most recent knowledge concerning bone resorption-related cytokines and discuss the osteocyte as the master regulator of bone resorption and effector in osteoclast formation.
Collapse
|
46
|
Kim AR, Kim JH, Choi YH, Jeon YE, Cha JH, Bak EJ, Yoo YJ. The presence of neutrophils causes RANKL expression in periodontal tissue, giving rise to osteoclast formation. J Periodontal Res 2020; 55:868-876. [PMID: 32583887 DOI: 10.1111/jre.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/30/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUNDS AND OBJECTIVE Increased neutrophil infiltration and osteoclast formation are key characteristics of periodontitis. The effect of these neutrophils on osteoclast formation in periodontitis remains unclear. Therefore, we investigated the effects of neutrophils on osteoclast formation in a neutrophil-deficient mouse model of periodontitis. METHODS Anti-Ly6G antibody (Ab) was used for neutrophil depletion in two mouse models: periodontitis and air pouch. In the periodontitis experiments, mice were divided into PBS-administered control (C), control Ab-administered periodontitis (P), and anti-Ly6G Ab-administered periodontitis (P + Ly6G) groups. Periodontitis was induced by ligature of mandibular first molars. In the air pouch experiments, mice were divided into PBS-administered (C), LPS and control Ab-administered (LPS), and LPS and anti-Ly6G Ab-administered (LPS + Ly6G) groups. Neutrophil migration into air pouches was induced by LPS injection. Flow cytometry was used to examine CD11b+ Ly6G+ neutrophils in the blood of periodontitis mice and CD11b+ Ly6G+ RANKL+ neutrophils in exudates of air pouch mice. In periodontal tissue, Ly6G+ neutrophil and RANKL+ cell numbers in periodontal ligament and alveolar bone areas were estimated using immunohistochemistry, osteoclast numbers were measured using TRAP assay, and alveolar bone loss was determined by H&E staining. RESULTS In blood, CD11b+ Ly6G+ neutrophils were found in greater percentage in the P group than in the C group on days 3 and 7. However, the percentage of neutrophils was lower in the P + Ly6G group than in the C and P groups. In periodontal tissue, the numbers of Ly6G+ neutrophils and RANKL+ cells were lower in the P + Ly6G group than in the P group on day 3. Ly6G+ neutrophil numbers decreased more in the P + Ly6G group than in the P group on day 7, but RANKL+ cell numbers did not decrease in the P + Ly6G group. In exudates, the number of CD11b+ Ly6G+ RANKL+ neutrophils was greater in the LPS group than in the C and LPS + Ly6G groups. On days 3 and 7, the numbers of osteoclasts and alveolar bone loss were greater in periodontal tissue in the P and P + Ly6G groups than in the C group. Interestingly, there were fewer osteoclasts in the P + Ly6G group than in the P group on day 3. CONCLUSION Neutrophil deficiency caused a reduction in numbers of both RANKL+ cells and osteoclasts in periodontitis-induced tissues only on day 3. Furthermore, in the LPS-injected air pouch model, neutrophil deficiency reduced the influx of RANKL+ neutrophils. These findings suggest that the presence of neutrophils induces RANKL expression and could induce osteoclast formation in the early stages of periodontitis.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Ji-Hye Kim
- Department of Dental Hygiene, Baekseok University, Cheonan, South Korea
| | - Yun Hui Choi
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yeong-Eui Jeon
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Jeong-Heon Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
47
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
48
|
Galárraga-Vinueza ME, Tangl S, Bianchini M, Magini R, Obreja K, Gruber R, Schwarz F. Histological characteristics of advanced peri-implantitis bone defects in humans. Int J Implant Dent 2020; 6:12. [PMID: 32211972 PMCID: PMC7093613 DOI: 10.1186/s40729-020-00208-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/19/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Inflammatory osteolysis is the clinical hallmark of peri-implantitis. The morphology of the remaining peri-implant bone and the level of osseointegration, however, remain unknown. Our aim was to characterize advanced peri-implantitis bone defects in humans. METHODS Four patients (3 female and 1 male) were diagnosed with peri-implantitis. A total of 5 implants with machined surfaces and a mean loading time of 12 ± 6 years were removed due to advanced bone loss. The defect extension, the peri-implant bone density (bone area per tissue area in percentage), bone-to-implant contact (%), and the number of filled and empty osteocyte lacunae were calculated based on undecalcified histological specimens. RESULTS The defect extension was on average 4.2 mm (95% CI 0.8-3.4). Remaining peri-implant bone showed a high density of 85.5% (95% CI 79.1-91.3) and covered in total 74% (95% CI 70.5-77.5) of the implant surface. Filled and empty osteocyte lacunae density was on average 191 and 165/mm2 (95% CI 132-251; 103-225), respectively. Histology further revealed signs of ongoing bone formation and resorption. CONCLUSION There are signs that suggest that once the original cortical bone is lost due to peri-implantitis, the remaining apical trabecular bone is reinforced and transformed into cortical bone that might take over the functional load.
Collapse
Affiliation(s)
- Maria Elisa Galárraga-Vinueza
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Stefan Tangl
- Core Facility Hard Tissue and Biomaterial Research, Karl Donath Laboratory, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Marco Bianchini
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Ricardo Magini
- Post-Graduate Program in Implant Dentistry (PPGO), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna, Austria.
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Carolinum, Goethe University, Frankfurt, Germany
| |
Collapse
|
49
|
Aquino-Martinez R, Rowsey JL, Fraser DG, Eckhardt BA, Khosla S, Farr JN, Monroe DG. LPS-induced premature osteocyte senescence: Implications in inflammatory alveolar bone loss and periodontal disease pathogenesis. Bone 2020; 132:115220. [PMID: 31904537 PMCID: PMC6990876 DOI: 10.1016/j.bone.2019.115220] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022]
Abstract
Cellular senescence is associated with inflammation and extracellular matrix tissue remodeling through the secretion of proteins termed the senescence-associated secretory phenotype (SASP). Although osteocyte senescence in older individuals in the skeleton is well recognized, whether young alveolar osteocytes can also become senescent is unknown. This is potentially important in the context of periodontal disease, which is an inflammatory condition caused by a gradual change from symbiotic to pathogenic oral microflora that can lead to tooth loss. Our aim was to identify whether senescent osteocytes accumulate in young alveolar bone and whether bacterial-derived lipopolysaccharide (LPS) can influence cellular senescence in alveolar bone. An osteocyte-enriched cell population isolated from alveolar bone expressed increased levels of the known senescence marker p16Ink4a, as well as select SASP markers known to be implicated alveolar bone resorption (Icam1, Il6, Il17, Mmp13 and Tnfα), compared to ramus control cells. Increased senescence of alveolar bone osteocytes was also observed in vivo using the senescence-associated distension of satellites (SADS) assay and increased γH2AX, a marker of DNA damage associated with senescent cells. To approximate a bacterial infection in vitro, alveolar osteocytes were treated with LPS. We found increased expression of various senescence and SASP markers, increased γH2AX staining, increased SA-β-Gal activity and the redistribution of F-actin leading to a larger and flattened cell morphology, all hallmarks of cellular senescence. In conclusion, our data suggests a model whereby bacterial-derived LPS stimulates premature alveolar osteocyte senescence, which in combination with the resultant SASP, could potentially contribute to the onset of alveolar bone loss.
Collapse
Affiliation(s)
- Ruben Aquino-Martinez
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Jennifer L Rowsey
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Daniel G Fraser
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Brittany A Eckhardt
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Sundeep Khosla
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Joshua N Farr
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| | - David G Monroe
- Department of Medicine, Division of Endocrinology, Mayo Clinic College of Medicine, Rochester, MN, USA; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
50
|
Abstract
PURPOSE OF REVIEW Diabetes has a detrimental effect on bone, increasing the risk of fracture and formation of osteolytic lesions such as those seen in periodontitis. Several diabetic complications are caused by diabetes-enhanced inflammation. This review examines mechanisms by which IL-17 contributes to diabetes-enhanced periodontitis and other effects of IL-17 on bone. RECENT FINDINGS IL-17 upregulates anti-bacterial defenses, yet its expression is also linked to a destructive host response in the periodontium. Periodontal disease is caused by bacteria that stimulate an inflammatory response. Diabetes-enhanced IL-17 increases gingival inflammation, which alters the composition of the oral microbiota to increase its pathogenicity. In addition, IL-17 can induce osteoclastogenesis by upregulation of TNF and RANKL in a number of cell types, and IL-17 has differential effects on osteoblasts and their progenitors. Increased IL-17 production caused by diabetes alters the pathogenicity of the oral microbiota and can promote periodontal bone resorption.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Periodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA
- First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 37 Xishiku Avenue, Xicheng District, Beijing, 100034, China
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, 240 S 40th St, Philadelphia, PA, 19104, USA.
| |
Collapse
|