1
|
Sirajee R, El Khatib S, Dieleman LA, Salla M, Baksh S. ImmunoMet Oncogenesis: A New Concept to Understand the Molecular Drivers of Cancer. J Clin Med 2025; 14:1620. [PMID: 40095546 PMCID: PMC11900543 DOI: 10.3390/jcm14051620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/10/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
The appearance of cancer progresses through a multistep process that includes genetic, epigenetic, mutational, inflammatory and metabolic disturbances to signaling pathways within an organ. The combined influence of these changes will dictate the growth properties of the cells; the direction of further malignancy depends on the severity of these "disturbances". The molecular mechanisms driving abnormal inflammation and metabolism are beginning to be identified and, in some cases, are quite prominent in pre-condition states of cancer and are significant drivers of the malignant phenotype. As such, utilizing signaling pathways linked to inflammation and metabolism as biomarkers of cancer is an emerging method and includes pathways beyond those well characterized to drive metabolism or inflammation. In this review, we will discuss several emerging elements influencing proliferation, inflammation and metabolism that may play a part as drivers of the cancer phenotype. These include AMPK and leptin (linked to metabolism), NOD2/RIPK2, TAK1 (linked to inflammation), lactate and pyruvate transporters (monocarboxylate transporter [MCT], linked to mitochondrial biogenesis and metabolism) and RASSF1A (linked to proliferation, cell death, cell cycle control, inflammation and epigenetics). We speculate that the aforementioned elements are important drivers of carcinogenesis that should be collectively referenced as being involved in "ImmunoMET Oncogenesis", a new tripartite description of the role of elements in driving cancer. This term would suggest that for a better understanding of cancer, we need to understand how proliferation, inflammation and metabolic pathways are impacted and how they influence classical drivers of malignant transformation in order to drive ImmunoMET oncogenesis and the malignant state.
Collapse
Affiliation(s)
- Reshma Sirajee
- Faculty of Science, 1-001 CCIS, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Sami El Khatib
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Kuwait City 32093, Kuwait
| | - Levinus A. Dieleman
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada;
| | - Mohamed Salla
- Department of Biological & Chemical Sciences, Bekaa Campus, Lebanese International University, West Bekaa, Khiyara 1106, Lebanon; (S.E.K.); (M.S.)
| | - Shairaz Baksh
- Department of Pediatrics, Biochemistry and Division of Experimental Oncology, Faculty of Medicine and Dentistry, University of Alberta, 113 Street 87 Avenue, Edmonton, AB T6G 2E1, Canada
- Women and Children’s Health Research Institute, Edmonton Clinic Health Academy (ECHA), University of Alberta, 4-081 11405 87 Avenue, Edmonton, AB T6G 1C9, Canada
- BioImmuno Designs, 4747 154 Avenue, Edmonton, AB T5Y 0C2, Canada
- Bio-Stream Diagnostics, 2011 94 Street, Edmonton, AB T6H 1N1, Canada
| |
Collapse
|
2
|
Kong L, Cao Y, He Y, Zhang Y. Role and molecular mechanism of NOD2 in chronic non-communicable diseases. J Mol Med (Berl) 2024; 102:787-799. [PMID: 38740600 DOI: 10.1007/s00109-024-02451-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Nucleotide-binding oligomerization domain containing 2 (NOD2), located in the cell cytoplasm, is a pattern recognition receptor belonging to the innate immune receptor family. It mediates the innate immune response by identifying conserved sequences in bacterial peptide glycans and plays an essential role in maintaining immune system homeostasis. Gene mutations of NOD2 lead to the development of autoimmune diseases such as Crohn's disease and Blau syndrome. Recently, NOD2 has been shown to be associated with the pathogenesis of diabetes, cardiac-cerebral diseases, and cancers. However, the function of NOD2 in these non-communicable diseases (CNCDs) is not well summarized in reviews. Our report mainly discusses the primary function and molecular mechanism of NOD2 as well as its potential clinical significance in CNCDs.
Collapse
Affiliation(s)
- Lingjun Kong
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanhua Cao
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China
| | - Yanan He
- Gamma Knife Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Yahui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
3
|
Song Y, He C, Jiang Y, Yang M, Xu Z, Yuan L, Zhang W, Xu Y. Bulk and single-cell transcriptome analyses of islet tissue unravel gene signatures associated with pyroptosis and immune infiltration in type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1132194. [PMID: 36967805 PMCID: PMC10034023 DOI: 10.3389/fendo.2023.1132194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
INTRODUCTION Type 2 diabetes (T2D) is a common chronic heterogeneous metabolic disorder. However, the roles of pyroptosis and infiltrating immune cells in islet dysfunction of patients with T2D have yet to be explored. In this study, we aimed to explore potential crucial genes and pathways associated with pyroptosis and immune infiltration in T2D. METHODS To achieve this, we performed a conjoint analysis of three bulk RNA-seq datasets of islets to identify T2D-related differentially expressed genes (DEGs). After grouping the islet samples according to their ESTIMATE immune scores, we identified immune- and T2D-related DEGs. A clinical prediction model based on pyroptosis-related genes for T2D was constructed. Weighted gene co-expression network analysis was performed to identify genes positively correlated with pyroptosis-related pathways. A protein-protein interaction network was established to identify pyroptosis-related hub genes. We constructed miRNA and transcriptional networks based on the pyroptosis-related hub genes and performed functional analyses. Single-cell RNA-seq (scRNA-seq) was conducted using the GSE153885 dataset. Dimensionality was reduced using principal component analysis and t-distributed statistical neighbor embedding, and cells were clustered using Seurat. Different cell types were subjected to differential gene expression analysis and gene set enrichment analysis (GSEA). Cell-cell communication and pseudotime trajectory analyses were conducted using the samples from patients with T2D. RESULTS We identified 17 pyroptosis-related hub genes. We determined the abundance of 13 immune cell types in the merged matrix and found that these cell types were correlated with the 17 pyroptosis-related hub genes. Analysis of the scRNA-seq dataset of 1892 islet samples from patients with T2D and controls revealed 11 clusters. INS and IAPP were determined to be pyroptosis-related and candidate hub genes among the 11 clusters. GSEA of the 11 clusters demonstrated that the myc, G2M checkpoint, and E2F pathways were significantly upregulated in clusters with several differentially enriched pathways. DISCUSSION This study elucidates the gene signatures associated with pyroptosis and immune infiltration in T2D and provides a critical resource for understanding of islet dysfunction and T2D pathogenesis.
Collapse
Affiliation(s)
- Yaxian Song
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen He
- Department of Geriatric Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yan Jiang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mengshi Yang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhao Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lingyan Yuan
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenhua Zhang
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yushan Xu
- Department of Endocrinology, Yunnan Province Clinical Medical Center for Endocrine and Metabolic Disease, The First Affiliated Hospital of Kunming Medical University, Kunming, China
- *Correspondence: Yushan Xu,
| |
Collapse
|
4
|
Kocaaga A, Cakmak Genc G, Karakas Celik S, Piskin İE, Calik M, Dursun A. Association of NOD1 and NOD2 Polymorphisms With Susceptibility to Subacute Sclerosing Panencephalitis. J Child Neurol 2022; 38:38-43. [PMID: 36544356 DOI: 10.1177/08830738221144081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: Subacute sclerosing panencephalitis is a progressive neurodegenerative disease that is a late complication of measles infection. However, to date, the pathogenesis of subacute sclerosing panencephalitis is still not explained; both viral and host factors seem to be associated. The present study aimed to investigate the relationship between NOD1 and NOD2 gene variants and subacute sclerosing panencephalitis. Methods: The gene variants of NOD1 (rs2075820 and rs2075818) and NOD2 (R334Q and R334W) were explored in 64 subacute sclerosing panencephalitis patients and 70 controls using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: The frequencies of the AA genotype and A allele of rs2075820 (NOD1; c.796G>A) polymorphism were lower in patients compared with controls (P = .022 and .014, respectively). The presence of the A allele of rs2075820 may be considered as a protective factor for subacute sclerosing panencephalitis. There was a significant difference between the groups in rs2075818 (NOD1 G/C) polymorphism, and the CC genotype increased the risk of subacute sclerosing panencephalitis by 3.471-fold. The carriers of the C allele of rs2075818 (G/C) had a 1.855-fold susceptibility to subacute sclerosing panencephalitis (P = .018). The GC genotype might be associated with subacute sclerosing panencephalitis susceptibility in the patients compared with patients without having that haplotype (P = .03). Conclusions: Thus, we identified an association between subacute sclerosing panencephalitis and the rs2075820 (NOD1 G/A) and rs2075818 (NOD1 G/C) polymorphisms. These findings implicate a possible effect of this genetic polymorphism in susceptibility to subacute sclerosing panencephalitis, which needs to be confirmed in bigger populations.
Collapse
Affiliation(s)
- Ayça Kocaaga
- Department of Medical Genetics, Health Ministery Eskisehir City Hospital, Eskişehir, Turkey
| | - Gunes Cakmak Genc
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Sevim Karakas Celik
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - İbrahim E Piskin
- Department of Pediatrics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| | - Mustafa Calik
- Department of Pediatric Neurology, Harran Univercity School of Medicine, Sanlıurfa, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bülent Ecevit University Health Practice and Research Center, Zonguldak, Turkey
| |
Collapse
|
5
|
Zangara MT, Johnston I, Johnson EE, McDonald C. Mediators of Metabolism: An Unconventional Role for NOD1 and NOD2. Int J Mol Sci 2021; 22:ijms22031156. [PMID: 33503814 PMCID: PMC7866072 DOI: 10.3390/ijms22031156] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
In addition to their classical roles as bacterial sensors, NOD1 and NOD2 have been implicated as mediators of metabolic disease. Increased expression of NOD1 and/or NOD2 has been reported in a range of human metabolic diseases, including obesity, diabetes, non-alcoholic fatty liver disease, and metabolic syndrome. Although NOD1 and NOD2 share intracellular signaling pathway components, they are differentially upregulated on a cellular level and have opposing impacts on metabolic disease development in mouse models. These NOD-like receptors may directly mediate signaling downstream of cell stressors, such as endoplasmic reticulum stress and calcium influx, or in response to metabolic signals, such as fatty acids and glucose. Other studies suggest that stimulation of NOD1 or NOD2 by their bacterial ligands can result in inflammation, altered insulin responses, increased reactive oxygen signaling, and mitochondrial dysfunction. The activating stimuli for NOD1 and NOD2 in the context of metabolic disease are controversial and may be a combination of both metabolic and circulating bacterial ligands. In this review, we will summarize the current knowledge of how NOD1 and NOD2 may mediate metabolism in health and disease, as well as highlight areas of future investigation.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Isabel Johnston
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
| | - Erin E. Johnson
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Biology, John Carroll University, University Heights, OH 44118, USA
| | - Christine McDonald
- Department of Inflammation & Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (M.T.Z.); (I.J.); (E.E.J.)
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Correspondence: ; Tel.: +1-216-445-7058
| |
Collapse
|
6
|
Arpón A, Milagro FI, Ramos-Lopez O, Mansego ML, Riezu-Boj JI, Martínez JA. Methylome-Wide Association Study in Peripheral White Blood Cells Focusing on Central Obesity and Inflammation. Genes (Basel) 2019; 10:444. [PMID: 31212707 PMCID: PMC6627499 DOI: 10.3390/genes10060444] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022] Open
Abstract
Epigenetic signatures such as DNA methylation may be associated with specific obesity traits in different tissues. The onset and development of some obesity-related complications are often linked to visceral fat accumulation. The aim of this study was to explore DNA methylation levels in peripheral white blood cells to identify epigenetic methylation marks associated with waist circumference (WC). DNA methylation levels were assessed using Infinium Human Methylation 450K and MethylationEPIC beadchip (Illumina) to search for putative associations with WC values of 473 participants from the Methyl Epigenome Network Association (MENA) project. Statistical analysis and Ingenuity Pathway Analysis (IPA) were employed for assessing the relationship between methylation and WC. A total of 669 CpGs were statistically associated with WC (FDR < 0.05, slope ≥ |0.1|). From these CpGs, 375 CpGs evidenced a differential methylation pattern between females with WC ≤ 88 and > 88 cm, and 95 CpGs between males with WC ≤ 102 and > 102 cm. These differentially methylated CpGs are located in genes related to inflammation and obesity according to IPA. Receiver operating characteristic (ROC) curves of the top four significant differentially methylated CpGs separated by sex discriminated individuals with presence or absence of abdominal fat. ROC curves of all the CpGs from females and one CpG from males were validated in an independent sample (n = 161). These methylation results add further insights about the relationships between obesity, adiposity-associated comorbidities, and DNA methylation where inflammation processes may be involved.
Collapse
Affiliation(s)
- Ana Arpón
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Fermín I Milagro
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
| | - Omar Ramos-Lopez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Maria L Mansego
- Department of Bioinformatics, Making Genetics S.L., 31002, Pamplona, Spain.
| | - José-Ignacio Riezu-Boj
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
| | - J Alfredo Martínez
- Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1,31008 Pamplona, Spain.
- Centre for Nutrition Research, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Navarra Institute for Health Research (IdiSNa), 31008, Pamplona, Spain.
- Precision Nutrition and Cardiometabolic Health Program, Madrid Institute for Advanced Studies (IMDEA), IMDEA Food, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Chen Y, Guo F, Ru Z, Kong H, Sun H, Yu H, Yang W, Zhang Q, Zhou M. Nuclear factor-κB signaling negatively regulates high glucose-induced vascular endothelial cell damage downstream of the extracellular signal-regulated kinase/c-Jun N-terminal kinase pathway. Exp Ther Med 2017; 14:3851-3855. [PMID: 29042991 DOI: 10.3892/etm.2017.4999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 06/22/2017] [Indexed: 01/13/2023] Open
Abstract
Diabetes mellitus (DM)-induced high blood sugar severely damages vascular endothelial cells (VECs), which are in direct contact with the blood. Diabetic complications cause difficulties in skin wound healing and VECs are important for this process. Previous studies demonstrated that high blood sugar delayed the repair of wounded VECs, but the underlying mechanism has remained elusive. To explore the effects of diabetic conditions on VEC damage, cells were incubated in a medium with high glucose and then subjected to RNA-sequencing based transcriptome analysis. The results revealed that numerous biological processes were altered by HG stress, including extracellular matrix-receptor interaction, NOD-like receptor signaling and the nuclear factor (NF)-κB pathway. HG treatment increased the levels of phosphorylated inhibitor of NF-κB (IκB-α), the key NF-κB signaling regulator as well as the transcripts of plasminogen activator inhibitor-1 and interleukin-8, two inflammatory response markers. Treatment with extracellular signal-regulated kinase (ERK)- and c-Jun N-terminal kinase (JNK)-specific inhibitors U0126 and sp600125, respectively, led to the activation of IκB-α; however, the inhibitor of IκBα phosphorylation Bay11-7082 did not affect ERK and JNK activity, suggesting that ERK/JNK signaling occurs upstream of NF-κB in VECs. The present study provided useful information regarding the effects of diabetes on VECs, which may provide approaches for therapies of diabetes-associated complications in the future.
Collapse
Affiliation(s)
- Yunzhi Chen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China.,Department of Gynecology and Obstetrics, The People's Hospital of Wenzhou, Wenzhou, Zhejiang 325000, P.R. China
| | - Fang Guo
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zheng Ru
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hongru Kong
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Hongwei Sun
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Huajun Yu
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Yang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Qiyu Zhang
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Mengtao Zhou
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|