1
|
Lesch KP, Gorbunov N. Antisocial personality disorder:Failure to balance excitation/inhibition? Neuropharmacology 2025; 268:110321. [PMID: 39855295 DOI: 10.1016/j.neuropharm.2025.110321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
While healthy brain function relies on a dynamic but tightly regulated interaction between excitation (E) and inhibition (I), a spectrum of social cognition disorders, including antisocial behavior and antisocial personality disorder (ASPD), frequently ensuing from irregular neurodevelopment, may be associated with E/I imbalance and concomitant alterations in neural connectivity. Technological advances in the evaluation of structural and functional E/I balance proxies in clinical settings and in human cell culture models provide a general basis for identification of biomarkers providing a powerful concept for prevention and intervention across different dimensions of mental health and disease. In this perspective we outline a framework for research to characterize neurodevelopmental pathways to antisocial behavior and ASPD driven by (epi)genetic factors across life, and to identify molecular targets for preventing the detrimental effects of cognitive dysfunction and maladaptive social behavior, considering psychosocial experience; to validate signatures of E/I imbalance and altered myelination proxies as biomarkers of pathogenic neural circuitry mechanisms to determine etiological processes in the transition from mental health to antisocial behavior and ASPD and in the switch from prevention to treatment; to develop a neurobiologically-grounded integrative model of antisocial behavior and ASPD resultant of disrupted E/I balance, allowing to establish objective diagnoses and monitoring tools, to personalize prevention and therapeutic decisions, to predict treatment response, and thus counteract relapse; and finally, to promote transformation of dimensional disorder taxonomy and to enhance societal awareness and reception of the neurobiological basis of antisocial behavior and ASPD.
Collapse
Affiliation(s)
- Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Child- and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands.
| | - Nikita Gorbunov
- Division of Molecular Psychiatry, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany; Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
2
|
Zhang Z, Yu J, Li Q, Zhao Y, Tang L, Peng Y, Liu Y, Gan C, Liu K, Wang J, Chen L, Luo Q, Qiu H, Ren H, Jiang C. Unraveling the causal pathways of maternal smoking and breastfeeding in the development of neuropsychiatric disorders: A Mendelian randomization perspective. J Affect Disord 2025; 373:35-43. [PMID: 39716673 DOI: 10.1016/j.jad.2024.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Maternal smoking around birth (MSAB) and early-life breastfeeding (BAB) represent critical factors that may exert enduring effects on neuropsychiatric health. Although previous research has examined these exposures separately, the combined impact of both on disorders such as ADHD, ASD, BD, MDD, ANX, and SCZ remains unclear. This study aims to evaluate the causal relationships between MSAB and BAB and the risk of developing these neuropsychiatric disorders through Mendelian randomization (MR) analysis. METHODS A two-sample MR analysis was conducted to investigate the potential causal effects of MSAB and BAB on a range of neuropsychiatric disorders. Genetic variants associated with MSAB and BAB were obtained from genome-wide association studies (GWAS), while summary data for neuropsychiatric disorders were gathered from large GWAS consortia. The primary MR analysis was conducted using the inverse-variance weighted (IVW) method, with additional sensitivity analyses performed to confirm the robustness of the findings. A False Discovery Rate (FDR) correction was applied to control for the issue of multiple comparisons and reduce the risk of Type I errors. RESULTS The IVW analysis indicated that there were significant associations between MSAB and an increased risk of the following conditions: The IVW analysis indicated significant associations between MSAB and an increased risk of ADHD (odds ratio [OR] = 5.36, 95 % confidence interval [CI] = 2.58-7.63, p-value for false discovery rate [PFDR] = 0.004) and major depressive disorder (MDD) (OR = 1.92, 95 % CI = 1.29-2.88, PFDR = 0. Furthermore, significant associations were observed between MSAB and an increased risk of bipolar disorder (BD) (OR = 6.33, 95 % CI = 1.56-8.73, PFDR = 0.020), anxiety disorders (ANX) (OR = 1.03, 95 % CI = 1.00-1.05, PFDR = 0.039), and attention deficit hyperactivity disorder (ADHD) (OR = 5.36, 95 % CI = 2.58-7.63, PFDR = 0.004). No significant associations were identified between MSAB and Autism Spectrum Disorder (ASD) or Schizophrenia (SCZ). In contrast, the results indicated that BAB was associated with a protective effect against ADHD (OR = 0.17, 95 % CI = 0.04-0.63, PFDR = 0.025), MDD (OR = 0.26, 95 % CI = 0.12-0.58, PFDR = 0.006), and ANX (OR = 0.96, 95 % CI = 0.49-0.99, PFDR = 0.030). No significant effects of BAB were observed for ASD, BD, or SCZ. CONCLUSIONS This study shows that maternal smoking around the time of birth increases the risk of attention-deficit/hyperactivity disorder (ADHD), major depressive disorder (MDD), bipolar disorder (BD), and anxiety disorders (ANX). In contrast, breastfeeding during infancy offers protective benefits against ADHD, MDD, and ANX. These findings underscore the vital importance of maternal health behaviours during the perinatal and infant feeding periods. They also highlight the need for targeted public health interventions aimed at reducing the risk of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jiangyou Yu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qiyin Li
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yuan Zhao
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Liwei Tang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Yadong Peng
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Ying Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Cheng Gan
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Keyi Liu
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Jing Wang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Lixia Chen
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China
| | - Qinghua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Haitang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hao Ren
- Chongqing Changshou District, Mental Health Center, Chongqing 401231, China.
| | - Chenggang Jiang
- Department of Sleep and Psychology, Chongqing Health Center for Women and Children, Chongqing 401147, China; Department of Sleep and Psychology, Women and Children's Hospital of Chongqing Medical University, 401147, China.
| |
Collapse
|
3
|
Scorrano G, Di Francesco L, Di Ludovico A, Chiarelli F, Matricardi S. Exploring the Landscape of Pre- and Post-Synaptic Pediatric Disorders with Epilepsy: A Narrative Review on Molecular Mechanisms Involved. Int J Mol Sci 2024; 25:11982. [PMID: 39596051 PMCID: PMC11593774 DOI: 10.3390/ijms252211982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of conditions affecting brain development, with variable degrees of severity and heterogeneous clinical features. They include intellectual disability (ID), autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), often coexisting with epilepsy, extra-neurological comorbidities, and multisystemic involvement. In recent years, next-generation sequencing (NGS) technologies allowed the identification of several gene pathogenic variants etiologically related to these disorders in a large cohort of affected children. These genes encode proteins involved in synaptic homeostasis, such as SNARE proteins, implicated in calcium-triggered pre-synaptic release of neurotransmitters, or channel subunit proteins, such as post-synaptic ionotropic glutamate receptors involved in the brain's fast excitatory neurotransmission. In this narrative review, we dissected emerged molecular mechanisms related to NDDs and epilepsy due to defects in pre- and post-synaptic transmission. We focused on the most recently discovered SNAREopathies and AMPA-related synaptopathies.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Ludovica Di Francesco
- Department of Neonatology, University of L’Aquila, San Salvatore Hospital, 67100 L’Aquila, Italy;
| | - Armando Di Ludovico
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Sant’Annunziata Hospital, 66100 Chieti, Italy; (G.S.); (A.D.L.); (F.C.)
| |
Collapse
|
4
|
Srivastava S, Yang F, Prohl AK, Davis PE, Capal JK, Filip-Dhima R, Bebin EM, Krueger DA, Northrup H, Wu JY, Warfield SK, Sahin M, Zhang B. Abnormality of Early White Matter Development in Tuberous Sclerosis Complex and Autism Spectrum Disorder: Longitudinal Analysis of Diffusion Tensor Imaging Measures. J Child Neurol 2024; 39:178-189. [PMID: 38751192 PMCID: PMC11220686 DOI: 10.1177/08830738241248685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Background: Abnormalities in white matter development may influence development of autism spectrum disorder in tuberous sclerosis complex (TSC). Our goals for this study were as follows: (1) use data from a longitudinal neuroimaging study of tuberous sclerosis complex (TACERN) to develop optimized linear mixed effects models for analyzing longitudinal, repeated diffusion tensor imaging metrics (fractional anisotropy, mean diffusivity) pertaining to select white matter tracts, in relation to positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months, and (2) perform an exploratory analysis using optimized models applied to all white matter tracts from these data. Methods: Eligible participants (3-12 months) underwent brain magnetic resonance imaging (MRI) at repeated time points from ages 3 to 36 months. Positive Autism Diagnostic Observation Schedule-Second Edition classification at 36 months was used. Linear mixed effects models were fine-tuned separately for fractional anisotropy values (using fractional anisotropy corpus callosum as test outcome) and mean diffusivity values (using mean diffusivity right posterior limb internal capsule as test outcome). Fixed effects included participant age, within-participant longitudinal age, and autism spectrum disorder diagnosis. Results: Analysis included data from n = 78. After selecting separate optimal models for fractional anisotropy and mean diffusivity values, we applied these models to fractional anisotropy and mean diffusivity of all 27 white matter tracts. Fractional anisotropy corpus callosum was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = 0.0093, P = .0612), and mean diffusivity right inferior cerebellar peduncle was related to positive Autism Diagnostic Observation Schedule-Second Edition classification (coefficient = -0.00002071, P = .0445), though these findings were not statistically significant after multiple comparisons correction. Conclusion: These optimized linear mixed effects models possibly implicate corpus callosum and cerebellar pathology in development of autism spectrum disorder in tuberous sclerosis complex, but future studies are needed to replicate these findings and explore contributors of heterogeneity in these models.
Collapse
Affiliation(s)
- Siddharth Srivastava
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Fanghan Yang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Anna K. Prohl
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Peter E. Davis
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Jamie K. Capal
- Carolina Institute for Developmental Disabilities, Carrboro, NC, USA
| | - Rajna Filip-Dhima
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - E. Martina Bebin
- Department of Neurology, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Darcy A. Krueger
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth) and Children’s Memorial Hermann Hospital, Houston, TX, USA
| | - Joyce Y. Wu
- Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Simon K. Warfield
- Computational Radiology Laboratory, Department of Radiology, Boston Children’s Hospital, Boston, MA, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Bo Zhang
- Department of Neurology and ICCTR Biostatistics and Research Design Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
5
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
6
|
Schneider SA, Mueller C, Biskup S, Fietzek UM, Schroeder AS. Neurodevelopmental disorder with dystonia due to SOX6 mutations. Mol Genet Genomic Med 2022; 10:e2051. [PMID: 36069193 PMCID: PMC9747553 DOI: 10.1002/mgg3.2051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mutations in SOX6 have recently been recognized as a new molecular cause of neurodevelopmental disorders characterized by intellectual disability, behavioral changes, and nonspecific facial and digital skeletal abnormalities. To date, <25 cases have been reported in the literature. METHODS AND FINDINGS Here we report a new case of SOX6-associated neurodegeneration and expand the phenotype to include ceratoconus. The clinical picture consisted of early onset mildly reduced intellectual function, facial asymmetry, and dystonic tremor of hands and neck, substantially improved by levodopa. Skeletal abnormalities included scoliosis and hypertrophy of the mandibular coronoid process. A heterozygous de novo loss-of-function variant in SOX6 (c.277 C>T. p.Arg93*) was molecularly confirmed which leads to truncation of the SOX6 protein in its N-terminus, upstream of any known functional domain. CONCLUSION SOX6-associated neurodevelopmental delayis ultrarare with less than 25 cases described in the literature. We report a new case who presented with early-onset mildly reduced intellectual function, facial asymmetry, skeletal abnormalities and dystonic tremor of hands and neck, substantially improved by levodopa. Given the therapeutic implications, SOX6 mutations should be considered in patients with complex dystonia parkinsonism.
Collapse
Affiliation(s)
- Susanne A. Schneider
- Department of NeurologyUniversity Hospital, Ludwig Maximilians UniversitätMunichGermany
| | - Christine Mueller
- Department of Pediatric Neurology, Developmental Medicine, Social Pediatrics, Dr. von Hauner Children's HospitalLMU ‐ University Hospital, Ludwig Maximilians UniversitätMunichGermany
| | - Saskia Biskup
- Center for Genomics and Transcriptomics CeGaT GmbH and Praxis für Humangenetik TübingenTübingenGermany
| | - Urban M. Fietzek
- Department of NeurologyUniversity Hospital, Ludwig Maximilians UniversitätMunichGermany,Department of Neurology and Clinical NeurophysiologySchön Klinik München SchwabingMunichGermany
| | - Andreas Sebastian Schroeder
- Department of Pediatric Neurology, Developmental Medicine, Social Pediatrics, Dr. von Hauner Children's HospitalLMU ‐ University Hospital, Ludwig Maximilians UniversitätMunichGermany
| |
Collapse
|
7
|
Khogeer AA, AboMansour IS, Mohammed DA. The Role of Genetics, Epigenetics, and the Environment in ASD: A Mini Review. EPIGENOMES 2022; 6:15. [PMID: 35735472 PMCID: PMC9222497 DOI: 10.3390/epigenomes6020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 01/21/2023] Open
Abstract
According to recent findings, variances in autism spectrum disorder (ASD) risk factors might be determined by several factors, including molecular genetic variants. Accumulated evidence has also revealed the important role of biological and chemical pathways in ASD aetiology. In this paper, we assess several reviews with regard to their quality of evidence and provide a brief outline of the presumed mechanisms of the genetic, epigenetic, and environmental risk factors of ASD. We also review some of the critical literature, which supports the basis of each factor in the underlying and specific risk patterns of ASD. Finally, we consider some of the implications of recent research regarding potential molecular targets for future investigations.
Collapse
Affiliation(s)
- Asim A. Khogeer
- Research Department, The Strategic Planning Administration, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah 24382, Saudi Arabia
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
- Scientific Council, Molecular Research and Training Center, iGene, Jeddah 3925, Saudi Arabia
| | - Iman S. AboMansour
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia;
- Neurogenetic Section, Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 2865, Saudi Arabia
| | - Dia A. Mohammed
- Medical Genetics Unit, Maternity & Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah 24382, Saudi Arabia;
| |
Collapse
|
8
|
Plekanchuk VS, Prokudina OI, Ryazanova MA. Social behavior and spatial orientation in rat strains with genetic predisposition to catatonia (GC) and stereotypes (PM). Vavilovskii Zhurnal Genet Selektsii 2022; 26:281-289. [PMID: 35733816 PMCID: PMC9164122 DOI: 10.18699/vjgb-22-35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 11/19/2022] Open
Abstract
Various psychopathologies, including schizophrenia, bipolar disorder and major depression, are associated with abnormalities in social behavior and learning. One of the syndromes that may also take place in these disorders is catatonia. Catatonia is a psychomotor syndrome in which motor excitement, stereotypy, stuporous state, including the phenomenon of “waxy flexibility” (catalepsy), can be observed. Rats with genetic catatonia (GC) and pendulum-like movements (PM) of the anterior half of the body have physiological and behavioral changes similar to those observed in schizophrenia and depression in humans and can be considered as incomplete experimental models of these pathologies. The social behavior of the GC and PM rats has not been previously studied, and the cognitive abilities of animals of these strains are also insufficiently studied. To determine whether the GC and PM rats have changes in social behavior and spatial learning, behavioral phenotyping was performed in the residentintruder test, three-chamber test, Barnes maze test. Some deviations in social behavior, such as increased offensive aggression in PM rats in the resident-intruder test, increased or decreased social interactions depending on the environment in different tests in GC, were shown. In addition, principal component analysis revealed a negative association between catatonic freezing and the socialization index in the three-chamber test. Decreased locomotor activity of GС rats can adversely affect the performance of tasks on spatial memory. It has been shown that PM rats do not use a spatial strategy in the Barnes maze, which may indicate impairment of learning and spatial memory.
Collapse
Affiliation(s)
- V. S. Plekanchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
| | - O. I. Prokudina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - M. A. Ryazanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
9
|
Pohl TT, Hörnberg H. Neuroligins in neurodevelopmental conditions: how mouse models of de novo mutations can help us link synaptic function to social behavior. Neuronal Signal 2022; 6:NS20210030. [PMID: 35601025 PMCID: PMC9093077 DOI: 10.1042/ns20210030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/19/2022] Open
Abstract
Neurodevelopmental conditions (or neurodevelopmental disorders, NDDs) are highly heterogeneous with overlapping characteristics and shared genetic etiology. The large symptom variability and etiological heterogeneity have made it challenging to understand the biological mechanisms underpinning NDDs. To accommodate this individual variability, one approach is to move away from diagnostic criteria and focus on distinct dimensions with relevance to multiple NDDs. This domain approach is well suited to preclinical research, where genetically modified animal models can be used to link genetic variability to neurobiological mechanisms and behavioral traits. Genetic factors associated with NDDs can be grouped functionally into common biological pathways, with one prominent functional group being genes associated with the synapse. These include the neuroligins (Nlgns), a family of postsynaptic transmembrane proteins that are key modulators of synaptic function. Here, we review how research using Nlgn mouse models has provided insight into how synaptic proteins contribute to behavioral traits associated with NDDs. We focus on how mutations in different Nlgns affect social behaviors, as differences in social interaction and communication are a common feature of most NDDs. Importantly, mice carrying distinct mutations in Nlgns share some neurobiological and behavioral phenotypes with other synaptic gene mutations. Comparing the functional implications of mutations in multiple synaptic proteins is a first step towards identifying convergent neurobiological pathways in multiple brain regions and circuits.
Collapse
Affiliation(s)
- Tobias T. Pohl
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| | - Hanna Hörnberg
- Max Delbrück Center for Molecular Medicine, Robert-Rössle-Straße 10, Berlin 13125, Germany
| |
Collapse
|
10
|
Tabata K, Ishiyama A, Nakamura Y, Sasaki M, Inoue K, Goto YI. A familial 2p14 microdeletion disrupting actin-related protein 2 and Ras-related protein Rab-1A genes with intellectual disability and language impairment. Eur J Med Genet 2022; 65:104446. [DOI: 10.1016/j.ejmg.2022.104446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
|
11
|
Panariello F, Fanelli G, Fabbri C, Atti AR, De Ronchi D, Serretti A. Epigenetic Basis of Psychiatric Disorders: A Narrative Review. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:302-315. [PMID: 34433406 DOI: 10.2174/1871527320666210825101915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Psychiatric disorders are complex, multifactorial illnesses with a demonstrated biological component in their etiopathogenesis. Epigenetic modifications, through the modulation of DNA methylation, histone modifications and RNA interference, tune tissue-specific gene expression patterns and play a relevant role in the etiology of psychiatric illnesses. OBJECTIVE This review aims to discuss the epigenetic mechanisms involved in psychiatric disorders, their modulation by environmental factors and their interactions with genetic variants, in order to provide a comprehensive picture of their mutual crosstalk. METHODS In accordance with the PRISMA guidelines, systematic searches of Medline, EMBASE, PsycINFO, Web of Science, Scopus, and the Cochrane Library were conducted. RESULTS Exposure to environmental factors, such as poor socio-economic status, obstetric complications, migration, and early life stressors, may lead to stable changes in gene expression and neural circuit function, playing a role in the risk of psychiatric diseases. The most replicated genes involved by studies using different techniques are discussed. Increasing evidence indicates that these sustained abnormalities are maintained by epigenetic modifications in specific brain regions and they interact with genetic variants in determining the risk of psychiatric disorders. CONCLUSION An increasing amount of evidence suggests that epigenetics plays a pivotal role in the etiopathogenesis of psychiatric disorders. New therapeutic approaches may work by reversing detrimental epigenetic changes that occurred during the lifespan.
Collapse
Affiliation(s)
- Fabio Panariello
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Rita Atti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
A white paper on a neurodevelopmental framework for drug discovery in autism and other neurodevelopmental disorders. Eur Neuropsychopharmacol 2021; 48:49-88. [PMID: 33781629 DOI: 10.1016/j.euroneuro.2021.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 12/20/2022]
Abstract
In the last decade there has been a revolution in terms of genetic findings in neurodevelopmental disorders (NDDs), with many discoveries critical for understanding their aetiology and pathophysiology. Clinical trials in single-gene disorders such as fragile X syndrome highlight the challenges of investigating new drug targets in NDDs. Incorporating a developmental perspective into the process of drug development for NDDs could help to overcome some of the current difficulties in identifying and testing new treatments. This paper provides a summary of the proceedings of the 'New Frontiers Meeting' on neurodevelopmental disorders organised by the European College of Neuropsychopharmacology in conjunction with the Innovative Medicines Initiative-sponsored AIMS-2-TRIALS consortium. It brought together experts in developmental genetics, autism, NDDs, and clinical trials from academia and industry, regulators, patient and family associations, and other stakeholders. The meeting sought to provide a platform for focused communication on scientific insights, challenges, and methodologies that might be applicable to the development of CNS treatments from a neurodevelopmental perspective. Multidisciplinary translational consortia to develop basic and clinical research in parallel could be pivotal to advance knowledge in the field. Although implementation of clinical trials for NDDs in paediatric populations is widely acknowledged as essential, safety concerns should guide each aspect of their design. Industry and academia should join forces to improve knowledge of the biology of brain development, identify the optimal timing of interventions, and translate these findings into new drugs, allowing for the needs of users and families, with support from regulatory agencies.
Collapse
|
13
|
Hollingdale J, Woodhouse E, Young S, Fridman A, Mandy W. Autistic spectrum disorder symptoms in children and adolescents with attention-deficit/hyperactivity disorder: a meta-analytical review. Psychol Med 2020; 50:2240-2253. [PMID: 31530292 DOI: 10.1017/s0033291719002368] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Research identifies highly variable prevalence estimates for autism spectrum disorder (ASD) in children and adolescents with attention deficit hyperactivity disorder (ADHD), particularly between community and clinical samples, warranting quantitative meta-analyses to investigate the true prevalence of ASD in children and adolescents with ADHD. METHODS Studies were identified through a systematic literature search of PsycINFO, MEDLINE and Web of Science through January 2018. Twenty-two publications met inclusion criteria (total N = 61 985). Two random effects meta-analyses were conducted: (1) to identify the proportion of children and adolescents with ADHD that met criteria for ASD; and (2) to compare the severity of dimensionally-measured ASD symptomology in children and adolescents with and without ADHD. RESULTS The overall pooled effect for children and adolescents with ADHD who met threshold for ASD was 21%. There was no significant difference between community samples (19%) and clinical samples (24%) or between US studies v. those from other countries. Children and adolescents with ADHD had substantially more dimensionally-measured ASD traits compared with those who did not have ADHD (d = 1.23). CONCLUSION The findings provide further evidence that ADHD and ASD are associated in nature. Clinical and research implications are discussed.
Collapse
|
14
|
Dermentzaki G, Lotti F. New Insights on the Role of N 6-Methyladenosine RNA Methylation in the Physiology and Pathology of the Nervous System. Front Mol Biosci 2020; 7:555372. [PMID: 32984403 PMCID: PMC7492240 DOI: 10.3389/fmolb.2020.555372] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/12/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications termed epitranscriptomics represent an additional layer of gene regulation similar to epigenetic mechanisms operating on DNA. The dynamic nature and the increasing number of RNA modifications offer new opportunities for a rapid fine-tuning of gene expression in response to specific environmental cues. In cooperation with a diverse and versatile set of effector proteins that "recognize" them, these RNA modifications have the ability to mediate and control diverse fundamental cellular functions, such as pre-mRNA splicing, nuclear export, stability, and translation. N 6-methyladenosine (m6A) is the most abundant of these RNA modifications, particularly in the nervous system, where recent studies have highlighted it as an important post-transcriptional regulator of physiological functions from development to synaptic plasticity, learning and memory. Here we review recent findings surrounding the role of m6A modification in regulating physiological responses of the mammalian nervous system and we discuss its emerging role in pathological conditions such as neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Georgia Dermentzaki
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
- Department of Neurology, Columbia University, New York City, NY, United States
| |
Collapse
|
15
|
Identification of ADHD risk genes in extended pedigrees by combining linkage analysis and whole-exome sequencing. Mol Psychiatry 2020; 25:2047-2057. [PMID: 30116028 PMCID: PMC7473839 DOI: 10.1038/s41380-018-0210-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 05/01/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with a complex genetic background, hampering identification of underlying genetic risk factors. We hypothesized that combining linkage analysis and whole-exome sequencing (WES) in multi-generation pedigrees with multiple affected individuals can point toward novel ADHD genes. Three families with multiple ADHD-affected members (Ntotal = 70) and apparent dominant inheritance pattern were included in this study. Genotyping was performed in 37 family members, and WES was additionally carried out in 10 of those. Linkage analysis was performed using multi-point analysis in Superlink Online SNP 1.1. From prioritized linkage regions with a LOD score ≥ 2, a total of 24 genes harboring rare variants were selected. Those genes were taken forward and were jointly analyzed in gene-set analyses of exome-chip data using the MAGMA software in an independent sample of patients with persistent ADHD and healthy controls (N = 9365). The gene-set including all 24 genes together, and particularly the gene-set from one of the three families (12 genes), were significantly associated with persistent ADHD in this sample. Among the latter, gene-wide analysis for the AAED1 gene reached significance. A rare variant (rs151326868) within AAED1 segregated with ADHD in one of the families. The analytic strategy followed here is an effective approach for identifying novel ADHD risk genes. Additionally, this study suggests that both rare and more frequent variants in multiple genes act together in contributing to ADHD risk, even in individual multi-case families.
Collapse
|
16
|
Gudenas BL, Wang J, Kuang SZ, Wei AQ, Cogill SB, Wang LJ. Genomic data mining for functional annotation of human long noncoding RNAs. J Zhejiang Univ Sci B 2019; 20:476-487. [PMID: 31090273 DOI: 10.1631/jzus.b1900162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Life may have begun in an RNA world, which is supported by increasing evidence of the vital role that RNAs perform in biological systems. In the human genome, most genes actually do not encode proteins; they are noncoding RNA genes. The largest class of noncoding genes is known as long noncoding RNAs (lncRNAs), which are transcripts greater in length than 200 nucleotides, but with no protein-coding capacity. While some lncRNAs have been demonstrated to be key regulators of gene expression and 3D genome organization, most lncRNAs are still uncharacterized. We thus propose several data mining and machine learning approaches for the functional annotation of human lncRNAs by leveraging the vast amount of data from genetic and genomic studies. Recent results from our studies and those of other groups indicate that genomic data mining can give insights into lncRNA functions and provide valuable information for experimental studies of candidate lncRNAs associated with human disease.
Collapse
Affiliation(s)
- Brian L Gudenas
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Jun Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Shu-Zhen Kuang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - An-Qi Wei
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Steven B Cogill
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| | - Liang-Jiang Wang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
17
|
Busch RM, Srivastava S, Hogue O, Frazier TW, Klaas P, Hardan A, Martinez-Agosto JA, Sahin M, Eng C. Neurobehavioral phenotype of autism spectrum disorder associated with germline heterozygous mutations in PTEN. Transl Psychiatry 2019; 9:253. [PMID: 31594918 PMCID: PMC6783427 DOI: 10.1038/s41398-019-0588-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Germline mutations in PTEN, the gene that encodes phosphatase and tensin homolog, have been identified in up to 20% of children with autism spectrum disorder (ASD) and macrocephaly and are associated with marked abnormalities in the white matter of the brain. This study sought to characterize the neurobehavioral phenotype of PTEN-ASD. Comprehensive neurobehavioral evaluations were conducted in 36 participants (ages 3-21 years) with PTEN-ASD and compared to two groups of controls: non-syndromic ASD with macrocephaly (Macro-ASD, n = 25) and those with PTEN mutations without ASD (PTEN-no ASD, n = 23). Linear regression analysis or Kruskal-Wallis tests were used to examine group differences on neurobehavioral measures (cognitive, behavioral, sensory, and adaptive functioning) and, for select measures, one-sample t-tests were used to compare group performance to healthy control norms. These analyses revealed a distinct neuropsychological profile associated with mutations in PTEN suggesting primary disruption of frontal lobe systems (i.e., attention, impulsivity, reaction time, processing speed, and motor coordination). Cognitive deficits in PTEN-ASD are more severe than those in PTEN-no ASD and extend to other areas of neurobehavioral function, specifically, adaptive behavior and sensory deficits. While core ASD symptoms are similar in PTEN-ASD and Macro-ASD, PTEN-ASD had lower clinical ratings of autism severity and showed more sensory abnormalities suggestive of less sensory responsiveness. Together, these results suggest that PTEN-ASD has a distinct neurobehavioral phenotype compared to idiopathic ASD that is likely to warrant special consideration for overall assessment and treatment.
Collapse
Affiliation(s)
- Robyn M. Busch
- 0000 0001 0675 4725grid.239578.2Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH USA ,0000 0001 0675 4725grid.239578.2Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH USA
| | - Siddharth Srivastava
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,0000 0004 0378 8438grid.2515.3Harvard Medical School and Boston Children’s Hospital, Boston, MA USA
| | - Olivia Hogue
- 0000 0001 0675 4725grid.239578.2Department of Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH USA
| | - Thomas W. Frazier
- 0000 0001 0675 4725grid.239578.2Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH USA ,0000 0004 4663 7867grid.427598.5Autism Speaks, Cleveland, OH USA ,0000 0001 0675 4725grid.239578.2Pediatrics Institute, Cleveland Clinic, Cleveland, OH USA
| | - Patricia Klaas
- 0000 0001 0675 4725grid.239578.2Department of Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH USA
| | - Antonio Hardan
- 0000000087342732grid.240952.8Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA USA
| | - Julian A. Martinez-Agosto
- 0000 0000 9632 6718grid.19006.3eDepartment of Human Genetics, University of California Los Angeles, Los Angeles, CA USA
| | - Mustafa Sahin
- Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA ,0000 0004 0378 8438grid.2515.3Harvard Medical School and Boston Children’s Hospital, Boston, MA USA
| | - Charis Eng
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA. .,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA. .,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
18
|
Kiser DP, Popp S, Schmitt-Böhrer AG, Strekalova T, van den Hove DL, Lesch KP, Rivero O. Early-life stress impairs developmental programming in Cadherin 13 (CDH13)-deficient mice. Prog Neuropsychopharmacol Biol Psychiatry 2019; 89:158-168. [PMID: 30165120 DOI: 10.1016/j.pnpbp.2018.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Cadherin-13 (CDH13), a member of the calcium-dependent cell adhesion molecule family, has been linked to neurodevelopmental disorders, including autism spectrum (ASD) and attention-deficit/hyperactivity (ADHD) disorders, but also to depression. In the adult brain, CDH13 expression is restricted e.g. to the presynaptic compartment of inhibitory GABAergic synapses in the hippocampus and Cdh13 knockout mice show an increased inhibitory drive onto hippocampal CA1 pyramidal neurons, leading to a shift in excitatory/inhibitory balance. CDH13 is also moderating migration of serotonergic neurons in the dorsal raphe nucleus, establishing projections preferentially to the thalamus and cerebellum during brain development. Furthermore, CDH13 is upregulated by chronic stress as well as in depression, suggesting a role in early-life adaptation to stressful experience. Here, we therefore investigated the interaction between Cdh13 variation and neonatal maternal separation (MS) in mice. METHODS Male and female wild-type (Cdh13+/+), heterozygous (Cdh13+/-) and homozygous (Cdh13-/-) knockout mice exposed to MS, or daily handling as control, were subjected to a battery of behavioural tests to assess motor activity, learning and memory as well as anxiety-like behaviour. A transcriptome analysis of the hippocampus was performed in an independent cohort of mice which was exposed to MS or handling, but remained naïve for behavioural testing. RESULTS MS lead to increased anxiety-like behaviour in Cdh13-/- mice compared to the other two MS groups. Cdh13-/- mice showed a context-dependent effect on stress- and anxiety-related behaviour, impaired extinction learning following contextual fear conditioning and decreased impulsivity, as well as a mild decrease in errors in the Barnes maze and reduced risk-taking in the light-dark transition test after MS. We also show sex differences, with increased locomotor activity in female Cdh13-/- mice, but unaltered impulsivity and activity in male Cdh13-/- mice. Transcriptome analysis revealed several pathways associated with cell surface/adhesion molecules to be altered following Cdh13 deficiency, together with an influence on endoplasmic reticulum function. CONCLUSION MS resulted in increased stress resilience, increased exploration and an overall anxiolytic behavioural phenotype in male Cdh13+/+ and Cdh13+/- mice. Cdh13 deficiency, however, obliterated most of the effects caused by early-life stress, with Cdh13-/- mice exhibiting delayed habituation, no reduction of anxiety-like behaviour and decreased fear extinction. Our behavioural findings indicate a role of CDH13 in the programming of and adaptation to early-life stress. Finally, our transcriptomic data support the view of CDH13 as a neuroprotective factor as well as a mediator in cell-cell interactions, with an impact on synaptic plasticity.
Collapse
Affiliation(s)
- Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany
| | - Angelika G Schmitt-Böhrer
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Daniel L van den Hove
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany; Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.
| |
Collapse
|
19
|
|
20
|
Dalla Vecchia E, Mortimer N, Palladino VS, Kittel-Schneider S, Lesch KP, Reif A, Schenck A, Norton WH. Cross-species models of attention-deficit/hyperactivity disorder and autism spectrum disorder: lessons from CNTNAP2, ADGRL3, and PARK2. Psychiatr Genet 2019; 29:1-17. [PMID: 30376466 PMCID: PMC7654943 DOI: 10.1097/ypg.0000000000000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/12/2022]
Abstract
Animal and cellular models are essential tools for all areas of biological research including neuroscience. Model systems can also be used to investigate the pathophysiology of psychiatric disorders such as attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). In this review, we provide a summary of animal and cellular models for three genes linked to ADHD and ASD in human patients - CNTNAP2, ADGRL3, and PARK2. We also highlight the strengths and weaknesses of each model system. By bringing together behavioral and neurobiological data, we demonstrate how a cross-species approach can provide integrated insights into gene function and the pathogenesis of ADHD and ASD. The knowledge gained from transgenic models will be essential to discover and validate new treatment targets for these disorders.
Collapse
Affiliation(s)
- Elisa Dalla Vecchia
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Niall Mortimer
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health and Addiction, Vall d’Hebron Research Institute, Universitat Autònoma de Barcelona
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
| | - Viola S. Palladino
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Centre of Mental Health, University of Wuerzburg, Wuerzburg
- Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt Am Main, Germany
| | - Annette Schenck
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - William H.J. Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
21
|
Tabatabaiefar MA, Sajjadi RS, Narrei S. Epigenetics and Common Non Communicable Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1121:7-20. [PMID: 31392648 DOI: 10.1007/978-3-030-10616-4_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Common Non communicable diseases (NCDs), such as cardiovascular disease, cancer, schizophrenia, and diabetes, have become the major cause of death in the world. They result from an interaction between genetics, lifestyle and environmental factors. The prevalence of NCDs are increasing, and researchers hopes to find efficient strategies to predict, prevent and treat them. Given the role of epigenome in the etiology of NCDs, insight into epigenetic mechanisms may offer opportunities to predict, detect, and prevent disease long before its clinical onset.Epigenetic alterations are exerted through several mechanisms including: chromatin modification, DNA methylation and controlling gene expression by non-coding RNAs (ncRNAs). In this chapter, we will discuss about NCDs, with focus on cancer, diabetes and schizophrenia. Different epigenetic mechanisms, categorized into two main groups DNA methylation and chromatin modifications and non-coding RNAs, will be separately discussed for these NCDs.
Collapse
Affiliation(s)
- Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. .,Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran. .,Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran.
| | - Roshanak S Sajjadi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sina Narrei
- Genetics Department, Erythron Pathobiology and Genetics lab, Isfahan, Iran
| |
Collapse
|
22
|
Cattane N, Richetto J, Cattaneo A. Prenatal exposure to environmental insults and enhanced risk of developing Schizophrenia and Autism Spectrum Disorder: focus on biological pathways and epigenetic mechanisms. Neurosci Biobehav Rev 2018; 117:253-278. [PMID: 29981347 DOI: 10.1016/j.neubiorev.2018.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/11/2018] [Accepted: 07/01/2018] [Indexed: 12/15/2022]
Abstract
When considering neurodevelopmental disorders (NDDs), Schizophrenia (SZ) and Autism Spectrum Disorder (ASD) are considered to be among the most severe in term of prevalence, morbidity and impact on the society. Similar features and overlapping symptoms have been observed at multiple levels, suggesting common pathophysiological bases. Indeed, recent genome-wide association studies (GWAS) and epidemiological data report shared vulnerability genes and environmental triggers across the two disorders. In this review, we will discuss the possible biological mechanisms, including glutamatergic and GABAergic neurotransmissions, inflammatory signals and oxidative stress related systems, which are targeted by adverse environmental exposures and that have been associated with the development of SZ and ASD. We will also discuss the emerging role of the gut microbiome as possible interplay between environment, immune system and brain development. Finally, we will describe the involvement of epigenetic mechanisms in the maintenance of long-lasting effects of adverse environments early in life. This will allow us to better understand the pathophysiology of these NDDs, and also to identify novel targets for future treatment strategies.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy
| | - Juliet Richetto
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Fatebenefratelli San Giovanni di Dio, via Pilastroni 4, Brescia, Italy; Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London, London, 125 Coldharbour Lane, SE5 9NU, London, UK.
| |
Collapse
|
23
|
Xu H, Ye Y, Hao Y, Shi F, Yan Z, Yuan G, Yang Y, Fei Z, He X. Sex differences in associations between maternal deprivation and alterations in hippocampal calcium-binding proteins and cognitive functions in rats. Behav Brain Funct 2018; 14:10. [PMID: 29759084 PMCID: PMC5952636 DOI: 10.1186/s12993-018-0142-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/28/2018] [Indexed: 11/11/2022] Open
Abstract
Background and objective Adverse early-life experiences have been suggested as one of the key contributors to neurodevelopmental disorders, such that these experiences influence brain development, cognitive ability and mental health. Previous studies indicated that hippocampal levels of the calcium-binding proteins calretinin (CALR) and calbindin-D28k (CALB) changed in response to maternal deprivation (MD), a model for adverse early-life experiences. We investigated the effects of MD on hippocampal CALR and CALB protein levels and cognitive behaviors, and explored whether these effects were sex-related. Methods From postnatal day 2 (PND-2) to PND-14, rat pups in the MD group were separated from their mothers for 3 h/day for comparison with pups raised normally (control). To determine hippocampal CALR and CALB levels, fluorescent immunostaining of hippocampal sections and Western blot analysis of hippocampal tissues were employed at various timepoints (PND-21, -25, -30, -35 and -40). Behavioral and cognitive changes were determined by open field test (PND-21) and Morris water maze (PND-25). Results Western blot analysis showed changes in the hippocampal CALR and CALB levels in both male and female MD groups, compared with controls. The open field test showed reduced exploration only in male MD groups but not female MD groups. The Morris water maze tests indicated that MD caused spatial memory impairment both in male and female rats, but there was a sex difference in CALR and CALB levels. Conclusions Male rats are relatively more vulnerable to MD stress than female rats, but both male and female rats demonstrate spatial learning impairment after exposure to MD stress. Sex difference in CALR and CALB levels may reveal the different mechanisms behind the behavioral observations.
Collapse
Affiliation(s)
- Hongyu Xu
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuqin Ye
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yelu Hao
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Shi
- Faculty of Space and Aviation, Fourth Military Medicine University, Xi'an, China
| | - Zhiqiang Yan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guohao Yuan
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuefan Yang
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Xiaosheng He
- Department of Neurosurgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
24
|
Sonuga-Barke EJS, Fearon P. Commentary: Whither the epigenetics of child psychopathology? Some reflections provoked by Barker et al. (2018). J Child Psychol Psychiatry 2018; 59:323-326. [PMID: 29574735 DOI: 10.1111/jcpp.12906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/01/2018] [Indexed: 01/25/2023]
Abstract
Barker et al.'s. () review addresses one of the most fundamental questions in the fields of child psychology and psychiatry - How can adverse experiences shape development to a sufficient degree and in profound and enduring ways to create long term risk for later mental disorder and disability? In particular they discuss the plausibility of differential methylation as an epigenetic mechanism by which such exposures can become neuro-biologically embedded. Our commentary rises six question relating to key issues that need to be addressed as we search for definitive evidence from human studies that such mechanisms actually do make an important causal contribution to abnormal trajectories of development to disorder.
Collapse
Affiliation(s)
- Edmund J S Sonuga-Barke
- Department of Childand Adolescent Psychiatry, PO85, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London
| | - Pasco Fearon
- Research Department of Clinical, Educational and Health Psychology, University College London, London, UK
| |
Collapse
|
25
|
Siu MT, Weksberg R. Epigenetics of Autism Spectrum Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 978:63-90. [PMID: 28523541 DOI: 10.1007/978-3-319-53889-1_4] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD), one of the most common childhood neurodevelopmental disorders (NDDs), is diagnosed in 1 of every 68 children. ASD is incredibly heterogeneous both clinically and aetiologically. The etiopathogenesis of ASD is known to be complex, including genetic, environmental and epigenetic factors. Normal epigenetic marks modifiable by both genetics and environmental exposures can result in epigenetic alterations that disrupt the regulation of gene expression, negatively impacting biological pathways important for brain development. In this chapter we aim to summarize some of the important literature that supports a role for epigenetics in the underlying molecular mechanism of ASD. We provide evidence from work in genetics, from environmental exposures and finally from more recent studies aimed at directly determining ASD-specific epigenetic patterns, focusing mainly on DNA methylation (DNAm). Finally, we briefly discuss some of the implications of current research on potential epigenetic targets for therapeutics and novel avenues for future work.
Collapse
Affiliation(s)
- Michelle T Siu
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Rosanna Weksberg
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada. .,Department of Paediatrics, University of Toronto, Toronto, ON, M5S 1A1, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
26
|
Forero A, Rivero O, Wäldchen S, Ku HP, Kiser DP, Gärtner Y, Pennington LS, Waider J, Gaspar P, Jansch C, Edenhofer F, Resink TJ, Blum R, Sauer M, Lesch KP. Cadherin-13 Deficiency Increases Dorsal Raphe 5-HT Neuron Density and Prefrontal Cortex Innervation in the Mouse Brain. Front Cell Neurosci 2017; 11:307. [PMID: 29018333 PMCID: PMC5623013 DOI: 10.3389/fncel.2017.00307] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/15/2017] [Indexed: 01/29/2023] Open
Abstract
Background: During early prenatal stages of brain development, serotonin (5-HT)-specific neurons migrate through somal translocation to form the raphe nuclei and subsequently begin to project to their target regions. The rostral cluster of cells, comprising the median and dorsal raphe (DR), innervates anterior regions of the brain, including the prefrontal cortex. Differential analysis of the mouse 5-HT system transcriptome identified enrichment of cell adhesion molecules in 5-HT neurons of the DR. One of these molecules, cadherin-13 (Cdh13) has been shown to play a role in cell migration, axon pathfinding, and synaptogenesis. This study aimed to investigate the contribution of Cdh13 to the development of the murine brain 5-HT system. Methods: For detection of Cdh13 and components of the 5-HT system at different embryonic developmental stages of the mouse brain, we employed immunofluorescence protocols and imaging techniques, including epifluorescence, confocal and structured illumination microscopy. The consequence of CDH13 loss-of-function mutations on brain 5-HT system development was explored in a mouse model of Cdh13 deficiency. Results: Our data show that in murine embryonic brain Cdh13 is strongly expressed on 5-HT specific neurons of the DR and in radial glial cells (RGCs), which are critically involved in regulation of neuronal migration. We observed that 5-HT neurons are intertwined with these RGCs, suggesting that these neurons undergo RGC-guided migration. Cdh13 is present at points of intersection between these two cell types. Compared to wildtype controls, Cdh13-deficient mice display increased cell densities in the DR at embryonic stages E13.5, E17.5, and adulthood, and higher serotonergic innervation of the prefrontal cortex at E17.5. Conclusion: Our findings provide evidence for a role of CDH13 in the development of the serotonergic system in early embryonic stages. Specifically, we indicate that Cdh13 deficiency affects the cell density of the developing DR and the posterior innervation of the prefrontal cortex (PFC), and therefore might be involved in the migration, axonal outgrowth and terminal target finding of DR 5-HT neurons. Dysregulation of CDH13 expression may thus contribute to alterations in this system of neurotransmission, impacting cognitive function, which is frequently impaired in neurodevelopmental disorders including attention-deficit/hyperactivity and autism spectrum disorders.
Collapse
Affiliation(s)
- Andrea Forero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Olga Rivero
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Sina Wäldchen
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Hsing-Ping Ku
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Dominik P Kiser
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Yvonne Gärtner
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Laura S Pennington
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Jonas Waider
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Patricia Gaspar
- Institut du Fer á Moulin, Institut National de la Santé et de la Recherche Médicale (INSERM), UMR-S839, Paris, France
| | - Charline Jansch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
| | - Frank Edenhofer
- Department of Genomics, Stem Cell Biology and Regenerative Medicine, Institute of Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), Leopold-Franzens-University Innsbruck, Innsbruck, Austria.,Stem Cell Biology and Regenerative Medicine Group, Institute of Anatomy and Cell Biology, Julius-Maximilians-University of Würzburg, Würzburg, Germany
| | - Thérèse J Resink
- Laboratory for Signal Transduction, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Robert Blum
- Department of Clinical Neurobiology, University of Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I. M. Sechenov First Moscow State Medical University, Moscow, Russia.,Department of Translational Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
27
|
Banik A, Kandilya D, Ramya S, Stünkel W, Chong YS, Dheen ST. Maternal Factors that Induce Epigenetic Changes Contribute to Neurological Disorders in Offspring. Genes (Basel) 2017; 8:E150. [PMID: 28538662 PMCID: PMC5485514 DOI: 10.3390/genes8060150] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/06/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is well established that the regulation of epigenetic factors, including chromatic reorganization, histone modifications, DNA methylation, and miRNA regulation, is critical for the normal development and functioning of the human brain. There are a number of maternal factors influencing epigenetic pathways such as lifestyle, including diet, alcohol consumption, and smoking, as well as age and infections (viral or bacterial). Genetic and metabolic alterations such as obesity, gestational diabetes mellitus (GDM), and thyroidism alter epigenetic mechanisms, thereby contributing to neurodevelopmental disorders (NDs) such as embryonic neural tube defects (NTDs), autism, Down's syndrome, Rett syndrome, and later onset of neuropsychological deficits. This review comprehensively describes the recent findings in the epigenetic landscape contributing to altered molecular profiles resulting in NDs. Furthermore, we will discuss potential avenues for future research to identify diagnostic markers and therapeutic epi-drugs to reverse these abnormalities in the brain as epigenetic marks are plastic and reversible in nature.
Collapse
Affiliation(s)
- Avijit Banik
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Deepika Kandilya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Seshadri Ramya
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| | - Walter Stünkel
- Singapore Institute of Clinical Sciences, A*STAR, Singapore 117609, Singapore.
| | - Yap Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117594, Singapore.
| |
Collapse
|
28
|
Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 2017; 7:47-56. [PMID: 28377991 PMCID: PMC5377486 DOI: 10.1016/j.ynstr.2017.03.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 02/14/2017] [Accepted: 03/20/2017] [Indexed: 02/06/2023] Open
Abstract
The recently proposed Research Domain Criteria (RDoC) system defines psychopathologies as phenomena of multilevel neurobiological existence and assigns them to 5 behavioural domains characterizing a brain in action. We performed an analysis on this contemporary concept of psychopathologies in respect to a brain phylogeny and biological substrates of psychiatric diseases. We found that the RDoC system uses biological determinism to explain the pathogenesis of distinct psychiatric symptoms and emphasises exploration of endophenotypes but not of complex diseases. Therefore, as a possible framework for experimental studies it allows one to evade a major challenge of translational studies of strict disease-to-model correspondence. The system conforms with the concept of a normality and pathology continuum, therefore, supports basic studies. The units of analysis of the RDoC system appear as a novel matrix for model validation. The general regulation and arousal, positive valence, negative valence, and social interactions behavioural domains of the RDoC system show basic construct, network, and phenomenological homologies between human and experimental animals. The nature and complexity of the cognitive behavioural domain of the RDoC system deserve further clarification. These homologies in the 4 domains justifies the validity, reliably and translatability of animal models appearing as endophenotypes of the negative and positive affect, social interaction and general regulation and arousal systems’ dysfunction. The RDoC system encourages endophenotype-oriented experimental studies in human and animals. The system conforms with the normality-pathology continuum concept. The RDoC system appears to be a suitable framework for basic research. Four RDoC domains show construct and phenomenological homology in human and animals. Endophenotype-based models of affective psychopathologies appear most reliable.
Collapse
Affiliation(s)
- Elmira Anderzhanova
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2, 80804 Munich, Germany; FSBI "Zakusov Institute of Pharmacology", Baltiyskaya street, 8, 125315, Moscow, Russia
| | | | - Carsten T Wotjak
- Max Planck Institute of Psychiatry, Department of Stress Neurobiology and Neurogenetics, Kraepelinstrasse 2, 80804 Munich, Germany
| |
Collapse
|
29
|
Halperin JM. Developmental psychopathology in the post-genomics era - substantial challenges but reasons for hope. J Child Psychol Psychiatry 2017; 58:219-221. [PMID: 28194760 DOI: 10.1111/jcpp.12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One only has to quickly look through the Table of Contents for this issue of JCPP to gain an appreciation of the ever-increasing influence of genetic research in the field of developmental psychopathology. Among the 13 articles in this issue that follow this editorial: two employ large family and/or twin studies to provide compelling behavioral genetic findings bolstering the importance of genes in the emergence of ADHD (Chen, Brikell, Lichtenstein, Serlachius, Kuja-Halkola, Sandin, and Larsson) and level of educational achievement in adolescents (Lewis, Asbury, and Plomin); one paper focuses on cortical development in patients with 22q11.2 deletion syndrome and its association with positive symptoms of psychosis (Radoeva, Bansal, Antshel, Fremont, Peterson, and Kates); a Commentary (Border and Keller) and Response to Commentary (Moore) debate the relative advantages and disadvantages of candidate gene versus genome-wide approaches to detecting certain genetic markers, particularly in relation to interactions with the environment; and two more focus on the identification of endophenotypes for autism spectrum disorders which will presumably facilitate the identification of genes for this complex disorder (Jones, Venema, Earl, Lowy, and Webb; Van Eylen, Boets, Cosemans, Peeters, Steyaert, Wagemans, and Noens).
Collapse
|
30
|
Abstract
The last decade has been marked by an increased interest in relating epigenetic mechanisms to complex human behaviors, although this interest has not been balanced, accentuating various types of affective and primarily ignoring cognitive functioning. Recent animal model data support the view that epigenetic processes play a role in learning and memory consolidation and help transmit acquired memories even across generations. In this review, we provide an overview of various types of epigenetic mechanisms in the brain (DNA methylation, histone modification, and noncoding RNA action) and discuss their impact proximally on gene transcription, protein synthesis, and synaptic plasticity and distally on learning, memory, and other cognitive functions. Of particular importance are observations that neuronal activation regulates the dynamics of the epigenome's functioning under precise timing, with subsequent alterations in the gene expression profile. In turn, epigenetic regulation impacts neuronal action, closing the circle and substantiating the signaling pathways that underlie, at least partially, learning, memory, and other cognitive processes.
Collapse
|
31
|
Hartman CA, Geurts HM, Franke B, Buitelaar JK, Rommelse NNJ. Changing ASD-ADHD symptom co-occurrence across the lifespan with adolescence as crucial time window: Illustrating the need to go beyond childhood. Neurosci Biobehav Rev 2016; 71:529-541. [PMID: 27629802 DOI: 10.1016/j.neubiorev.2016.09.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Literature on the co-occurrence between Autism Spectrum Disorder (ASD) and Attention-Deficit/Hyperactivity Disorder (ADHD) is strongly biased by a focus on childhood age. A review of the adolescent and adult literature was made on core and related symptoms of ADHD and ASD. In addition, an empirical approach was used including 17,173 ASD-ADHD symptom ratings from participants aged 0 to 84 years. Results indicate that ASD/ADHD constellations peak during adolescence and are lower in early childhood and old age. We hypothesize that on the border of the expected transition to independent adulthood, ASD and ADHD co-occur most because social adaptation and EF skills matter most. Lower correlations in childhood and older age may be due to more diffuse symptoms reflecting respectively still differentiating and de-differentiating EF functions. We plea for a strong research focus in adolescence which may -after early childhood- be a second crucial time window for catching-up pattern explaining more optimal outcomes. We discuss obstacles and oppportunities of a full lifespan approach into old age.
Collapse
Affiliation(s)
- Catharina A Hartman
- Department of Psychiatry, Interdisciplinary Center of Psychopathology and Emotion Regulation (ICPE) & Research School of Behavioral and Cognitive Neuroscience, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Hilde M Geurts
- Department of Psychology, Brain and Cognition, d'Arc, & Cognitive Science Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands; Dr Leo Kannerhuis, Autism Clinic, Amsterdam, The Netherlands
| | - Barbara Franke
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Human Genetics, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Karakter, Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| | - Nanda N J Rommelse
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands; Karakter, Child and Adolescent Psychiatry University Center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Baird G, Norbury CF. Social (pragmatic) communication disorders and autism spectrum disorder. Arch Dis Child 2016; 101:745-51. [PMID: 26699538 DOI: 10.1136/archdischild-2014-306944] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/21/2015] [Indexed: 12/16/2022]
Abstract
Changes have been made to the diagnostic criteria for autism spectrum disorder (ASD) in the recent revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), and similar changes are likely in the WHO International Classification of Diseases (ICD-11) due in 2017. In light of these changes, a new clinical disorder, social (pragmatic) communication disorder (SPCD), was added to the neurodevelopmental disorders section of DSM-5. This article describes the key features of ASD, SPCD and the draft ICD-11 approach to pragmatic language impairment, highlighting points of overlap between the disorders and criteria for differential diagnosis.
Collapse
Affiliation(s)
- Gillian Baird
- Evelina, Newcomen Centre, Guy's and St Thomas NHS Trust, King's Health Partners, London, UK
| | | |
Collapse
|
33
|
Lesch KP. Maturing insights into the genetic architecture of neurodevelopmental disorders - from common and rare variant interplay to precision psychiatry. J Child Psychol Psychiatry 2016; 57:659-61. [PMID: 27192951 DOI: 10.1111/jcpp.12574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The categorisation of neurodevelopmental and psychiatric disorders by clinical syndromes, rather than by aetiology, continues to obstruct progress in biomarker identification as well as innovative drug development and effective treatment in general. There is a decisive move to think of neurodevelopmental disorders as a spectrum rather than discrete categorical entities. We might call them neurodevelopmental spectrum disorders (NSDs) ranging from intellectual disability (ID) to autism (ASD), and attention-deficit/hyperactivity disorder (ADHD) (Kiser, Rivero, & Lesch, ).
Collapse
|
34
|
Marsit CJ, Brummel SS, Kacanek D, Seage GR, Spector SA, Armstrong DA, Lester BM, Rich K. Infant peripheral blood repetitive element hypomethylation associated with antiretroviral therapy in utero. Epigenetics 2016; 10:708-16. [PMID: 26067216 DOI: 10.1080/15592294.2015.1060389] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The use of combination antiretroviral therapy (cART) to prevent HIV mother-to-child transmission during pregnancy and delivery is generally considered safe. However, vigilant assessment of potential risks of these agents remains warranted. Epigenetic changes including DNA methylation are considered potential mechanisms linking the in utero environment with long-term health outcomes. Few studies have examined the epigenetic effects of prenatal exposure to pharmaceutical agents, including antiretroviral therapies, on children. In this study, we examined the methylation status of the LINE-1 and ALU-Yb8 repetitive elements as markers of global DNA methylation alteration in peripheral blood mononuclear cells obtained from newborns participating in the Pediatric HIV/AIDS Cohort Study SMARTT cohort of HIV-exposed, cART-exposed uninfected infants compared to a historical cohort of HIV-exposed, antiretroviral-unexposed infants from the Women and Infants Transmission Study Cohort. In linear regression models controlling for potential confounders, we found the adjusted mean difference of AluYb8 methylation of the cART-exposed compared to the -unexposed was -0.568 (95% CI: -1.023, -0.149) and for LINE-1 methylation was -1.359 (95% CI: -1.860, -0.857). Among those exposed to cART, subjects treated with atazanavir (ATV), compared to those on other treatments, had less AluYb8 methylation (-0.524, 95% CI: -0.025, -1.024). Overall, these results suggest a small but statistically significant reduction in the methylation of these repetitive elements in an HIV-exposed, cART-exposed cohort compared to an HIV-exposed, cART-unexposed historic cohort. The potential long-term implications of these differences are worthy of further examination.
Collapse
Affiliation(s)
- Carmen J Marsit
- a Departments of Pharmacology and Toxicology and of Epidemiology; Geisel School of Medicine at Dartmouth ; Hanover , NH USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Poletti M. Definition of a visuospatial dimension as a step forward in the diagnostic puzzle of nonverbal learning disability. APPLIED NEUROPSYCHOLOGY-CHILD 2016; 6:106-109. [DOI: 10.1080/21622965.2015.1064410] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Childress A, Tran C. Current Investigational Drugs for the Treatment of Attention-Deficit/Hyperactivity Disorder. Expert Opin Investig Drugs 2016; 25:463-74. [DOI: 10.1517/13543784.2016.1147558] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
37
|
Zhao Y, Castellanos FX. Annual Research Review: Discovery science strategies in studies of the pathophysiology of child and adolescent psychiatric disorders--promises and limitations. J Child Psychol Psychiatry 2016; 57:421-39. [PMID: 26732133 PMCID: PMC4760897 DOI: 10.1111/jcpp.12503] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Psychiatric science remains descriptive, with a categorical nosology intended to enhance interobserver reliability. Increased awareness of the mismatch between categorical classifications and the complexity of biological systems drives the search for novel frameworks including discovery science in Big Data. In this review, we provide an overview of incipient approaches, primarily focused on classically categorical diagnoses such as schizophrenia (SZ), autism spectrum disorder (ASD), and attention-deficit/hyperactivity disorder (ADHD), but also reference convincing, if focal, advances in cancer biology, to describe the challenges of Big Data and discovery science, and outline approaches being formulated to overcome existing obstacles. FINDINGS A paradigm shift from categorical diagnoses to a domain/structure-based nosology and from linear causal chains to complex causal network models of brain-behavior relationship is ongoing. This (r)evolution involves appreciating the complexity, dimensionality, and heterogeneity of neuropsychiatric data collected from multiple sources ('broad' data) along with data obtained at multiple levels of analysis, ranging from genes to molecules, cells, circuits, and behaviors ('deep' data). Both of these types of Big Data landscapes require the use and development of robust and powerful informatics and statistical approaches. Thus, we describe Big Data analysis pipelines and the promise and potential limitations in using Big Data approaches to study psychiatric disorders. CONCLUSIONS We highlight key resources available for psychopathological studies and call for the application and development of Big Data approaches to dissect the causes and mechanisms of neuropsychiatric disorders and identify corresponding biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA
| | - F. Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Child Study Center at NYU Langone Medical Center, New York, NY 10016, USA,Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| |
Collapse
|
38
|
Antshel KM, Zhang-James Y, Wagner KE, Ledesma A, Faraone SV. An update on the comorbidity of ADHD and ASD: a focus on clinical management. Expert Rev Neurother 2016; 16:279-93. [PMID: 26807870 DOI: 10.1586/14737175.2016.1146591] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) commonly co-occur. With the DSM-5, clinicians are permitted to make an ASD diagnosis in the context of ADHD. In earlier versions of the DSM, this was not acceptable. Both ASD and ADHD are reported to have had substantial increases in prevalence within the past 10 years. As a function of both the increased prevalence of both disorders as well as the ability to make an ASD diagnosis in ADHD, there has been a significant amount of research focusing on the comorbidity between ADHD and ASD in the past few years. Here, we provide an update on the biological, cognitive and behavioral overlap/distinctiveness between the two neurodevelopmental disorders with a focus on data published in the last four years. Treatment strategies for the comorbid condition as well as future areas of research and clinical need are discussed.
Collapse
Affiliation(s)
- Kevin M Antshel
- a Department of Psychology , Syracuse University , Syracuse , NY , USA.,b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA
| | - Yanli Zhang-James
- b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA
| | - Kayla E Wagner
- a Department of Psychology , Syracuse University , Syracuse , NY , USA
| | - Ana Ledesma
- a Department of Psychology , Syracuse University , Syracuse , NY , USA
| | - Stephen V Faraone
- b Department of Psychiatry & Behavioral Sciences , SUNY-Upstate Medical University , Syracuse , NY , USA.,c K.G. Jebsen Centre for Research on Neuropsychiatric Disorders , University of Bergen , Bergen , Norway.,d Department of Neuroscience and Physiology , SUNY-Upstate Medical University , Syracuse , NY , USA
| |
Collapse
|
39
|
Dekkers LMS, Groot NA, Díaz Mosquera EN, Andrade Zúñiga IP, Delfos MF. Prevalence of Autism Spectrum Disorders in Ecuador: A Pilot Study in Quito. J Autism Dev Disord 2015; 45:4165-73. [PMID: 26319251 PMCID: PMC4653240 DOI: 10.1007/s10803-015-2559-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This research presents the results of the first phase of the study on the prevalence of pupils with Autism Spectrum Disorder (ASD) in regular education in Quito, Ecuador. One-hundred-and-sixty-one regular schools in Quito were selected with a total of 51,453 pupils. Prevalence of ASD was assessed by an interview with the rector of the school or its delegate. Results show an extremely low prevalence of 0.11 % of pupils with any ASD diagnosis; another 0.21 % were suspected to have ASD, but were without a diagnosis. This low prevalence suggests that children and adolescents with ASD are not included in regular education in Quito. These results are discussed in the light of low diagnostic identification of ASD and low inclusion tolerance.
Collapse
Affiliation(s)
- Laura M S Dekkers
- PICES (PICOWO), Psychological Institute for Consultation, Education, and Scientific Research, Joseph Haydnlaan 2A, 3533 EA, Utrecht, The Netherlands.
- Department of Developmental Psychology, University of Amsterdam, Weesperplein 4, 1018 XA, Amsterdam, The Netherlands.
| | - Norbert A Groot
- PICES (PICOWO), Psychological Institute for Consultation, Education, and Scientific Research, Joseph Haydnlaan 2A, 3533 EA, Utrecht, The Netherlands
- Centro Meta, P.O. Box 17-21-622, Quito, Ecuador
| | - Elena N Díaz Mosquera
- Facultad de Psicología, PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - Ivonne P Andrade Zúñiga
- Facultad de Psicología, PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
| | - Martine F Delfos
- PICES (PICOWO), Psychological Institute for Consultation, Education, and Scientific Research, Joseph Haydnlaan 2A, 3533 EA, Utrecht, The Netherlands
- Facultad de Psicología, PUCE, Pontificia Universidad Católica del Ecuador, Av. 12 de octubre 1076 y Roca, Quito, Ecuador
- Universidad Central del Ecuador, Ciudadela Universitaria, Av. América, Quito, Ecuador
| |
Collapse
|
40
|
Grayson DR, Guidotti A. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder. Epigenomics 2015; 8:85-104. [PMID: 26551091 PMCID: PMC4864049 DOI: 10.2217/epi.15.92] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.
Collapse
Affiliation(s)
- Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60607, USA
| |
Collapse
|
41
|
Zayats T, Johansson S, Haavik J. Expanding the toolbox of ADHD genetics. How can we make sense of parent of origin effects in ADHD and related behavioral phenotypes? Behav Brain Funct 2015; 11:33. [PMID: 26475699 PMCID: PMC4609130 DOI: 10.1186/s12993-015-0078-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 10/07/2015] [Indexed: 01/09/2023] Open
Abstract
Genome-wide association (GWA) studies have shown that many different genetic variants cumulatively contribute to the risk of psychiatric disorders. It has also been demonstrated that various parent-of-origin effects (POE) may differentially influence the risk of these disorders. Together, these observations have provided important new possibilities to uncover the genetic underpinnings of such complex phenotypes. As POE so far have received little attention in neuropsychiatric disorders, there is still much progress to be made. Here, we mainly focus on the new and emerging role of POE in attention-deficit hyperactivity disorder (ADHD). We review the current evidence that POE play an imperative role in vulnerability to ADHD and related disorders. We also discuss how POE can be assessed using statistical genetics tools, expanding the resources of modern psychiatric genetics. We propose that better comprehension and inspection of POE may offer new insight into the molecular basis of ADHD and related phenotypes, as well as the potential for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Tetyana Zayats
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway.
| | - Stefan Johansson
- Department of Clinical Science, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway.
| | - Jan Haavik
- Department of Biomedicine, K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway. .,Division of Psychiatry, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
42
|
Verhoeff B. Fundamental challenges for autism research: the science-practice gap, demarcating autism and the unsuccessful search for the neurobiological basis of autism. MEDICINE, HEALTH CARE, AND PHILOSOPHY 2015; 18:443-447. [PMID: 25828690 DOI: 10.1007/s11019-015-9636-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
One of the central aims of autism research is to identify specific neurodevelopmental mechanisms that cause and explain the visible autistic signs and symptoms. In this short paper, I argue that the persistent search for autism-specific pathophysiologies has two fundamental difficulties. The first regards the growing gap between basic autism science and clinical practice. The second regards the difficulties with demarcating autism as a psychiatric condition. Instead of the unremitting search for the neurobiological basis of autism, I suggest that basic autism research should focus on experiences of impairment and distress, and on how these experiences relate to particular (autistic) behaviors in particular circumstances, regardless of whether we are dealing with an autism diagnosis or not.
Collapse
Affiliation(s)
- Berend Verhoeff
- Theory and History of Psychology, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands,
| |
Collapse
|
43
|
Lesch KP. Editorial: Attention-deficit/hyperactivity disorder: a continuing challenge to researchers, practitioners and carers. J Child Psychol Psychiatry 2015; 56:595-7. [PMID: 25968452 DOI: 10.1111/jcpp.12429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This editorial introduces a collection of research papers and a review on ADHD, highlighting the continuing challenge that ADHD poses in research and practice. The articles include a Practitioner Review providing a comprehensive review focusing on current knowledge about barriers and facilitators operating at the individual, organisational and societal level; a study reporting a randomised controlled trial of parent training for ADHD pre-schoolers; an empirical paper on sex differences in ADHD symptom severity; a study of the co-development of ADHD and externalizing behaviour across the lifespan; a study of the genetic architecture of neurocognitive abilities in the general population; and finally a study examining the differential association among three behavioural dimensions leading to early-onset conduct problems.
Collapse
|
44
|
Coghill D. Commentary: We've only just begun: unravelling the underlying genetics of neurodevelopmental disorders--a commentary on Kiser et al. (2015). J Child Psychol Psychiatry 2015; 56:296-8. [PMID: 25714739 DOI: 10.1111/jcpp.12399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 01/21/2023]
Affiliation(s)
- David Coghill
- Division of Neuroscience, Medical Research Institute, University of Dundee, Dundee, UK
| |
Collapse
|