1
|
Mi Q, Wu X, Chen Y, Meng W. MAIT cells modulating the oral lichen planus immune microenvironment: a cellular crosstalk perspective. Inflamm Res 2025; 74:10. [PMID: 39762617 DOI: 10.1007/s00011-024-01990-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025] Open
Abstract
Mucosal-associated invariant T (MAIT) cells, a type of T lymphocytes with innate-like characteristics, are crucial in bridging innate and adaptive immunity. When activated, MAIT cells release various inflammatory molecules and swiftly respond to antigens. Notably, numerous studies highlight the significant impact of MAIT cells on tumors and various immune disorders by influencing the immune microenvironment. Oral lichen planus (OLP) is an immune-mediated inflammatory condition mainly involving T lymphocytes. Previous research primarily focused on T cells alone, neglecting the broader immune environment. However, there is a current growing recognition of the complex interactions among multiple immune cells and inflammatory factors in patients with OLP. This immune microenvironment comprises T lymphocytes, fibroblasts, keratinocytes, dendritic cells, macrophages, inflammation-related cytokines, and chemokines, orchestrating intricate interactions that contribute to OLP initiation and persistence. Therefore, this review consolidates current research on the interplay between MAIT cells and other immune cells within the OLP microenvironment. We also delve into potential mechanisms through which MAIT cells regulate inflammation in patients with OLP, aiming to further explore the role of MAIT cells in these patients.
Collapse
Affiliation(s)
- Qian Mi
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoli Wu
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuhe Chen
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Wenxia Meng
- Departments of Oral Medicine, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Gutierrez LS, Zandim-Barcelos DL, Eick S, Lopes MES, Cirelli JA, Nogueira AVB, Deschner J. Possible immunomodulatory role of Filifactor alocis through beta-defensin 2 in gingival keratinocytes. Clin Oral Investig 2024; 28:658. [PMID: 39592494 DOI: 10.1007/s00784-024-06043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024]
Abstract
OBJECTIVES The present study aimed to investigate a possible immunomodulatory role of the periodontopathogen Filifactor alocis through the antimicrobial peptide hBD-2 on the expression of chemokines in human gingival keratinocytes. MATERIALS AND METHODS Cells were cultured in the presence or absence of periodontopathogenic bacteria, such as F. alocis, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, and Treponema denticola, to evaluate the regulation of hBD-2, CXCL8 and CCL20. Furthermore, the cells were exposed or not to hBD-2 and the expression of CXCL8 and CCL20 and their receptors was evaluated. RESULTS All bacteria induced a significant upregulation of hBD-2, CXCL8, and CCL20 gene expressions. In addition, F. alocis significantly increased their protein levels, as detected by ELISA. Pre-incubation of the cells with the TLR2 inhibitor resulted in a significant downregulation of hBD-2 expression in F. alocis-treated cells. Gingival keratinocytes exposed to hBD-2 resulted in a significant and dose-dependent increase of all chemokines and their receptors. CONCLUSIONS F. alocis increased the production of chemotactic cytokines, suggesting an increase in the recruitment of immunoinflammatory cells in periodontal diseases. The chemotaxis-promoting effect is partly direct, but is also mediated via hBD-2. F. alocis stimulates the synthesis of hBD-2, which in turn could promote the expression and synthesis of these chemokines and their receptors. In addition, hBD-2 has an autostimulatory effect and stimulates the synthesis of these chemokines, so that the chemotaxis triggered by F. alocis is further fueled. CLINICAL RELEVANCE F. alocis and hBD-2 have a significant role in periodontitis, showing their importance for diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Lorena S Gutierrez
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Daniela L Zandim-Barcelos
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil.
| | - Sigrun Eick
- Laboratory of Oral Microbiology, Department of Periodontology, University of Bern, Bern, 3010, Switzerland
| | - Maria Eduarda S Lopes
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Joni A Cirelli
- Department of Diagnosis and Surgery, School of Dentistry at Araraquara, São Paulo State University-UNESP, Araraquara, SP, 14801-903, Brazil
| | - Andressa V B Nogueira
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - James Deschner
- Department of Periodontology and Operative Dentistry, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| |
Collapse
|
3
|
MohanaSundaram A, Gohil NV, Etekochay MO, Patel P, Gurajala S, Sathanantham ST, Nsengiyumva M, Kumar S, Emran TB. Mycobacterium tuberculosis : a new hitchhiker in the etiopathogenesis of periodontitis. Int J Surg 2024; 110:3606-3616. [PMID: 38231241 PMCID: PMC11175725 DOI: 10.1097/js9.0000000000001122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Periodontitis, a chronic inflammatory disease of the gums affects both the ligament and alveolar bone. A severe form of periodontal disease affects a strikingly high number of one billion adults globally. The disease permutes both the soft and hard tissues of the oral cavity leading to localized and systemic diseases. Periodontitis has a deleterious impact on systemic health causing diabetes, cardiovascular diseases (CVD), and other disease. The cause of the enhanced inflammatory process is due to dysbiosis and an unregulated immune response. Innate immune response and T cells trigger uninhibited cytokine release causing an unwarranted inflammatory response. The RANK- RANKL interaction between osteoblasts, immune cells, and progenitor osteoclasts results in the maturation of osteoclasts, which promote bone resorption. It is well established that dysbiosis of the oral cavity has been implicated in periodontitis. But emerging reports suggest that the pulmonary pathogen, Mycobacterium tuberculosis (Mtb), causes extrapulmonary diseases such as periodontitis. Many clinical case reports advocate the involvement of Mtb in periodontitis, which poses a threat with the surge of tuberculosis in HIV and other immunocompromised individuals. Fostering a better understanding of the mechanism, causative agents and control on inflammatory response is imperative in the prevention and treatment of periodontitis.
Collapse
Affiliation(s)
| | | | | | | | - Swathi Gurajala
- College of Applied Medical Sciences in Jubail, Imam Abdulrahman bin Faisal University, Saudi Arabia
| | | | | | - Santosh Kumar
- Karnavati School of Dentistry Karnavati University Gandhinagar Gujarat, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Konecny AJ, Huang Y, Setty M, Prlic M. Signals that control MAIT cell function in healthy and inflamed human tissues. Immunol Rev 2024; 323:138-149. [PMID: 38520075 DOI: 10.1111/imr.13325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells have a semi-invariant T-cell receptor that allows recognition of antigen in the context of the MHC class I-related (MR1) protein. Metabolic intermediates of the riboflavin synthesis pathway have been identified as MR1-restricted antigens with agonist properties. As riboflavin synthesis occurs in many bacterial species, but not human cells, it has been proposed that the main purpose of MAIT cells is antibacterial surveillance and protection. The majority of human MAIT cells secrete interferon-gamma (IFNg) upon activation, while some MAIT cells in tissues can also express IL-17. Given that MAIT cells are present in human barrier tissues colonized by a microbiome, MAIT cells must somehow be able to distinguish colonization from infection to ensure effector functions are only elicited when necessary. Importantly, MAIT cells have additional functional properties, including the potential to contribute to restoring tissue homeostasis by expression of CTLA-4 and secretion of the cytokine IL-22. A recent study provided compelling data indicating that the range of human MAIT cell functional properties is explained by plasticity rather than distinct lineages. This further underscores the necessity to better understand how different signals regulate MAIT cell function. In this review, we highlight what is known in regards to activating and inhibitory signals for MAIT cells with a specific focus on signals relevant to healthy and inflamed tissues. We consider the quantity, quality, and the temporal order of these signals on MAIT cell function and discuss the current limitations of computational tools to extrapolate which signals are received by MAIT cells in human tissues. Using lessons learned from conventional CD8 T cells, we also discuss how TCR signals may integrate with cytokine signals in MAIT cells to elicit distinct functional states.
Collapse
Affiliation(s)
- Andrew J Konecny
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
| | - Yin Huang
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA
| | - Manu Setty
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Herbold Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Immunology, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Ustianowska K, Ustianowski Ł, Bakinowska E, Kiełbowski K, Szostak J, Murawka M, Szostak B, Pawlik A. The Genetic Aspects of Periodontitis Pathogenesis and the Regenerative Properties of Stem Cells. Cells 2024; 13:117. [PMID: 38247810 PMCID: PMC10814055 DOI: 10.3390/cells13020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/23/2024] Open
Abstract
Periodontitis (PD) is a prevalent and chronic inflammatory disease with a complex pathogenesis, and it is associated with the presence of specific pathogens, such as Porphyromonas gingivalis. Dysbiosis and dysregulated immune responses ultimately lead to chronic inflammation as well as tooth and alveolar bone loss. Multiple studies have demonstrated that genetic polymorphisms may increase the susceptibility to PD. Furthermore, gene expression is modulated by various epigenetic mechanisms, such as DNA methylation, histone modifications, or the activity of non-coding RNA. These processes can also be induced by PD-associated pathogens. In this review, we try to summarize the genetic processes that are implicated in the pathogenesis of PD. Furthermore, we discuss the use of these mechanisms in diagnosis and therapeutic purposes. Importantly, novel treatment methods that could promote tissue regeneration are greatly needed in PD. In this paper, we also demonstrate current evidence on the potential use of stem cells and extracellular vesicles to stimulate tissue regeneration and suppress inflammation. The understanding of the molecular mechanisms involved in the pathogenesis of PD, as well as the impact of PD-associated bacteria and stem cells in these processes, may enhance future research and ultimately improve long-term treatment outcomes.
Collapse
Affiliation(s)
- Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Estera Bakinowska
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Kajetan Kiełbowski
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Joanna Szostak
- Department of Experimental and Clinical Pharmacology, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Martyna Murawka
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, 70-111 Szczecin, Poland; (K.U.); (Ł.U.); (E.B.); (K.K.); (M.M.); (B.S.)
| |
Collapse
|
6
|
Abdullameer MA, Abdulkareem AA. Diagnostic potential of salivary interleukin-17, RANKL, and OPG to differentiate between periodontal health and disease and discriminate stable and unstable periodontitis: A case-control study. Health Sci Rep 2023; 6:e1103. [PMID: 36778772 PMCID: PMC9900720 DOI: 10.1002/hsr2.1103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/20/2023] [Accepted: 01/28/2023] [Indexed: 02/08/2023] Open
Abstract
Background and Aims Limitations of the conventional diagnostic techniques urged researchers to seek novel methods to predict, diagnose, and monitor periodontal disease. Use of the biomarkers available in oral fluids could be a revolutionary surrogate for the manual probing/diagnostic radiograph. Several salivary biomarkers have the potential to accurately discriminate periodontal health and disease. This study aimed to determine the diagnostic sensitivity and specificity of salivary interleukin (IL)-17, receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), RANKL/OPG for differentiating (1) periodontal health from disease and (2) stable and unstable periodontitis. Methods Participants with periodontitis (n = 50) and gingivitis (n = 25), both diseases represented the cases, and subjects with healthy periodontium (n = 15) as a control were recruited for this study. Periodontitis cases were further equally subdivided into stable and unstable. Whole unstimulated salivary sample were collected from all participants. Periodontal parameters including bleeding on probing, probing pocket depth, clinical attachment loss, and number of missing teeth were recorded. The protein levels of salivary IL-17, RANKL, and OPG were determined by using enzyme-linked immunosorbent assays technique. Results Salivary IL-17, OPG, RANKL, and RANKL/OPG showed high sensitivity and specificity to differentiate periodontal health from gingivitis and periodontitis. Similar pattern was observed in discriminating stable and unstable periodontitis. Salivary IL-17 and RANKL showed a good accuracy to differentiate gingivitis from periodontitis. However, OPG and RANKL/OPG did not exhibit enough sensitivity and specificity to differentiate the latter conditions. Conclusion Salivary IL-17, RANKL, OPG, and RANKL/OPG system are potential candidates for differentiating periodontal health and disease and discriminate stable and unstable periodontitis.
Collapse
Affiliation(s)
- Marwa A. Abdullameer
- Department of HealthMinistry of HealthBaghdadIraq
- College of DentistryUniversity of BaghdadBaghdadIraq
| | | |
Collapse
|
7
|
Jiang X, Zhao Q, Huang Z, Ma F, Chen K, Li Z. Relevant mechanisms of MAIT cells involved in the pathogenesis of periodontitis. Front Cell Infect Microbiol 2023; 13:1104932. [PMID: 36896188 PMCID: PMC9988952 DOI: 10.3389/fcimb.2023.1104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a group of unconventional T cells that are abundant in the human body, recognize microbial-derived vitamin B metabolites presented by MHC class I-related protein 1 (MR1), and rapidly produce proinflammatory cytokines, which are widely involved in the immune response to various infectious diseases. In the oral mucosa, MAIT cells tend to accumulate near the mucosal basal lamina and are more inclined to secrete IL-17 when activated. Periodontitis is a group of diseases that manifests mainly as inflammation of the gums and resorption of the alveolar bone due to periodontal tissue invasion by plaque bacteria on the dental surface. The course of periodontitis is often accompanied by a T-cell-mediated immune response. This paper discussed the pathogenesis of periodontitis and the potential contribution of MAIT cells to periodontitis.
Collapse
Affiliation(s)
- Xinrong Jiang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Qingtong Zhao
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Department of Stomatology, The Sixth Affiliated Hospital of Jinan University, Dongguan, Guangdong, China
| | - Zhanyu Huang
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Fengyu Ma
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Kexiao Chen
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- College of Stomatology, Jinan University, Guangzhou, Guangdong, China
| | - Zejian Li
- Hospital of Stomatology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, Guangzhou, Guangdong, China
- Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou, Guangdong, China
- *Correspondence: Zejian Li,
| |
Collapse
|
8
|
Erythropoietin Activates Autophagy to Regulate Apoptosis and Angiogenesis of Periodontal Ligament Stem Cells via the Akt/ERK1/2/BAD Signaling Pathway under Inflammatory Microenvironment. Stem Cells Int 2022; 2022:9806887. [PMID: 36199627 PMCID: PMC9527112 DOI: 10.1155/2022/9806887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/18/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Angiogenic tissue engineering is a vital problem waiting to be settled for periodontal regeneration. Erythropoietin, a multieffect cytokine, has been reported as a protective factor for cell fate. According to our previous study, erythropoietin has a significantly angiogenic effect on periodontal ligament stem cells. To further explore its potential effects and mechanism, we studied biological behaviors of periodontal ligament stem cells under inflammatory microenvironment induced by different concentrations (0, 10, 20, 50, and 100 ng/mL) of tumor necrosis factor-α (TNF-α) and examined how different concentrations (0, 5, 10, 20, and 50 IU/mL) of erythropoietin changed biological behaviors of periodontal ligament stem cells. Materials and Methods. Cell Counting Kit-8 was used for cell proliferation assay. Annexin V-PI-FITC was used for cell apoptosis through flow cytometry. Matrigel plug was adopted to measure the angiogenic capacity in vitro. RNA sequencing was used to detect the downstream signaling pathway. Quantitative real-time polymerase chain reaction was conducted to examine mRNA expression level. Western blot and immunofluorescence were applied to testify the protein expression level. Results. Periodontal ligament stem cells upregulated apoptosis and suppressed autophagy and angiogenesis under inflammatory microenvironment. Erythropoietin could activate autophagy to rescue apoptosis and angiogenesis levels of periodontal ligament stem cells through the Akt/Erk1/2/BAD signaling pathway under inflammatory microenvironment. Conclusions. Erythropoietin could protect periodontal ligament stem cells from inflammatory microenvironment, which provided a novel theory for periodontal regeneration.
Collapse
|