1
|
Mei YK, Zhu YW, Wei YW, Li SD, Zhou X, Yao YN, Qiu J. Metal-polydopamine coordinated coatings on titanium surface: enhancing corrosion resistance and biological property. RSC Adv 2025; 15:13603-13617. [PMID: 40297004 PMCID: PMC12036513 DOI: 10.1039/d5ra00301f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Previous studies on polydopamine (PDA)-modified titanium implants have primarily focused on single-metal-ion systems (e.g., Ag+, Cu2+, or Zn2+), while overlooking the interplay between corrosion resistance, antioxidant retention, and antimicrobial efficacy under clinically relevant oxidative conditions. Here, we present a comparative analysis of Ag-, Cu-, and Zn-integrated PDA coatings fabricated via a two-step coordination strategy, addressing these limitations through systematic multi-parameter evaluation. Unlike prior studies, this study reveals distinct metal-PDA interaction mechanisms: XPS/EDS analyses confirm Zn2+ and Cu2+ form coordination complexes with PDA's catechol groups, whereas Ag+ undergoes reduction to metallic nanoparticles (Ag0), leading to divergent ion-release profiles (Zn2+ > Cu2+ > Ag+) and biofunctional outcomes. Electrochemical testing under H2O2-simulated oxidative stress demonstrates Zn-PDA coatings exhibit superior corrosion resistance (polarization resistance: 4330 vs. 3900 and 2850 kΩ cm2 for Cu-PDA and Ag-PDA, respectively), while Ag-PDA achieves the highest antibacterial efficacy (>95% reduction against S. aureus and E. coli). Notably, Zn/Cu-PDA coatings retain >80% of PDA's intrinsic antioxidant capacity, in contrast to Ag-PDA, which exhibits significant antioxidant depletion due to redox interference. In vivo rat models further differentiate our approach: all coatings show comparable soft-tissue integration and systemic biosafety, contrasting with earlier reports of Ag-induced cytotoxicity. By elucidating metal-specific performance trade-offs and establishing a design framework to balance corrosion resistance, ROS scavenging, and antimicrobial activity, this work advances clinically adaptable strategies for enhancing peri-implant tissue stability.
Collapse
Affiliation(s)
- Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Shu-di Li
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Xuan Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Ya-Nan Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University 1# Shanghai Road Nanjing 210029 China
- Jiangsu Province Key Laboratory of Oral Diseases Nanjing China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine Nanjing China
| |
Collapse
|
2
|
Matsuura T, Komatsu K, Suzumura T, Stavrou S, Juanatas ML, Park W, Ogawa T. Enhanced functionality and migration of human gingival fibroblasts on vacuum ultraviolet light-treated titanium: An implication for mitigating cellular stress to improve peri-implant cellular reaction. J Prosthodont Res 2025; 69:249-258. [PMID: 39198200 DOI: 10.2186/jpr.jpr_d_24_00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
PURPOSE The maintenance of peri-implant health relies significantly on the integrity of the peri-implant seal, particularly vulnerable at the interface between implant abutment and soft tissue. Early healing stages around implants involve cellular exposure to oxidative stress. This study aimed to investigate whether vacuum ultraviolet (VUV)-treated titanium augments the growth and functionality of human gingival fibroblasts while mitigating cellular stress. METHODS Machined titanium plates underwent treatment with 172 nm VUV light for one minute, with untreated plates as controls. Human gingival fibroblasts were cultured on treated and untreated plates, and their behavior, growth, and functionality were assessed. Functionally impaired fibroblasts, treated with hydrogen peroxide, were also cultured on these titanium plates, and plate-to-plate transmigration ability was evaluated. RESULTS Fibroblasts on VUV-treated titanium exhibited a 50% reduction in intracellular reactive oxygen species production compared to controls. Additionally, glutathione, an antioxidant, remained undepleted in cells on VUV-treated titanium. Furthermore, the expression levels of inflammatory cytokines IL-1β and IL-8 decreased by 40-60% on VUV-treated titanium. Consequently, fibroblast attachment and proliferation doubled on VUV-treated titanium compared to those in the controls, leading to enhanced cell retention. Plate-to-plate transmigration assays demonstrated that fibroblasts migrated twice as far on VUV-treated surfaces compared to those in the controls. In particular, the transmigration ability, impaired in functionally impaired fibroblasts on the controls, was preserved on VUV-treated titanium. CONCLUSIONS VUV-treated titanium promotes the growth, function, and migration of human gingival fibroblasts by reducing cellular stress and enhancing antioxidative capacity. Notably, the transmigration ability significantly improved on VUV-treated titanium.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Periodontology, Graduated School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Toshikatsu Suzumura
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
| | - Stella Stavrou
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Mary Lou Juanatas
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| | - Wonhee Park
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Department of Dentistry, College of Medicine, Hanyang University, Seoul, Korea
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, USA
- Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, USA
| |
Collapse
|
3
|
Dworan J, Aellos F, Grauer JA, Fabbri G, Harder KG, Boccardo S, Cuevas PL, Dawid I, Vicini M, Helms JA. Dynamics of Mucosal Integration of Machined versus Anodized Titanium Implants. J Dent Res 2025; 104:270-279. [PMID: 39704472 DOI: 10.1177/00220345241296506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024] Open
Abstract
The long-term success of dental implants depends on the ability of soft tissues to form a protective barrier, limiting pathogen infiltration into peri-implant tissues. Here, we investigated the impact of an anodized surface modification on mucosal integration. Scanning electron microscopy and surface chemistry characterization were carried out on miniaturized implants. Following placement in fresh extraction sockets of mice, peri-implant tissues were examined at 4 time points. Histology along with quantitative immunohistochemistry for Keratin14, Vimentin, Laminin5, and CD68 were carried out on postimplant day (PID) 3 to assess early events in soft-tissue repair; on PID7, when peri-implant epithelialization was complete; at PID14, when osseointegration was complete; and at PID28, when soft-tissue maturation was nearing completion. In all cases, an intact junctional epithelium served as a reference. These analyses supported 3 conclusions: first, maturation of the peri-implant epithelium (PIE) is a protracted process, consistent with clinical observations. Second, maturation of the soft tissue-implant interface is slower than maturation of the bone-implant interface. Third, there is a benefit, albeit transient, to soft-tissue maturation around an anodized implant surface. Given its prolonged time course, strategies to improve and/or accelerate PIE maturation are likely to have significant clinical benefit.
Collapse
Affiliation(s)
- J Dworan
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Medical University of Vienna, Department of Anatomy, Center for Anatomy and Cell Biology, Vienna, Austria
| | - F Aellos
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Grauer
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, MB, Canada
| | - G Fabbri
- Private practice, Ban Mancini Fabbri Dental Clinic, Cattolica, Italy
| | - K G Harder
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
- Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | - S Boccardo
- Nobel Biocare Services AG, Kloten, Switzerland
| | - P L Cuevas
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - I Dawid
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - M Vicini
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - J A Helms
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
4
|
Gavriiloglou M, Hammad M, Iliopoulos JM, Layrolle P, Apazidou DA. Bioengineering the Junctional Epithelium in 3D Oral Mucosa Models. J Funct Biomater 2024; 15:330. [PMID: 39590534 PMCID: PMC11595533 DOI: 10.3390/jfb15110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
Two-dimensional (2D) culture models and animal experiments have been widely used to study the pathogenesis of periodontal and peri-implant diseases and to test new treatment approaches. However, neither of them can reproduce the complexity of human periodontal tissues, making the development of a successful 3D oral mucosal model a necessity. The soft-tissue attachment formed around a tooth or an implant function like a biologic seal, protecting the deeper tissues from bacterial infection. The aim of this review is to explore the advancements made so far in the biofabrication of a junctional epithelium around a tooth-like or an implant insert in vitro. This review focuses on the origin of cells and the variety of extracellular components and biomaterials that have been used for the biofabrication of 3D oral mucosa models. The existing 3D models recapitulate soft-tissue attachment around implant abutments and hydroxyapatite discs. Hereby, the qualitative and quantitative assessments performed for evidencing the soft-tissue attachment are critically reviewed. In perspective, the design of sophisticated 3D models should work together for oral immunology and microbiology biofilms to accurately reproduce periodontal and peri-implant diseases.
Collapse
Affiliation(s)
- Marianna Gavriiloglou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| | - Mira Hammad
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Jordan M. Iliopoulos
- Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Pierre Layrolle
- Toulouse NeuroImaging Center (ToNIC), INSERM, Toulouse University UMR 1214, CHU Toulouse Purpan, 31024 Toulouse, France;
| | - Danae A. Apazidou
- Department of Preventive Dentistry, Periodontology & Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (M.G.); (D.A.A.)
| |
Collapse
|
5
|
Hao Y, Shi C, Zhang Y, Zou R, Dong S, Yang C, Niu L. The research status and future direction of polyetheretherketone in dental implant -A comprehensive review. Dent Mater J 2024; 43:609-620. [PMID: 39085142 DOI: 10.4012/dmj.2024-076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Currently, dental implants primarily rely on the use of titanium and titanium alloys. However, the extensive utilization of these materials in clinical practice has unveiled various problems including stress shielding, corrosion, allergic reactions, cytotoxicity, and image artifacts. As a result, polyetheretherketone (PEEK) has emerged as a notable alternative due to its favorable mechanical properties, corrosion resistance, wear resistance, biocompatibility, radiation penetrability and MRI compatibility. Meanwhile, the advancement and extensive application of 3D printing technology has expanded the range of medical applications for PEEK, including artificial spines, skulls, ribs, shinbones, hip joints, and temporomandibular joints. In this review, we aim to assess the advantages and disadvantages of PEEK as a dental implant material, summarize the measures taken to address its shortcomings and their effects, and provide insight into the future potential of PEEK in dental implant applications, with the goal of offering guidance and reference for future research endeavors.
Collapse
Affiliation(s)
- Yaqi Hao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Changquan Shi
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University
| | - Yuwei Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Rui Zou
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
| | - Shaojie Dong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| | | | - Lin Niu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases
- Department of Prosthodontics, College of Stomatology, Xi'an Jiaotong University
| |
Collapse
|
6
|
Thompson T, Flanagan S, Ortega-Gonzalez D, Zhu T, Yuan X. Immediate but Temporal Response: The Role of Distal Epithelial Cells in Wound Healing. Stem Cell Rev Rep 2024; 20:1587-1598. [PMID: 38760627 PMCID: PMC11323234 DOI: 10.1007/s12015-024-10734-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
Efficient oral mucosal wound healing requires coordinated responses from epithelial progenitor cells, yet their spatiotemporal recruitment and activation remain unclear. Using a mouse model of palatal mucosal wound healing, we investigated the dynamics of epithelial cells during this process. Proliferation analysis revealed that, in addition to the expected proliferation center near the wound edge, distal cell populations rapidly activated post-injury by elevating their mitotic activity. These distal cells displayed predominant lateral expansion in the basal layer, suggesting roles beyond just tissue renewal. However, while proximal proliferation center cells sustained heightened proliferation until re-epithelialization was completed, distal cells restored basal turnover rates before wound closure, indicating temporally confined contributions. Lineage tracing of Wnt-responsive epithelial cells showed remarkable clone expansion in basal layers both proximally and distally after wounding, contrasting with gradual clone expansion in homeostasis. Although prioritizing tissue repair, epithelial progenitor cells maintained differentiation programs and barrier functions, with the exception of the leading edge. At the leading edge, we found accelerated cell turnover, but the differentiation program was suspended. In summary, our findings uncovered that oral wound re-epithelialization involves two phases: an initial widespread response with proliferation of proximal and distal cells, followed by proliferation confined to the wound proximal region. Uncovering these stage-specific healing mechanisms provides insights for developing targeted therapeutic strategies to improve wound care.
Collapse
Affiliation(s)
- Tyler Thompson
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Shannan Flanagan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Dayane Ortega-Gonzalez
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, School of Dentistry, Indiana University, Indianapolis, IN, USA
| | - Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA.
- Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA.
| |
Collapse
|
7
|
Turkkahraman H, Flanagan S, Zhu T, Akel N, Marino S, Ortega-Gonzalez D, Yuan X, Bellido T. Sclerostin antibody corrects periodontal disease in type 2 diabetic mice. JCI Insight 2024; 9:e181940. [PMID: 39171525 PMCID: PMC11343605 DOI: 10.1172/jci.insight.181940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Type 2 diabetes (T2D) is on the rise worldwide and is associated with various complications in the oral cavity. Using an adult-onset diabetes preclinical model, we demonstrated profound periodontal alterations in T2D mice, including inflamed gingiva, disintegrated periodontal ligaments (PDLs), marked alveolar bone loss, and unbalanced bone remodeling due to decreased formation and increased resorption. Notably, we observed elevated levels of the Wnt signaling inhibitor sclerostin in the alveolar bone of T2D mice. Motivated by these findings, we investigated whether a sclerostin-neutralizing antibody (Scl-Ab) could rescue the compromised periodontium in T2D mice. Administering Scl-Ab subcutaneously once a week for 4 weeks, starting 4 weeks after T2D induction, led to substantial increases in bone mass. This effect was attributed to the inhibition of osteoclasts and promotion of osteoblasts in both control and T2D mice, effectively reversing the bone loss caused by T2D. Furthermore, Scl-Ab stimulated PDL cell proliferation, partially restored the PDL fibers, and mitigated inflammation in the periodontium. Our study thus established a T2D-induced periodontitis mouse model characterized by inflammation and tissue degeneration. Scl-Ab emerged as a promising intervention to counteract the detrimental effects of T2D on the periodontium, exhibiting limited side effects on other craniofacial hard tissues.
Collapse
Affiliation(s)
- Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Shannan Flanagan
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, Indiana, USA
| | - Nisreen Akel
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Silvia Marino
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Dayane Ortega-Gonzalez
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xue Yuan
- Department of Otolaryngology–Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Teresita Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
- Central Arkansas Veterans Healthcare System, John L. McClellan, Little Rock, Arkansas, USA
| |
Collapse
|
8
|
Aellos F, Grauer JA, Harder KG, Dworan JS, Fabbri G, Cuevas PL, Yuan X, Liu B, Brunski JB, Helms JA. Dynamic analyses of a soft tissue-implant interface: Biological responses to immediate versus delayed dental implants. J Clin Periodontol 2024; 51:806-817. [PMID: 38708491 DOI: 10.1111/jcpe.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 05/07/2024]
Abstract
AIM To qualitatively and quantitatively evaluate the formation and maturation of peri-implant soft tissues around 'immediate' and 'delayed' implants. MATERIALS AND METHODS Miniaturized titanium implants were placed in either maxillary first molar (mxM1) fresh extraction sockets or healed mxM1 sites in mice. Peri-implant soft tissues were evaluated at multiple timepoints to assess the molecular mechanisms of attachment and the efficacy of the soft tissue as a barrier. A healthy junctional epithelium (JE) served as positive control. RESULTS No differences were observed in the rate of soft-tissue integration of immediate versus delayed implants; however, overall, mucosal integration took at least twice as long as osseointegration in this model. Qualitative assessment of Vimentin expression over the time course of soft-tissue integration indicated an initially disorganized peri-implant connective tissue envelope that gradually matured with time. Quantitative analyses showed significantly less total collagen in peri-implant connective tissues compared to connective tissue around teeth around implants. Quantitative analyses also showed a gradual increase in expression of hemidesmosomal attachment proteins in the peri-implant epithelium (PIE), which was accompanied by a significant inflammatory marker reduction. CONCLUSIONS Within the timeframe examined, quantitative analyses showed that connective tissue maturation never reached that observed around teeth. Hemidesmosomal attachment protein expression levels were also significantly reduced compared to those in an intact JE, although quantitative analyses indicated that macrophage density in the peri-implant environment was reduced over time, suggesting an improvement in PIE barrier functions. Perhaps most unexpectedly, maturation of the peri-implant soft tissues was a significantly slower process than osseointegration.
Collapse
Affiliation(s)
- Fabiana Aellos
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Joseph A Grauer
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Dr. Gerald Niznick College of Dentistry, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kasidy G Harder
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julia S Dworan
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Giacomo Fabbri
- Private Practice, Ban Mancini Fabbri Dental Clinic, Cattolica, Italy
| | - Pedro L Cuevas
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Xue Yuan
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Bo Liu
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - John B Brunski
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Jill A Helms
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
9
|
Safaei M, Mohammadi H, Beddu S, Mozaffari HR, Rezaei R, Sharifi R, Moradpoor H, Fallahnia N, Ebadi M, Md Jamil MS, Md Zain AR, Yusop MR. Surface Topography Steer Soft Tissue Response and Antibacterial Function at the Transmucosal Region of Titanium Implant. Int J Nanomedicine 2024; 19:4835-4856. [PMID: 38828200 PMCID: PMC11141758 DOI: 10.2147/ijn.s461549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
Metallic dental implants have been extensively used in clinical practice due to their superior mechanical properties, biocompatibility, and aesthetic outcomes. However, their integration with the surrounding soft tissue at the mucosal region remains challenging and can cause implant failure due to the peri-implant immune microenvironment. The soft tissue integration of dental implants can be ameliorated through different surface modifications. This review discussed and summarized the current knowledge of topography-mediated immune response and topography-mediated antibacterial activity in Ti dental implants which enhance soft tissue integration and their clinical performance. For example, nanopillar-like topographies such as spinules, and spikes showed effective antibacterial activity in human salivary biofilm which was due to the lethal stretching of bacterial membrane between the nanopillars. The key findings of this review were (I) cross-talk between surface nanotopography and soft tissue integration in which the surface nanotopography can guide the perpendicular orientation of collagen fibers into connective tissue which leads to the stability of soft tissue, (II) nanotubular array could shift the macrophage phenotype from pro-inflammatory (M1) to anti-inflammatory (M2) and manipulate the balance of osteogenesis/osteoclasia, and (III) surface nanotopography can provide specific sites for the loading of antibacterial agents and metallic nanoparticles of clinical interest functionalizing the implant surface. Silver-containing nanotubular topography significantly decreased the formation of fibrous encapsulation in per-implant soft tissue and showed synergistic antifungal and antibacterial properties. Although the Ti implants with surface nanotopography have shown promising in targeting soft tissue healing in vitro and in vivo through their immunomodulatory and antibacterial properties, however, long-term in vivo studies need to be conducted particularly in osteoporotic, and diabetic patients to ensure their desired performance with immunomodulatory and antibacterial properties. The optimization of product development is another challenging issue for its clinical translation, as the dental implant with surface nanotopography must endure implantation and operation inside the dental microenvironment. Finally, the sustainable release of metallic nanoparticles could be challenging to reduce cytotoxicity while augmenting the therapeutic effects.
Collapse
Affiliation(s)
- Mohsen Safaei
- Division of Dental Biomaterials, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Mohammadi
- Biomaterials Research Group, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, Penang, 14300, Malaysia
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Salmia Beddu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional, Jalan IKRAM UNITEN, Kajang, Selangor, 43000, Malaysia
| | - Hamid Reza Mozaffari
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Razieh Rezaei
- Advanced Dental Sciences and Technology Research Center, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roohollah Sharifi
- Department of Endodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nima Fallahnia
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Ebadi
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Mohd Suzeren Md Jamil
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Ahmad Rifqi Md Zain
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhammad Rahimi Yusop
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
10
|
Turkkahraman H, Flanagan S, Zhu T, Bellido TM, Yuan X. The LRP5 high-bone-mass mutation causes alveolar bone accrual with minor craniofacial alteration. J Periodontal Res 2023; 58:723-732. [PMID: 37128744 PMCID: PMC10330384 DOI: 10.1111/jre.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/03/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND AND OBJECTIVE Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5G171V mutation. METHODS To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5HBM ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms. RESULTS LRP5HBM mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5HBM mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5HBM mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge. CONCLUSION LRP5HBM mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.
Collapse
Affiliation(s)
- Hakan Turkkahraman
- Indiana University School of Dentistry, Department of Orthodontics and Oral Facial Genetics, Indianapolis, IN, USA
| | - Shannan Flanagan
- Indiana University School of Medicine, Department of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Tianli Zhu
- Indiana University School of Dentistry, Department of Biomedical Sciences and Comprehensive Care, Indianapolis, IN, USA
| | - Teresita M. Bellido
- University of Arkansas for Medical Sciences, Department of Physiology and Cell Biology, Little Rock, AR, USA
| | - Xue Yuan
- Indiana University School of Medicine, Department of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
- Indiana University School of Medicine, Indiana Center for Musculoskeletal Health, Indianapolis, IN, USA
| |
Collapse
|
11
|
Pizarek JA, Fischer NG, Aparicio C. Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing. Dent Mater 2023; 39:204-216. [PMID: 36642687 PMCID: PMC9899321 DOI: 10.1016/j.dental.2023.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Peri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants - caused by inadequate surface properties - leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing. METHODS We synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like "pro-inflammatory" vs. M2-like "pro-regenerative"). RESULTS IL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls. SIGNIFICANCE Our results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.
Collapse
Affiliation(s)
- John A Pizarek
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; United States Navy Dental Corps, Naval Medical Leader and Professional Development Command, 8955 Wood Road Bethesda, MD 20889, USA
| | - Nicholas G Fischer
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA.
| | - Conrado Aparicio
- MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-212 Moos Tower, 515 Delaware St. SE, Minneapolis, MN 55455, USA; UIC Barcelona - Universitat Internacional de Catalunya, Josep Trueta s/n, 08195 Sant Cugat del Valles, Barcelona, Spain; IBEC- Institute for Bioengineering of Catalonia, Baldiri Reixac 15-21, 08028 Barcelona, Spain.
| |
Collapse
|
12
|
Yuan X, Amin V, Zhu T, Kittaka M, Ueki Y, Bellido TM, Turkkahraman H. Type 1 diabetes mellitus leads to gingivitis and an early compensatory increase in bone remodeling. J Periodontol 2023; 94:277-289. [PMID: 35869905 PMCID: PMC9868190 DOI: 10.1002/jper.22-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/17/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) and periodontitis have long been thought to be biologically connected. Indeed, T1DM is a risk factor for periodontal disease. With the population of diabetic individuals growing, it is more important than ever to understand the negative consequences of diabetes on the periodontium and the mechanisms. The aim of this study was to find out the early effects of T1DM on the periodontium without any experimentally induced periodontitis. METHODS We established the streptozotocin (STZ)-induced diabetic mouse model and examined the periodontium 8 weeks later by histology, molecular and cellular assays. Microcomputed tomographic (𝜇CT) imaging and in vivo fluorochrome labeling were also used to quantify bone volume and mineral apposition rates (MAR). RESULTS The histologic appearance of epithelium tissue, connective tissue, and periodontal ligament in the diabetic condition was comparable with that of control mice. However, immune cell infiltration in the gingiva was dramatically elevated in the diabetic mice, which was accompanied by unmineralized connective tissue degeneration. Bone resorption activity was significantly increased in the diabetic mice, and quantitative 𝜇CT demonstrated the bone volume, the ratio of bone volume over tissue volume, and cemento-enamel junction to alveolar bone crest (CEJ-ABC) in the diabetic condition were equivalent to those in the control group. In vivo fluorochrome labeling revealed increased MAR and bone remodeling in the diabetic mice. Further investigation found the diabetic mice had more osteoprogenitors recruited to the periodontium, allowing more bone formation to balance the enhanced bone resorption. CONCLUSIONS STZ-induced T1DM mice, at an early stage, have elevated gingival inflammation and soft tissue degeneration and increased bone resorption; but still the alveolar bone was preserved by recruiting more osteoprogenitor cells and increasing the rate of bone formation. We conclude that inflammation and periodontitis precede alveolar bone deterioration in diabetes.
Collapse
Affiliation(s)
- Xue Yuan
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Indiana University, Indianapolis, IN, USA
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Vedanshi Amin
- Indiana University School of Dentistry, Indianapolis, IN, USA
| | - Tianli Zhu
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Mizuho Kittaka
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Yasuyoshi Ueki
- Indiana Center for Musculoskeletal Health, School of Medicine, Indiana University, Indianapolis, IN, USA
- Department of Biomedical Sciences and Comprehensive Care, Indiana University, School of Dentistry, Indianapolis, IN, USA
| | - Teresita M. Bellido
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - Hakan Turkkahraman
- Department of Orthodontics and Oral Facial Genetics, Indiana University School of Dentistry, Indianapolis, IN, USA
| |
Collapse
|
13
|
Wang WR, Li J, Gu JT, Hu BW, Qin W, Zhu YN, Guo ZX, Ma YX, Tay F, Jiao K, Niu L. Optimization of Lactoferrin-Derived Amyloid Coating for Enhancing Soft Tissue Seal and Antibacterial Activity of Titanium Implants. Adv Healthc Mater 2023; 12:e2203086. [PMID: 36594680 DOI: 10.1002/adhm.202203086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Indexed: 01/04/2023]
Abstract
A poor seal of the titanium implant-soft tissue interface provokes bacterial invasion, aggravates inflammation, and ultimately results in implant failure. To ensure the long-term success of titanium implants, lactoferrin-derived amyloid is coated on the titanium surface to increase the expression of cell integrins and hemidesmosomes, with the goal of promoting soft tissue seal and imparting antibacterial activity to the implants. The lactoferrin-derived amyloid coated titanium structures contain a large number of amino and carboxyl groups on their surfaces, and promote proliferation and adhesion of epithelial cells and fibroblasts via the PI3K/AKT pathway. The amyloid coating also has a strong positive charge and possesses potent antibacterial activities against Staphylococcus aureus and Porphyromonas gingivalis. In a rat immediate implantation model, the amyloid-coated titanium implants form gingival junctional epithelium at the transmucosal region that resembles the junctional epithelium in natural teeth. This provides a strong soft tissue seal to wall off infection. Taken together, lactoferrin-derived amyloid is a dual-function transparent coating that promotes soft tissue seal and possesses antibacterial activity. These unique properties enable the synthesized amyloid to be used as potential biological implant coatings.
Collapse
Affiliation(s)
- Wan-Rong Wang
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jing Li
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Jun-Ting Gu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Bo-Wen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Wen Qin
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yi-Na Zhu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Zhen-Xing Guo
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Yu-Xuan Ma
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Franklin Tay
- Department of Endodontics, the Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA
| | - Kai Jiao
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| | - Lina Niu
- National Clinical Research Center for Oral Diseases, State Key Laboratory of Military Stomatology, Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
14
|
Platelet-Rich Fibrin Reduces IL-1β Release from Macrophages Undergoing Pyroptosis. Int J Mol Sci 2022; 23:ijms23158306. [PMID: 35955441 PMCID: PMC9368224 DOI: 10.3390/ijms23158306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/24/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Pyroptosis is a catabolic process relevant to periodontal disorders for which interleukin-1β (IL-1β) inflammation is central to the pathophysiology of the disease. Despite platelet-rich fibrin (PRF) anti-inflammatory properties and its application to support periodontal regeneration, the capacity of PRF to modulate pyroptosis, specifically the production and release of IL-1β, remains unknown. The question arises whether PRF could regulate IL-1β release from macrophages in vitro. Methods: To answer this question, RAW 264.7 macrophages and primary macrophages obtained from murine bone marrow were primed with PRF before being challenged by lipopolysaccharide (LPS). Cells were then analysed for the pyroptosis signalling components by gene expression analyses and IL-1β secretion at the protein level. The release of mitochondrial reactive oxygen species (ROS) was also detected. Results: PRF lowered the LPS-induced expression of IL-1β and NLRP3 inflammasome, caspase-11 and IL-18 in primary macrophages, and IL-1β and caspase-11 in RAW 264.7 cells. Additionally, PRF diminished the secretion of IL-1β at the protein level in LPS-induced RAW 264.7 cells. This was shown through immunoassays performed with the supernatant and further confirmed by analysing the lysates of permeabilised cells. Furthermore, PRF reduced the ROS release provoked by LPS in RAW 264.7 cells. Finally, to enhance IL-1β release from the LPS-primed macrophages, we introduced a second signal with adenosine triphosphate (ATP). In this setting, PRF significantly reduced IL-1β release in RAW 264.7 cells and a trend to diminish IL-1β release in primary macrophages. Conclusion: These findings suggest that PRF can reduce IL-1β release and, at least in part, inhibit pyroptosis-related factors in LPS-challenged macrophages.
Collapse
|
15
|
Enamel Matrix Derivative Decreases Pyroptosis-Related Genes in Macrophages. Int J Mol Sci 2022; 23:ijms23095078. [PMID: 35563469 PMCID: PMC9099857 DOI: 10.3390/ijms23095078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Pyroptosis is a caspase-dependent catabolic process relevant to periodontal disorders for which inflammation is central to the pathophysiology of the disease. Although enamel matrix derivative (EMD) has been applied to support periodontal regeneration, its capacity to modulate the expression of pyroptosis-related genes remains unknown. Considering EMD has anti-inflammatory properties and pyroptosis is linked to the activation of the inflammasome in chronic periodontitis, the question arises whether EMD could reduce pyroptosis signalling. Methods: To answer this question, primary macrophages obtained from murine bone marrow and RAW 264.7 macrophages were primed with EMD before being challenged by lipopolysaccharide (LPS). Cells were then analysed for pyroptosis-signalling components by gene expression analyses, interleukin-1β (IL-1β) immunoassay, and the detection of caspase-1 (CAS1). The release of mitochondrial reactive oxygen species (ROS) was also detected. Results: We report here that EMD, like the inflammasome (NLRP3) and CAS1 specific inhibitors—MCC950 and Ac-YVAD-cmk, respectively—lowered the LPS-induced expression of NLRP3 in primary macrophages (EMD: p = 0.0232; MCC950: p = 0.0426; Ac-YVAD-cmk: p = 0.0317). EMD further reduced the LPS-induced expression of NLRP3 in RAW 264.7 cells (p = 0.0043). There was also a reduction in CAS1 and IL-1β in RAW 264.7 macrophages on the transcriptional level (p = 0.0598; p = 0.0283; respectively), in IL-1β protein release (p = 0.0313), and CAS1 activity. Consistently, EMD, like MCC950 and Ac-YVAD-cmk, diminished the ROS release in activated RAW 264.7 cells. In ST2 murine mesenchymal cells, EMD could not be tested because LPS, saliva, and IL-1β + TNF-α failed to provoke pyroptosis signalling. Conclusion: These findings suggest that EMD is capable of dampening the expression of pyroptosis-related genes in macrophages.
Collapse
|
16
|
Integration of collagen fibers in connective tissue with dental implant in the transmucosal region. Int J Biol Macromol 2022; 208:833-843. [PMID: 35367473 DOI: 10.1016/j.ijbiomac.2022.03.195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Dental implants have been widely accepted as an ideal therapy to replace the missing teeth for its good performance in aspects of mechanical properties and aesthetic outcomes. Its restorative success is contributed by not only the successful osseointegration of the implant but also the tight soft tissue integration, especially the collagen fibers, in the transmucosal region. Soft tissue attaching to the dental implant/abutment is overall similar, but in some aspects distinct with that seen around natural teeth and soft tissue integration can be enhanced via several surface modification methods. This review is going to focus on the current knowledge of the transmucosal zone around the dental implants (compared with natural teeth), and latest strategies in use to fine-tune the collagen fibers assembly in the connective tissue, in an attempt to enhance soft tissue integration.
Collapse
|
17
|
Chen Y, Shi T, Li Y, Huang L, Yin D. Fusobacterium nucleatum: The Opportunistic Pathogen of Periodontal and Peri-Implant Diseases. Front Microbiol 2022; 13:860149. [PMID: 35369522 PMCID: PMC8966671 DOI: 10.3389/fmicb.2022.860149] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/23/2022] [Indexed: 02/05/2023] Open
Abstract
Peri-implant diseases are considered to be a chronic destructive inflammatory destruction/damage occurring in soft and hard peri-implant tissues during the patient’s perennial use after implant restoration and have attracted much attention because of their high incidence. Although most studies seem to suggest that the pathogenesis of peri-implant diseases is similar to that of periodontal diseases and that both begin with microbial infection, the specific mechanism of peri-implant diseases remains unclear. As an oral opportunistic pathogen, Fusobacterium nucleatum (F. nucleatum) has been demonstrated to be vital for the occurrence and development of many oral infectious diseases, especially periodontal diseases. More notably, the latest relevant studies suggest that F. nucleatum may contribute to the occurrence and development of peri-implant diseases. Considering the close connection between peri-implant diseases and periodontal diseases, a summary of the role of Fusobacterium nucleatum in periodontal diseases may provide more research directions and ideas for the peri-implantation mechanism. In this review, we summarize the effects of F. nucleatum on periodontal diseases by biofilm formation, host infection, and host response, and then we establish the relationship between periodontal and peri-implant diseases. Based on the above aspects, we discuss the importance and potential value of F. nucleatum in peri-implant diseases.
Collapse
|
18
|
Barootchi S, Tavelli L, Majzoub J, Chan H, Wang H, Kripfgans O. Ultrasonographic Tissue Perfusion in Peri-implant Health and Disease. J Dent Res 2022; 101:278-285. [PMID: 34515570 PMCID: PMC8982012 DOI: 10.1177/00220345211035684] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Color flow ultrasonography has played a crucial role in medicine for its ability to assess dynamic tissue perfusion and blood flow variations as an indicator of a pathologic condition. While this feature of ultrasound is routinely employed in various medical fields, its intraoral application for the assessment of tissue perfusion at diseased versus healthy dental implants has never been explored. We tested the hypothesis that quantified tissue perfusion of power Doppler ultrasonography correlates with the clinically assessed inflammation of dental implants. Specifically, we designed a discordant-matched case-control study in which patients with nonadjacent dental implants with different clinical diagnoses (healthy, peri-implant mucositis, or peri-implantitis) were scanned and analyzed with real-time ultrasonography. Forty-two posterior implants in 21 patients were included. Ultrasound scans were obtained at the implant regions of midbuccal, mesial/distal (averaged as interproximal), and transverse to compute the velocity- and power-weighted color pixel density from color velocity (CV) and color power (CP), respectively. Linear mixed effect models were then used to assess the relationship between the clinical diagnoses and ultrasound CV and CP. Overall, the results strongly suggested that ultrasound's quantified CV and CP directly correlate with the clinical diagnosis of dental implants at health, peri-implant mucositis, and peri-implantitis. This study showed for the first time that ultrasound color flow can be applicable in the diagnosis of peri-implant disease and can act as a valuable tool for evaluating the degree of clinical inflammation at implant sites.
Collapse
Affiliation(s)
- S. Barootchi
- Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA,Center for Clinical Research and
Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Ann Arbor, MI,
USA,S. Barootchi, Department of
Periodontics and Oral Medicine, School of Dentistry, University of
Michigan, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA.
| | - L. Tavelli
- Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA,Center for Clinical Research and
Evidence Synthesis in Oral Tissue Regeneration (CRITERION), Ann Arbor, MI,
USA
| | - J. Majzoub
- Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA
| | - H.L. Chan
- Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA
| | - H.L. Wang
- Department of Periodontics and
Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI,
USA
| | - O.D. Kripfgans
- Department of Biomedical
Engineering, College of Engineering, University of Michigan, Ann Arbor, MI,
USA,Department of Radiology,
University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|