1
|
Wilson CG, Pieszko T, Nowell RW, Barraclough TG. Recombination in bdelloid rotifer genomes: asexuality, transfer and stress. Trends Genet 2024; 40:422-436. [PMID: 38458877 DOI: 10.1016/j.tig.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
Bdelloid rotifers constitute a class of microscopic animals living in freshwater habitats worldwide. Several strange features of bdelloids have drawn attention: their ability to tolerate desiccation and other stresses, a lack of reported males across the clade despite centuries of study, and unusually high numbers of horizontally acquired, non-metazoan genes. Genome sequencing is transforming our understanding of their lifestyle and its consequences, while in turn providing wider insights about recombination and genome organisation in animals. Many questions remain, not least how to reconcile apparent genomic signatures of sex with the continued absence of reported males, why bdelloids have so many horizontally acquired genes, and how their remarkable ability to survive stress interacts with recombination and other genomic processes.
Collapse
Affiliation(s)
- Christopher G Wilson
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK.
| | - Tymoteusz Pieszko
- Department of Biology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Reuben W Nowell
- Institute of Ecology and Evolution, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
2
|
Moris VC, Bruneau L, Berthe J, Heuskin AC, Penninckx S, Ritter S, Weber U, Durante M, Danchin EGJ, Hespeels B, Doninck KV. Ionizing radiation responses appear incidental to desiccation responses in the bdelloid rotifer Adineta vaga. BMC Biol 2024; 22:11. [PMID: 38273318 PMCID: PMC10809525 DOI: 10.1186/s12915-023-01807-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The remarkable resistance to ionizing radiation found in anhydrobiotic organisms, such as some bacteria, tardigrades, and bdelloid rotifers has been hypothesized to be incidental to their desiccation resistance. Both stresses produce reactive oxygen species and cause damage to DNA and other macromolecules. However, this hypothesis has only been investigated in a few species. RESULTS In this study, we analyzed the transcriptomic response of the bdelloid rotifer Adineta vaga to desiccation and to low- (X-rays) and high- (Fe) LET radiation to highlight the molecular and genetic mechanisms triggered by both stresses. We identified numerous genes encoding antioxidants, but also chaperones, that are constitutively highly expressed, which may contribute to the protection of proteins against oxidative stress during desiccation and ionizing radiation. We also detected a transcriptomic response common to desiccation and ionizing radiation with the over-expression of genes mainly involved in DNA repair and protein modifications but also genes with unknown functions that were bdelloid-specific. A distinct transcriptomic response specific to rehydration was also found, with the over-expression of genes mainly encoding Late Embryogenesis Abundant proteins, specific heat shock proteins, and glucose repressive proteins. CONCLUSIONS These results suggest that the extreme resistance of bdelloid rotifers to radiation might indeed be a consequence of their capacity to resist complete desiccation. This study paves the way to functional genetic experiments on A. vaga targeting promising candidate proteins playing central roles in radiation and desiccation resistance.
Collapse
Affiliation(s)
- Victoria C Moris
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium.
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium.
| | - Lucie Bruneau
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Jérémy Berthe
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Anne-Catherine Heuskin
- Namur Research Institute for Life Sciences (NARILIS), Laboratory of Analysis By Nuclear Reactions (LARN), University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet - Université Libre de Bruxelles, 90 Rue Meylemeersch, 1070, Brussels, Belgium
| | - Sylvia Ritter
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Uli Weber
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
| | - Marco Durante
- Biophysics Department, GSI Helmholtzzentrum Für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
| | - Etienne G J Danchin
- Institut Sophia Agrobiotech, INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, France
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology (LEGE), Department of Biology - URBE, University of Namur, Rue de Bruxelles, 61, B-5000, Namur, Belgium
- Laboratory of Molecular Biology & Evolution (MBE), Department of Biology, Université Libre de Bruxelles, 1000, Brussels, Belgium
| |
Collapse
|
3
|
Ujaoney AK, Anaganti N, Padwal MK, Basu B. Tracing the serendipitous genesis of radiation resistance. Mol Microbiol 2024; 121:142-151. [PMID: 38082498 DOI: 10.1111/mmi.15208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/01/2023] [Accepted: 11/27/2023] [Indexed: 01/15/2024]
Abstract
Free-living organisms frequently encounter unfavorable abiotic environmental factors. Those who adapt and cope with sudden changes in the external environment survive. Desiccation is one of the most common and frequently encountered stresses in nature. On the contrary, ionizing radiations are limited to high local concentrations of naturally occurring radioactive materials and related anthropogenic activities. Yet, resistance to high doses of ionizing radiation is evident across the tree of life. The evolution of desiccation resistance has been linked to the evolution of ionizing radiation resistance, although, evidence to support the idea that the evolution of desiccation tolerance is a necessary precursor to ionizing radiation resistance is lacking. Moreover, the presence of radioresistance in hyperthermophiles suggests multiple paths lead to radiation resistance. In this minireview, we focus on the molecular aspects of damage dynamics and damage response pathways comprising protective and restorative functions with a definitive survival advantage, to explore the serendipitous genesis of ionizing radiation resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
4
|
Nicolas E, Simion P, Guérineau M, Terwagne M, Colinet M, Virgo J, Lingurski M, Boutsen A, Dieu M, Hallet B, Van Doninck K. Horizontal acquisition of a DNA ligase improves DNA damage tolerance in eukaryotes. Nat Commun 2023; 14:7638. [PMID: 37993452 PMCID: PMC10665377 DOI: 10.1038/s41467-023-43075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
Bdelloid rotifers are part of the restricted circle of multicellular animals that can withstand a wide range of genotoxic stresses at any stage of their life cycle. In this study, bdelloid rotifer Adineta vaga is used as a model to decipher the molecular basis of their extreme tolerance. Proteomic analysis shows that a specific DNA ligase, different from those usually involved in DNA repair in eukaryotes, is strongly over-represented upon ionizing radiation. A phylogenetic analysis reveals its orthology to prokaryotic DNA ligase E, and its horizontal acquisition by bdelloid rotifers and plausibly other eukaryotes. The fungus Mortierella verticillata, having a single copy of this DNA Ligase E homolog, also exhibits an increased radiation tolerance with an over-expression of this DNA ligase E following X-ray exposure. We also provide evidence that A. vaga ligase E is a major contributor of DNA breaks ligation activity, which is a common step of all important DNA repair pathways. Consistently, its heterologous expression in human cell lines significantly improves their radio-tolerance. Overall, this study highlights the potential of horizontal gene transfers in eukaryotes, and their contribution to the adaptation to extreme conditions.
Collapse
Affiliation(s)
- Emilien Nicolas
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
| | - Paul Simion
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
- Université de Rennes, Ecosystèmes, biodiversité, évolution (ECOBIO UMR 6553), CNRS, Rennes, France
| | - Marc Guérineau
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Matthieu Terwagne
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Mathilde Colinet
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Julie Virgo
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Maxime Lingurski
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium
| | - Anaïs Boutsen
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium
| | - Marc Dieu
- Université de Namur, MaSUN-mass spectrometry facility, Namur, 5000, Belgium
| | - Bernard Hallet
- Université Catholique de Louvain, Louvain Institute of Biomolecular Science and Technology, Louvain-la-Neuve, 1348, Belgium.
| | - Karine Van Doninck
- Université Libre de Bruxelles, Molecular Biology and Evolution, Brussels, 1050, Belgium.
- Université de Namur, Laboratory of Evolutionary Genetics and Ecology, Namur, 5000, Belgium.
| |
Collapse
|
5
|
Suring W, Hoogduin D, Le Ngoc G, Brouwer A, van Straalen NM, Roelofs D. Nonribosomal Peptide Synthetases in Animals. Genes (Basel) 2023; 14:1741. [PMID: 37761881 PMCID: PMC10531068 DOI: 10.3390/genes14091741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are a class of cytosolic enzymes that synthesize a range of bio-active secondary metabolites including antibiotics and siderophores. They are widespread among both prokaryotes and eukaryotes but are considered rare among animals. Recently, several novel NRPS genes have been described in nematodes, schistosomes, and arthropods, which led us to investigate how prevalent NRPS genes are in the animal kingdom. We screened 1059 sequenced animal genomes and showed that NRPSs were present in 7 out of the 19 phyla analyzed. A phylogenetic analysis showed that the identified NRPSs form clades distinct from other adenylate-forming enzymes that contain similar domains such as fatty acid synthases. NRPSs show a remarkably scattered distribution over the animal kingdom. They are especially abundant in rotifers and nematodes. In rotifers, we found a large variety of domain architectures and predicted substrates. In the nematode Plectus sambesii, we identified the beta-lactam biosynthesis genes L-δ-(α-aminoadipoyl)-L-cysteinyl-D-valine synthetase, isopenicillin N synthase, and deacetoxycephalosporin C synthase that catalyze the formation of beta-lactam antibiotics in fungi and bacteria. These genes are also present in several species of Collembola, but not in other hexapods analyzed so far. In conclusion, our survey showed that NRPS genes are more abundant and widespread in animals than previously known.
Collapse
Affiliation(s)
- Wouter Suring
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Department of Academy Technology & Innovation, NHL Stenden University of Applied Sciences, Rengerslaan 8-10, 8917 DD Leeuwarden, The Netherlands
| | - Dylan Hoogduin
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Giang Le Ngoc
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Biomedical Primate Research Centre, Lange Kleiweg 161, 2282 GJ Rijswijk, The Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH Amsterdam, The Netherlands
| | - Nico M. van Straalen
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dick Roelofs
- A-LIFE Ecology and Evolution, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
- Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
6
|
Hespeels B, Fontaneto D, Cornet V, Penninckx S, Berthe J, Bruneau L, Larrick JW, Rapport E, Bailly J, Debortoli N, Iakovenko N, Janko K, Heuskin AC, Lucas S, Hallet B, Van Doninck K. Back to the roots, desiccation and radiation resistances are ancestral characters in bdelloid rotifers. BMC Biol 2023; 21:72. [PMID: 37024917 PMCID: PMC10080820 DOI: 10.1186/s12915-023-01554-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Bdelloid rotifers are micro-invertebrates distributed worldwide, from temperate latitudes to the most extreme areas of the planet like Antarctica or the Atacama Desert. They have colonized any habitat where liquid water is temporarily available, including terrestrial environments such as soils, mosses, and lichens, tolerating desiccation and other types of stress such as high doses of ionizing radiation (IR). It was hypothesized that bdelloid desiccation and radiation resistance may be attributed to their potential ability to repair DNA double-strand breaks (DSBs). Here, these properties are investigated and compared among nine bdelloid species collected from both mild and harsh habitats, addressing the correlation between the ability of bdelloid rotifers to survive desiccation and their capacity to repair massive DNA breakage in a phylogenetically explicit context. Our research includes both specimens isolated from habitats that experience frequent desiccation (at least 1 time per generation), and individuals sampled from habitats that rarely or never experienced desiccation. RESULTS Our analysis reveals that DNA repair prevails in somatic cells of both desiccation-tolerant and desiccation-sensitive bdelloid species after exposure to X-ray radiation. Species belonging to both categories are able to withstand high doses of ionizing radiation, up to 1000 Gy, without experiencing any negative effects on their survival. However, the fertility of two desiccation-sensitive species, Rotaria macrura and Rotaria rotatoria, was more severely impacted by low doses of radiation than that of desiccation-resistant species. Surprisingly, the radioresistance of desiccation-resistant species is not related to features of their original habitat. Indeed, bdelloids isolated from Atacama Desert or Antarctica were not characterized by a higher radioresistance than species found in more temperate environments. CONCLUSIONS Tolerance to desiccation and radiation are supported as ancestral features of bdelloid rotifers, with a group of species of the genus Rotaria having lost this trait after colonizing permanent water habitats. Together, our results provide a comprehensive overview of the evolution of desiccation and radiation resistance among bdelloid rotifers.
Collapse
Affiliation(s)
- Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council of Italy (CNR), Verbania Pallanza, Italy
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérémy Berthe
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Lucie Bruneau
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - James W Larrick
- Panorama Research Institute, Sunnyvale, CA, USA
- SETI Institute, Mountain View, CA, USA
| | - Eloïse Rapport
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Jérémie Bailly
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nicolas Debortoli
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Nataliia Iakovenko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ - 165 21 Praha 6, Suchdol, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Karel Janko
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics AS CR, Rumburská 89, Liběchov, 277 21, Czech Republic
- Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Stéphane Lucas
- Laboratory of Analysis by Nuclear Reactions (LARN), Namur Research Institute for Life Sciences (Narilis), University of Namur, Namur, Belgium
| | - Bernard Hallet
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium.
- Research Unit in Molecular Biology and Evolution, DBO, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium.
| |
Collapse
|
7
|
de Oliveira Hoffmann¹ PH, Adolfo² A, Piu² AG, Vendramin² D, Martins² L, Weber¹ V, Maltchik¹ L, Stenert C. Invertebrate Richness and Hatching Decrease with Sediment Depth in Neotropical Intermittent Ponds. WETLANDS (WILMINGTON, N.C.) 2023; 43:24. [PMID: 36936606 PMCID: PMC10010224 DOI: 10.1007/s13157-023-01675-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/27/2023] [Indexed: 06/14/2023]
Abstract
Some groups of invertebrates from intermittent wetlands produce dormant stages in response to environmental fluctuations. Dormancy is a strategy to survive such fluctuations and to persist in extreme aquatic habitats, such as temporary habitats. We investigated the hatching responses of invertebrate dormant stages across different depths of sediment in intermittent ponds. Our hypotheses were: (1) the richness and abundance of invertebrate hatchlings decrease as the depth of the sediment column increases, and (2) the composition of invertebrate hatchlings varies over the wetland sediment depth. Four intermittent ponds were sampled in southern Brazil. One sediment column of 30 cm depth was collected in each pond and stratified into 1 cm thick slices for analysis of the dormant stages. A total of 1,931 hatchlings distributed among 31 taxa were collected from the sediment columns over the experiment. The total richness and abundance of hatchlings (after bdelloid taxa exclusion) were negatively related with the sediment depth. The composition of aquatic invertebrates varied among the different strata over the sediment depth. As intermittent wetlands are ecosystems extremely susceptible to climate variations, the results help to understand the resilience of aquatic resistant communities from different sediment strata after drought events. Supplementary Information The online version contains supplementary material available at 10.1007/s13157-023-01675-6.
Collapse
Affiliation(s)
- Pedro Henrique de Oliveira Hoffmann¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Andressa Adolfo²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Allana Gonçalves Piu²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Daiane Vendramin²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Lidiane Martins²
- Universidade do Vale do Rio dos Sinos (UNISINOS), Av. Unisinos 950, São Leopoldo, Rio Grande do Sul Brazil
| | - Vinicius Weber¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Leonardo Maltchik¹
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| | - Cristina Stenert
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais, Universidade Federal do Rio Grande – FURG, Avenida Itália, km 8, 96203-900 Rio Grande, RS Brazil
| |
Collapse
|
8
|
Terwagne M, Nicolas E, Hespeels B, Herter L, Virgo J, Demazy C, Heuskin AC, Hallet B, Van Doninck K. DNA repair during nonreductional meiosis in the asexual rotifer Adineta vaga. SCIENCE ADVANCES 2022; 8:eadc8829. [PMID: 36449626 PMCID: PMC9710870 DOI: 10.1126/sciadv.adc8829] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/13/2022] [Indexed: 06/17/2023]
Abstract
Rotifers of the class Bdelloidea are microscopic animals notorious for their long-term persistence in the apparent absence of sexual reproduction and meiotic recombination. This evolutionary paradox is often counterbalanced by invoking their ability to repair environmentally induced genome breakage. By studying the dynamics of DNA damage response in the bdelloid species Adineta vaga, we found that it occurs rapidly in the soma, producing a partially reassembled genome. By contrast, germline DNA repair is delayed to a specific time window of oogenesis during which homologous chromosomes adopt a meiotic-like juxtaposed configuration, resulting in accurate reconstitution of the genome in the offspring. Our finding that a noncanonical meiosis is the mechanism of germline DNA repair in bdelloid rotifers gives previously unidentified insights on their enigmatic long-term evolution.
Collapse
Affiliation(s)
- Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| | - Ludovic Herter
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Catherine Demazy
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Cellular Biology Research Unit (URBC), University of Namur (UNamur), Namur 5000, Belgium
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
| | - Bernard Hallet
- Institute of Biomolecular Science and Technology (LIBST), Université Catholique de Louvain (UCLouvain), Louvain-la-Neuve 1348, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), Namur 5000, Belgium
- Research Unit of Molecular Biology and Evolution (MBE), Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth and Environment (ILEE), University of Namur (UNamur), Namur 5000, Belgium
| |
Collapse
|
9
|
Yoshida Y, Tanaka S. Deciphering the Biological Enigma-Genomic Evolution Underlying Anhydrobiosis in the Phylum Tardigrada and the Chironomid Polypedilum vanderplanki. INSECTS 2022; 13:557. [PMID: 35735894 PMCID: PMC9224920 DOI: 10.3390/insects13060557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023]
Abstract
Anhydrobiosis, an ametabolic dehydrated state triggered by water loss, is observed in several invertebrate lineages. Anhydrobiotes revive when rehydrated, and seem not to suffer the ultimately lethal cell damage that results from severe loss of water in other organisms. Here, we review the biochemical and genomic evidence that has revealed the protectant molecules, repair systems, and maintenance pathways associated with anhydrobiosis. We then introduce two lineages in which anhydrobiosis has evolved independently: Tardigrada, where anhydrobiosis characterizes many species within the phylum, and the genus Polypedilum, where anhydrobiosis occurs in only two species. Finally, we discuss the complexity of the evolution of anhydrobiosis within invertebrates based on current knowledge, and propose perspectives to enhance the understanding of anhydrobiosis.
Collapse
Affiliation(s)
- Yuki Yoshida
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Sae Tanaka
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Institute for Advanced Biosciences, Keio University, 341-1 Mizukami, Tsuruoka 997-0052, Japan
| |
Collapse
|
10
|
First Insights into the Repertoire of Secretory Lectins in Rotifers. Mar Drugs 2022; 20:md20020130. [PMID: 35200659 PMCID: PMC8878817 DOI: 10.3390/md20020130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023] Open
Abstract
Due to their high biodiversity and adaptation to a mutable and challenging environment, aquatic lophotrochozoan animals are regarded as a virtually unlimited source of bioactive molecules. Among these, lectins, i.e., proteins with remarkable carbohydrate-recognition properties involved in immunity, reproduction, self/nonself recognition and several other biological processes, are particularly attractive targets for biotechnological research. To date, lectin research in the Lophotrochozoa has been restricted to the most widespread phyla, which are the usual targets of comparative immunology studies, such as Mollusca and Annelida. Here we provide the first overview of the repertoire of the secretory lectin-like molecules encoded by the genomes of six target rotifer species: Brachionus calyciflorus, Brachionus plicatilis, Proales similis (class Monogononta), Adineta ricciae, Didymodactylos carnosus and Rotaria sordida (class Bdelloidea). Overall, while rotifer secretory lectins display a high molecular diversity and belong to nine different structural classes, their total number is significantly lower than for other groups of lophotrochozoans, with no evidence of lineage-specific expansion events. Considering the high evolutionary divergence between rotifers and the other major sister phyla, their widespread distribution in aquatic environments and the ease of their collection and rearing in laboratory conditions, these organisms may represent interesting targets for glycobiological studies, which may allow the identification of novel carbohydrate-binding proteins with peculiar biological properties.
Collapse
|
11
|
Simion P, Narayan J, Houtain A, Derzelle A, Baudry L, Nicolas E, Arora R, Cariou M, Cruaud C, Gaudray FR, Gilbert C, Guiglielmoni N, Hespeels B, Kozlowski DKL, Labadie K, Limasset A, Llirós M, Marbouty M, Terwagne M, Virgo J, Cordaux R, Danchin EGJ, Hallet B, Koszul R, Lenormand T, Flot JF, Van Doninck K. Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer Adineta vaga. SCIENCE ADVANCES 2021; 7:eabg4216. [PMID: 34613768 PMCID: PMC8494291 DOI: 10.1126/sciadv.abg4216] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Bdelloid rotifers are notorious as a speciose ancient clade comprising only asexual lineages. Thanks to their ability to repair highly fragmented DNA, most bdelloid species also withstand complete desiccation and ionizing radiation. Producing a well-assembled reference genome is a critical step to developing an understanding of the effects of long-term asexuality and DNA breakage on genome evolution. To this end, we present the first high-quality chromosome-level genome assemblies for the bdelloid Adineta vaga, composed of six pairs of homologous (diploid) chromosomes with a footprint of paleotetraploidy. The observed large-scale losses of heterozygosity are signatures of recombination between homologous chromosomes, either during mitotic DNA double-strand break repair or when resolving programmed DNA breaks during a modified meiosis. Dynamic subtelomeric regions harbor more structural diversity (e.g., chromosome rearrangements, transposable elements, and haplotypic divergence). Our results trigger the reappraisal of potential meiotic processes in bdelloid rotifers and help unravel the factors underlying their long-term asexual evolutionary success.
Collapse
Affiliation(s)
- Paul Simion
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Jitendra Narayan
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Antoine Houtain
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Alessandro Derzelle
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Lyam Baudry
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
- Collège Doctoral, Sorbonne Université, F-75005 Paris, France
| | - Emilien Nicolas
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Rohan Arora
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Marie Cariou
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | | | - Clément Gilbert
- Évolution, Génomes, Comportement et Écologie, Université Paris-Saclay, CNRS, IRD, UMR, 91198 Gif-sur-Yvette, France
| | - Nadège Guiglielmoni
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
| | - Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Djampa K. L. Kozlowski
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - Antoine Limasset
- Université de Lille, CNRS, UMR 9189 - CRIStAL, 59655 Villeneuve-d’Ascq, France
| | - Marc Llirós
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Institut d’Investigació Biomédica de Girona, Malalties Digestives i Microbiota, 17190 Salt, Spain
| | - Martial Marbouty
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Matthieu Terwagne
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Julie Virgo
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
| | - Richard Cordaux
- Ecologie et Biologie des interactions, Université de Poitiers, UMR CNRS 7267, 5 rue Albert Turpain, 86073 Poitiers, France
| | - Etienne G. J. Danchin
- INRAE, Université Côte-d’Azur, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis 06903, France
| | - Bernard Hallet
- LIBST, Université Catholique de Louvain (UCLouvain), Croix du Sud 4/5, Louvain-la-Neuve 1348, Belgium
| | - Romain Koszul
- Institut Pasteur, Unité Régulation Spatiale des Génomes, UMR 3525, CNRS, Paris F-75015, France
| | - Thomas Lenormand
- CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France
| | - Jean-Francois Flot
- Evolutionary Biology and Ecology, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Interuniversity Institute of Bioinformatics in Brussels - (IB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology, Université de Namur, Namur 5000, Belgium
- Molecular Biology and Evolution, Université libre de Bruxelles (ULB), Brussels 1050, Belgium
- Corresponding author. (K.V.D.); (J.-F.F.); (P.S.)
| |
Collapse
|
12
|
Tsuneizumi K, Yamada M, Kim HJ, Ichida H, Ichinose K, Sakakura Y, Suga K, Hagiwara A, Kawata M, Katayama T, Tezuka N, Kobayashi T, Koiso M, Abe T. Application of heavy-ion-beam irradiation to breeding large rotifer. Biosci Biotechnol Biochem 2021; 85:703-713. [PMID: 33624778 DOI: 10.1093/bbb/zbaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.
Collapse
Affiliation(s)
| | - Mieko Yamada
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Hee-Jin Kim
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Ichida
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | | | - Yoshitaka Sakakura
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan.,Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Miki Kawata
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takashi Katayama
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Nobuhiro Tezuka
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Masahiko Koiso
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| |
Collapse
|
13
|
Nowell RW, Wilson CG, Almeida P, Schiffer PH, Fontaneto D, Becks L, Rodriguez F, Arkhipova IR, Barraclough TG. Evolutionary dynamics of transposable elements in bdelloid rotifers. eLife 2021; 10:e63194. [PMID: 33543711 PMCID: PMC7943196 DOI: 10.7554/elife.63194] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/04/2021] [Indexed: 12/17/2022] Open
Abstract
Transposable elements (TEs) are selfish genomic parasites whose ability to spread autonomously is facilitated by sexual reproduction in their hosts. If hosts become obligately asexual, TE frequencies and dynamics are predicted to change dramatically, but the long-term outcome is unclear. Here, we test current theory using whole-genome sequence data from eight species of bdelloid rotifers, a class of invertebrates in which males are thus far unknown. Contrary to expectations, we find a variety of active TEs in bdelloid genomes, at an overall frequency within the range seen in sexual species. We find no evidence that TEs are spread by cryptic recombination or restrained by unusual DNA repair mechanisms. Instead, we find that that TE content evolves relatively slowly in bdelloids and that gene families involved in RNAi-mediated TE suppression have undergone significant expansion, which might mitigate the deleterious effects of active TEs and compensate for the consequences of long-term asexuality.
Collapse
Affiliation(s)
- Reuben W Nowell
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Christopher G Wilson
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
- Division of Biosciences, University College LondonLondonUnited Kingdom
| | - Philipp H Schiffer
- Institute of Zoology, Section Developmental Biology, University of Cologne, KölnWormlabGermany
| | - Diego Fontaneto
- National Research Council of Italy, Water Research InstituteVerbania PallanzaItaly
| | - Lutz Becks
- Community Dynamics Group, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary BiologyPlönGermany
- Aquatic Ecology and Evolution, University of KonstanzKonstanzGermany
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Irina R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological LaboratoryWoods Hole, MAUnited States
| | - Timothy G Barraclough
- Department of Zoology, University of OxfordOxfordUnited Kingdom
- Department of Life Sciences, Imperial College London, Silwood Park CampusAscot, BerkshireUnited Kingdom
| |
Collapse
|
14
|
Lee YH, Kim MS, Kim DH, Kim IC, Hagiwara A, Lee JS. Genome-wide identification of DNA double-strand break repair genes and transcriptional modulation in response to benzo[α]pyrene in the monogonont rotifer Brachionus spp. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105614. [PMID: 32932040 DOI: 10.1016/j.aquatox.2020.105614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The DNA repair system has evolved from the common ancestor of all life forms and its function is highly conserved within eukaryotes. In this study, to reveal the role of DNA double-strand break repair (DSB) genes in response to benzo[α]pyrene (B[α]P), we first identified DSB genes in relation to homologous recombination and non-homologous end joining events in four Brachionus rotifer spp.: B. calyciflorus, B. koreanus, B. plicatilis, and B. rotundiformis. In all the Brachionus spp., 39 orthologous genes to human DSB repair genes were identified. Furthermore, three genes in B. koreanus, two genes in B. plicatilis, and one gene in B. calyciflorus and B. rotundiformis were present as duplicated genes, indicating that these genes were diversified over speciation in the genus Brachionus. Moreover, we compared DSB repair genes on the gene structures in four monogonont Brachionus rotifers and the bdelloid rotifer Adineta vaga, which possesses highly efficient DNA repair ability. The transcriptional responses of four monogonont Brachionus rotifers in response to B[α]P exposure showed how B[α]P exposure led to DSBs and subsequently recruited DNA DSB repair pathways in the rotifer B. koreanus. Taken together, this study provides a better understanding of the potential role of DSB repair genes in the monogonont rotifer Brachionus spp. in response to B[α]P.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Il-Chan Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
15
|
Kinkar L, Young ND, Sohn WM, Stroehlein AJ, Korhonen PK, Gasser RB. First record of a tandem-repeat region within the mitochondrial genome of Clonorchis sinensis using a long-read sequencing approach. PLoS Negl Trop Dis 2020; 14:e0008552. [PMID: 32845881 PMCID: PMC7449408 DOI: 10.1371/journal.pntd.0008552] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background Mitochondrial genomes provide useful genetic markers for systematic and population genetic studies of parasitic helminths. Although many such genome sequences have been published and deposited in public databases, there is evidence that some of them are incomplete relating to an inability of conventional techniques to reliably sequence non-coding (repetitive) regions. In the present study, we characterise the complete mitochondrial genome—including the long, non-coding region—of the carcinogenic Chinese liver fluke, Clonorchis sinensis, using long-read sequencing. Methods The mitochondrial genome was sequenced from total high molecular-weight genomic DNA isolated from a pool of 100 adult worms of C. sinensis using the MinION sequencing platform (Oxford Nanopore Technologies), and assembled and annotated using an informatic approach. Results From > 93,500 long-reads, we assembled a 18,304 bp-mitochondrial genome for C. sinensis. Within this genome we identified a novel non-coding region of 4,549 bp containing six tandem-repetitive units of 719–809 bp each. Given that genomic DNA from pooled worms was used for sequencing, some variability in length/sequence in this tandem-repetitive region was detectable, reflecting population variation. Conclusions For C. sinensis, we report the complete mitochondrial genome, which includes a long (> 4.5 kb) tandem-repetitive region. The discovery of this non-coding region using a nanopore-sequencing/informatic approach now paves the way to investigating the nature and extent of length/sequence variation in this region within and among individual worms, both within and among C. sinensis populations, and to exploring whether this region has a functional role in the regulation of replication and transcription, akin to the mitochondrial control region in mammals. Although applied to C. sinensis, the technological approach established here should be broadly applicable to characterise complex tandem-repetitive or homo-polymeric regions in the mitochondrial genomes of a wide range of taxa. In the present study, we characterised the complete mitochondrial genome of Clonorchis sinensis—a carcinogenic liver fluke. To do this, we sequenced from total genomic DNA from multiple adult worms using a new method (Oxford Nanopore technology) to obtain data for long stretches of DNA, and then assembled these data to construct a mitochondrial genome of 18,304 bp, containing a > 4.5 kb-long tandem-repetitive region—not previously detected in this species. The results demonstrate that this method is effective at sequencing long and complex non-coding elements—not achievable using conventional techniques. The discovery of this long tandem-repetitive region in C. sinensis provides an opportunity to now explore its origin(s) and length/sequence diversity in populations of this species, and also to characterise its function(s). The technological approach employed here should have broad applicability to characterise previously-elusive non-coding mitochondrial genomic regions in a wide range of taxa.
Collapse
Affiliation(s)
- Liina Kinkar
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Neil D. Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Andreas J. Stroehlein
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pasi K. Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Robin B. Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail: (NDY); (RBG)
| |
Collapse
|
16
|
Hespeels B, Penninckx S, Cornet V, Bruneau L, Bopp C, Baumlé V, Redivo B, Heuskin AC, Moeller R, Fujimori A, Lucas S, Van Doninck K. Iron Ladies - How Desiccated Asexual Rotifer Adineta vaga Deal With X-Rays and Heavy Ions? Front Microbiol 2020; 11:1792. [PMID: 32849408 PMCID: PMC7412981 DOI: 10.3389/fmicb.2020.01792] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 07/09/2020] [Indexed: 11/29/2022] Open
Abstract
Space exposure experiments from the last 15 years have unexpectedly shown that several terrestrial organisms, including some multi-cellular species, are able to survive in open space without protection. The robustness of bdelloid rotifers suggests that these tiny creatures can possibly be added to the still restricted list of animals that can deal with the exposure to harsh condition of space. Bdelloids are one of the smallest animals on Earth. Living all over the world, mostly in semi-terrestrial environments, they appear to be extremely stress tolerant. Their desiccation tolerance at any stage of their life cycle is known to confer tolerance to a variety of stresses including high doses of radiation and freezing. In addition, they constitute a major scandal in evolutionary biology due to the putative absence of sexual reproduction for at least 60 million years. Adineta vaga, with its unique characteristics and a draft genome available, was selected by ESA (European Space Agency) as a model system to study extreme resistance of organisms exposed to space environment. In this manuscript, we documented the resistance of desiccated A. vaga individuals exposed to increasing doses of X-ray, protons and Fe ions. Consequences of exposure to different sources of radiation were investigated in regard to the cellular type including somatic (survival assay) and germinal cells (fertility assay). Then, the capacity of A. vaga individuals to repair DNA DSB induced by different source of radiation was investigated. Bdelloid rotifers represent a promising model in order to investigate damage induced by high or low LET radiation. The possibility of exposure both on hydrated or desiccated specimens may help to decipher contribution of direct and indirect radiation damage on biological processes. Results achieved through this study consolidate our knowledge about the radioresistance of A. vaga and improve our capacity to compare extreme resistance against radiation among living organisms including metazoan.
Collapse
Affiliation(s)
- Boris Hespeels
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Sébastien Penninckx
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Valérie Cornet
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Lucie Bruneau
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Cécile Bopp
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Véronique Baumlé
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Baptiste Redivo
- Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| | - Anne-Catherine Heuskin
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Ralf Moeller
- Space Microbiology Research Group, Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany.,Department of Natural Sciences, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), Rheinbach, Germany
| | - Akira Fujimori
- Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences (NIRS), Chiba, Japan
| | - Stephane Lucas
- Laboratory of Analysis by Nuclear Reaction (LARN), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium
| | - Karine Van Doninck
- Research Unit in Environmental and Evolutionary Biology (URBE), Laboratory of Evolutionary Genetics and Ecology (LEGE), NAmur Research Institute for Life Sciences (NARILIS), University of Namur, Namur, Belgium.,Research Unit in Environmental and Evolutionary Biology (URBE), Institute of Life, Earth & Environment (ILEE), University of Namur, Namur, Belgium
| |
Collapse
|
17
|
Li X, Fang C, Zhao JP, Zhou XY, Ni Z, Niu DK. Desiccation does not drastically increase the accessibility of exogenous DNA to nuclear genomes: evidence from the frequency of endosymbiotic DNA transfer. BMC Genomics 2020; 21:452. [PMID: 32611311 PMCID: PMC7329468 DOI: 10.1186/s12864-020-06865-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background Although horizontal gene transfer (HGT) is a widely accepted force in the evolution of prokaryotic genomes, its role in the evolution of eukaryotic genomes remains hotly debated. Some bdelloid rotifers that are resistant to extreme desiccation and radiation undergo a very high level of HGT, whereas in another desiccation-resistant invertebrate, the tardigrade, the pattern does not exist. Overall, the DNA double-strand breaks (DSBs) induced by prolonged desiccation have been postulated to open a gateway to the nuclear genome for exogenous DNA integration and thus to facilitate the HGT process, thereby enhancing the rate of endosymbiotic DNA transfer (EDT). Results We first surveyed the abundance of nuclear mitochondrial DNAs (NUMTs) and nuclear plastid DNAs (NUPTs) in five eukaryotes that are highly resistant to desiccation: the bdelloid rotifers Adineta vaga and Adineta ricciae, the tardigrade Ramazzottius varieornatus, and the resurrection plants Dorcoceras hygrometricum and Selaginella tamariscina. Excessive NUMTs or NUPTs were not detected. Furthermore, we compared 24 groups of desiccation-tolerant organisms with their relatively less desiccation-tolerant relatives but did not find a significant difference in NUMT/NUPT contents. Conclusions Desiccation may induce DSBs, but it is unlikely to dramatically increase the frequency of exogenous sequence integration in most eukaryotes. The capture of exogenous DNA sequences is possible only when DSBs are repaired through a subtype of non-homologous end joining, named alternative end joining (alt-EJ). Due to the deleterious effects of the resulting insertion mutations, alt-EJ is less frequently initiated than other mechanisms.
Collapse
Affiliation(s)
- Xixi Li
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Cheng Fang
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jun-Peng Zhao
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xiao-Yu Zhou
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhihua Ni
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.,College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Deng-Ke Niu
- MOE Key Laboratory for Biodiversity Science and Ecological Engineering and Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
18
|
Schiffer PH, Danchin EGJ, Burnell AM, Creevey CJ, Wong S, Dix I, O'Mahony G, Culleton BA, Rancurel C, Stier G, Martínez-Salazar EA, Marconi A, Trivedi U, Kroiher M, Thorne MAS, Schierenberg E, Wiehe T, Blaxter M. Signatures of the Evolution of Parthenogenesis and Cryptobiosis in the Genomes of Panagrolaimid Nematodes. iScience 2019; 21:587-602. [PMID: 31759330 PMCID: PMC6889759 DOI: 10.1016/j.isci.2019.10.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/17/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Most animal species reproduce sexually and fully parthenogenetic lineages are usually short lived in evolution. Still, parthenogenesis may be advantageous as it avoids the cost of sex and permits colonization by single individuals. Panagrolaimid nematodes have colonized environments ranging from arid deserts to Arctic and Antarctic biomes. Many are obligatory meiotic parthenogens, and most have cryptobiotic abilities, being able to survive repeated cycles of complete desiccation and freezing. To identify systems that may contribute to these striking abilities, we sequenced and compared the genomes and transcriptomes of parthenogenetic and outcrossing panagrolaimid species, including cryptobionts and non-cryptobionts. The parthenogens are triploids, most likely originating through hybridization. Adaptation to cryptobiosis shaped the genomes of panagrolaimid nematodes and is associated with the expansion of gene families and signatures of selection on genes involved in cryptobiosis. All panagrolaimids have acquired genes through horizontal gene transfer, some of which are likely to contribute to cryptobiosis.
Collapse
Affiliation(s)
- Philipp H Schiffer
- CLOE, Department for Biosciences, University College London, London, UK; Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany; Institut für Genetik, Universität zu Köln, 50674 Köln, Germany.
| | | | - Ann M Burnell
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | | | - Simon Wong
- Irish Centre for High-End Computing, Tower Building, Trinity Technology & Enterprise Campus, Grand Canal Quay, Dublin D02 HP83, Ireland
| | - Ilona Dix
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Georgina O'Mahony
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland
| | - Bridget A Culleton
- Maynooth University Department of Biology, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland; Megazyme, Bray Business Park, Bray, Co. Wicklow A98 YV29, Ireland
| | | | - Gary Stier
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Elizabeth A Martínez-Salazar
- Unidad Académica de Ciencias Biológicas, Laboratorio de Colecciones Biológicas y Sistemática Molecular, Universidad Autónoma de Zacatecas, Zacatecas, México
| | - Aleksandra Marconi
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Urmi Trivedi
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Michael Kroiher
- Zoologisches Institut, Universität zu Köln, 50674 Köln, Germany
| | - Michael A S Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge CB3 0ET, UK
| | | | - Thomas Wiehe
- Institut für Genetik, Universität zu Köln, 50674 Köln, Germany
| | - Mark Blaxter
- Institute of Evolutionary Biology, The University of Edinburgh, Edinburgh EH9 3FL, UK; Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
19
|
Boothby TC. Mechanisms and evolution of resistance to environmental extremes in animals. EvoDevo 2019; 10:30. [PMID: 31827759 PMCID: PMC6862762 DOI: 10.1186/s13227-019-0143-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 11/02/2019] [Indexed: 11/25/2022] Open
Abstract
When animals are exposed to an extreme environmental stress, one of three possible outcomes takes place: the animal dies, the animal avoids the environmental stress and survives, or the animal tolerates the environmental stress and survives. This review is concerned with the third possibility, and will look at mechanisms that rare animals use to survive extreme environmental stresses including freezing, desiccation, intense heat, irradiation, and low-oxygen conditions (hypoxia). In addition, an increasing understanding of the molecular mechanisms involved in environmental stress tolerance allows us to speculate on how these tolerances arose. Uncovering the mechanisms of extreme environmental stress tolerance and how they evolve has broad implications for our understanding of the evolution of early life on this planet, colonization of new environments, and the search for novel forms of life both on Earth and elsewhere, as well as a number of agricultural and health-related applications.
Collapse
Affiliation(s)
- Thomas C Boothby
- Department of Molecular Biology, University of Wyoming, Laramie, WY USA
| |
Collapse
|
20
|
Kaczmarek Ł, Roszkowska M, Fontaneto D, Jezierska M, Pietrzak B, Wieczorek R, Poprawa I, Kosicki JZ, Karachitos A, Kmita H. Staying young and fit? Ontogenetic and phylogenetic consequences of animal anhydrobiosis. J Zool (1987) 2019. [DOI: 10.1111/jzo.12677] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Ł. Kaczmarek
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - M. Roszkowska
- Department of Animal Taxonomy and Ecology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - D. Fontaneto
- National Research Council Water Research Institute (CNR‐IRSA) Verbania Italy
| | - M. Jezierska
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - B. Pietrzak
- Department of Hydrobiology Faculty of Biology Biological and Chemical Research Centre University of Warsaw Warszawa Poland
| | - R. Wieczorek
- Faculty of Chemistry University of Warsaw Warsaw Poland
| | - I. Poprawa
- Department of Animal Histology and Embryology University of Silesia in Katowice Katowice Poland
| | - J. Z. Kosicki
- Department of Avian Biology and Ecology Faculty of Biology Adam Mickiewicz University Poznan Poznań Poland
| | - A. Karachitos
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| | - H. Kmita
- Department of Bioenergetics Institute of Molecular Biology and Biotechnology Faculty of Biology Adam Mickiewicz University in Poznan Poznań Poland
| |
Collapse
|
21
|
Latta LC, Tucker KN, Haney RA. The relationship between oxidative stress, reproduction, and survival in a bdelloid rotifer. BMC Ecol 2019; 19:7. [PMID: 30709393 PMCID: PMC6359782 DOI: 10.1186/s12898-019-0223-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
Background A proposed mediator of trade-offs between survival and reproduction is oxidative stress resistance. Investments in reproduction are associated with increased oxidative stress that reduces lifespan. We used the bdelloid rotifer Adineta vaga to examine baseline patterns of survival, reproduction, and measures of oxidative
stress, as well as how these patterns change in the face of treatments known to induce oxidative stress. Results We discovered that under standard laboratory conditions late-life mortality may be explained by increased levels of oxidative stress induced by reproduction. However, following exposure to the oxidizing agent ionizing radiation, survival was unaffected while reproduction was reduced. Conclusions We suggest that under normal environmental conditions, reduced survival is mediated by endogenously generated oxidative stress induced by reproduction, and thus represents a cost of reproduction. Alternatively, the reduced reproduction evident under exogenously applied oxidative stress represents a cost of somatic maintenance. Biochemical analyses designed to assess levels of oxidative stress, oxidative stress resistance, and oxidative damage under normal and oxidizing conditions suggest that varying investments in enzymatic and non-enzymatic based oxidative stress resistance determine whether a cost of reproduction or a cost of somatic maintenance is observed. Electronic supplementary material The online version of this article (10.1186/s12898-019-0223-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leigh C Latta
- Division of Natural Sciences and Mathematics, Lewis-Clark State College, 500 8th Avenue, Lewiston, ID, 83501, USA.
| | - K Nathaniel Tucker
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Robert A Haney
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
22
|
Fontaneto D. Long-distance passive dispersal in microscopic aquatic animals. MOVEMENT ECOLOGY 2019; 7:10. [PMID: 30962931 PMCID: PMC6434837 DOI: 10.1186/s40462-019-0155-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 05/21/2023]
Abstract
Given their dormancy capability (long-term resistant stages) and their ability to colonise and reproduce, microscopic aquatic animals have been suggested having cosmopolitan distribution. Their dormant stages may be continuously moved by mobile elements through the entire planet to any suitable habitat, preventing the formation of biogeographical patterns. In this review, I will go through the evidence we have on the most common microscopic aquatic animals, namely nematodes, rotifers, and tardigrades, for each of the assumptions allowing long-distance dispersal (dormancy, viability, and reproduction) and all the evidence we have for transportation, directly from surveys of dispersing stages, and indirectly from the outcome of successful dispersal in biogeographical and phylogeographical studies. The current knowledge reveals biogeographical patterns also for microscopic organisms, with species-specific differences in ecological features that make some taxa indeed cosmopolitan with the potential for long-distance dispersal, but others with restricted geographic distributions.
Collapse
Affiliation(s)
- Diego Fontaneto
- National Research Council of Italy, Water Research Institute, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| |
Collapse
|
23
|
Hecox-Lea BJ, Mark Welch DB. Evolutionary diversity and novelty of DNA repair genes in asexual Bdelloid rotifers. BMC Evol Biol 2018; 18:177. [PMID: 30486781 PMCID: PMC6264785 DOI: 10.1186/s12862-018-1288-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 11/02/2018] [Indexed: 11/26/2022] Open
Abstract
Background Bdelloid rotifers are the oldest, most diverse and successful animal taxon for which males, hermaphrodites, and traditional meiosis are unknown. Their degenerate tetraploid genome, with 2–4 copies of most loci, includes thousands of genes acquired from all domains of life by horizontal transfer. Many bdelloid species thrive in ephemerally aquatic habitats by surviving desiccation at any life stage with no loss of fecundity or lifespan. Their unique genomic diversity and the intense selective pressure of desiccation provide an exceptional opportunity to study the evolution of diversity and novelty in genes involved in DNA repair. Results We used genomic data and RNA-Seq of the desiccation process in the bdelloid Adineta vaga to characterize DNA damage reversal, translesion synthesis, and the major DNA repair pathways: base, nucleotide, and alternate excision repair, mismatch repair (MMR), and double strand break repair by homologous recombination (HR) and classical non-homologous end joining (NHEJ). We identify multiple horizontally transferred DNA damage response genes otherwise unknown in animals (AlkD, Fpg, LigK UVDE), and the presence of genes often considered vertebrate specific, particularly in the NHEJ complex and X family polymerases. While 75–100% of genes involved in MMR and HR are present in 0–2 copies, genes involved in NHEJ, which are present in only a single copy in nearly all other animals, are retained in 3–8 copies. We present structural predictions and expression evidence of neo- or sub-functionalization of multiple copy genes involved in NHEJ and other repair processes. Conclusion The horizontally-acquired genes and duplicated genes in BER and NHEJ suggest resilience to oxidative damage is conferred in part by increased DNA damage recognition and efficient end repair capabilities. The pattern of gene loss and retention in MMR and HR may facilitate recombination and gene conversion between divergent sequences, thus providing at least some of the benefits of sex. The unique retention and divergence of duplicates genes in NHEJ may be facilitated by the lack of efficient selection in the absence of meiotic recombination and independent assortment, and may contribute to the evolutionary success of bdelloids. Electronic supplementary material The online version of this article (10.1186/s12862-018-1288-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bette J Hecox-Lea
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.,Department of Biology, Northeastern University, Boston, MA, USA
| | - David B Mark Welch
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
| |
Collapse
|
24
|
Dunthorn M, Zufall RA, Chi J, Paszkiewicz K, Moore K, Mahé F. Meiotic Genes in Colpodean Ciliates Support Secretive Sexuality. Genome Biol Evol 2018; 9:1781-1787. [PMID: 28854634 PMCID: PMC5570047 DOI: 10.1093/gbe/evx125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2017] [Indexed: 12/19/2022] Open
Abstract
The putatively asexual Colpodean ciliates potentially pose a problem to macro-organismic theories of evolution. They are extremely ancient (although asexuality is thought to hasten extinction), and yet there is one apparently derived sexual species (implying an unlikely regain of a complex trait). If macro-organismic theories of evolution also broadly apply to microbial eukaryotes, though, then most or all of the colpodean ciliates should merely be secretively sexual. Here we show using de novo genome sequencing, that colpodean ciliates have the meiotic genes required for sex and these genes are under functional constraint. Along with these genomic data, we argue that these ciliates are sexual given the cytological observations of both micronuclei and macronuclei within their cells, and the behavioral observations of brief fusions as if the cells were mating. The challenge that colpodean ciliates pose is therefore not to evolutionary theory, but to our ability to induce microbial eukaryotic sex in the laboratory.
Collapse
Affiliation(s)
- Micah Dunthorn
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Rebecca A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX
| | - Jingyun Chi
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Karen Moore
- Biosciences, University of Exeter, Exeter, United Kingdom
| | - Frédéric Mahé
- Department of Ecology, University of Kaiserslautern, Kaiserslautern, Germany.,CIRAD, UMR LSTM, Montpellier, France
| |
Collapse
|
25
|
Nowell RW, Almeida P, Wilson CG, Smith TP, Fontaneto D, Crisp A, Micklem G, Tunnacliffe A, Boschetti C, Barraclough TG. Comparative genomics of bdelloid rotifers: Insights from desiccating and nondesiccating species. PLoS Biol 2018; 16:e2004830. [PMID: 29689044 PMCID: PMC5916493 DOI: 10.1371/journal.pbio.2004830] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/19/2018] [Indexed: 12/22/2022] Open
Abstract
Bdelloid rotifers are a class of microscopic invertebrates that have existed for millions of years apparently without sex or meiosis. They inhabit a variety of temporary and permanent freshwater habitats globally, and many species are remarkably tolerant of desiccation. Bdelloids offer an opportunity to better understand the evolution of sex and recombination, but previous work has emphasised desiccation as the cause of several unusual genomic features in this group. Here, we present high-quality whole-genome sequences of 3 bdelloid species: Rotaria macrura and R. magnacalcarata, which are both desiccation intolerant, and Adineta ricciae, which is desiccation tolerant. In combination with the published assembly of A. vaga, which is also desiccation tolerant, we apply a comparative genomics approach to evaluate the potential effects of desiccation tolerance and asexuality on genome evolution in bdelloids. We find that ancestral tetraploidy is conserved among all 4 bdelloid species, but homologous divergence in obligately aquatic Rotaria genomes is unexpectedly low. This finding is contrary to current models regarding the role of desiccation in shaping bdelloid genomes. In addition, we find that homologous regions in A. ricciae are largely collinear and do not form palindromic repeats as observed in the published A. vaga assembly. Consequently, several features interpreted as genomic evidence for long-term ameiotic evolution are not general to all bdelloid species, even within the same genus. Finally, we substantiate previous findings of high levels of horizontally transferred nonmetazoan genes in both desiccating and nondesiccating bdelloid species and show that this unusual feature is not shared by other animal phyla, even those with desiccation-tolerant representatives. These comparisons call into question the proposed role of desiccation in mediating horizontal genetic transfer.
Collapse
Affiliation(s)
- Reuben W. Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Pedro Almeida
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Christopher G. Wilson
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Thomas P. Smith
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| | - Diego Fontaneto
- National Research Council of Italy, Institute of Ecosystem Study, Verbania Pallanza, Italy
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Gos Micklem
- Department of Genetics, Cambridge Systems Biology Centre, Downing Site, University of Cambridge, Cambridge, United Kingdom
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, West Cambridge Site, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Marine Sciences, Plymouth University, Portland Square Building, Plymouth, United Kingdom
| | - Timothy G. Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, United Kingdom
| |
Collapse
|
26
|
Bernstein H, Bernstein C, Michod RE. Sex in microbial pathogens. INFECTION GENETICS AND EVOLUTION 2018; 57:8-25. [DOI: 10.1016/j.meegid.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 10/18/2022]
|
27
|
Lenormand T, Nougué O, Jabbour-Zahab R, Arnaud F, Dezileau L, Chevin LM, Sánchez MI. Resurrection ecology in Artemia. Evol Appl 2017; 11:76-87. [PMID: 29302273 PMCID: PMC5748519 DOI: 10.1111/eva.12522] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Resurrection ecology (RE) is a very powerful approach to address a wide range of question in ecology and evolution. This approach rests on using appropriate model systems, and only few are known to be available. In this study, we show that Artemia has multiple attractive features (short generation time, cyst bank and collections, well‐documented phylogeography, and ecology) for a good RE model. We show in detail with a case study how cysts can be recovered from sediments to document the history and dynamics of a biological invasion. We finally discuss with precise examples the many RE possibilities with this model system: adaptation to climate change, to pollution, to parasites, to invaders and evolution of reproductive systems.
Collapse
Affiliation(s)
- Thomas Lenormand
- CEFE UMR 5175 CNRS, Université de Montpellier, Université Paul-Valéry Montpellier Montpellier Cedex 5 France
| | - Odrade Nougué
- CEFE UMR 5175 CNRS, Université de Montpellier, Université Paul-Valéry Montpellier Montpellier Cedex 5 France
| | - Roula Jabbour-Zahab
- CEFE UMR 5175 CNRS, Université de Montpellier, Université Paul-Valéry Montpellier Montpellier Cedex 5 France
| | - Fabien Arnaud
- Laboratoire EDYTEM UMR 5204 du CNRS, Environnements, Dynamiques et Territoires de la Montagne, Université de SavoieLe Bourget du Lac Cedex France
| | - Laurent Dezileau
- Géosciences Montpellier, UMR 5243 Université de Montpellier Montpellier Cedex 05 France
| | - Luis-Miguel Chevin
- CEFE UMR 5175 CNRS, Université de Montpellier, Université Paul-Valéry Montpellier Montpellier Cedex 5 France
| | | |
Collapse
|
28
|
Evidence Supporting the Uptake and Genomic Incorporation of Environmental DNA in the "Ancient Asexual" Bdelloid Rotifer Philodina roseola. Life (Basel) 2016; 6:life6030038. [PMID: 27608044 PMCID: PMC5041014 DOI: 10.3390/life6030038] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Revised: 08/08/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence suggests that bdelloid rotifers regularly undergo horizontal gene transfer, apparently as a surrogate mechanism of genetic exchange in the absence of true sexual reproduction, in part because of their ability to withstand desiccation. We provide empirical support for this latter hypothesis using the bdelloid Philodina roseola, which we demonstrate to readily internalize environmental DNA in contrast to a representative monogonont rotifer (Brachionus rubens), which, like other monogononts, is facultative sexual and cannot withstand desiccation. In addition, environmental DNA that was more similar to the host DNA was retained more often and for a longer period of time. Indirect evidence (increased variance in the reproductive output of the untreated F1 generation) suggests that environmental DNA can be incorporated into the genome during desiccation and is thus heritable. Our observed fitness effects agree with sexual theory and also occurred when the animals were desiccated in groups (thereby acting as DNA donors), but not individually, indicating the mechanism could occur in nature. Thus, although DNA uptake and its genomic incorporation appears proximally related to anhydrobiosis in bdelloids, it might also facilitate accidental genetic exchange with closely related taxa, thereby maintaining higher levels of genetic diversity than is otherwise expected for this group of "ancient asexuals".
Collapse
|
29
|
|
30
|
A functional difference between native and horizontally acquired genes in bdelloid rotifers. Gene 2016; 590:186-91. [PMID: 27312952 DOI: 10.1016/j.gene.2016.06.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/02/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023]
Abstract
The form of RNA processing known as SL trans-splicing involves the transfer of a short conserved sequence, the spliced leader (SL), from a noncoding SL RNA to the 5' ends of mRNA molecules. SL trans-splicing occurs in several animal taxa, including bdelloid rotifers (Rotifera, Bdelloidea). One striking feature of these aquatic microinvertebrates is the large proportion of foreign genes, i.e. those acquired by horizontal gene transfer from other organisms, in their genomes. However, whether such foreign genes behave similarly to native genes has not been tested in bdelloids or any other animal. We therefore used a combination of experimental and computational methods to examine whether transcripts of foreign genes in bdelloids were SL trans-spliced, like their native counterparts. We found that many foreign transcripts contain SLs, use similar splice acceptor sequences to native genes, and are able to undergo alternative trans-splicing. However, a significantly lower proportion of foreign mRNAs contains SL sequences than native transcripts. This demonstrates a novel functional difference between foreign and native genes in bdelloids and suggests that SL trans-splicing is not essential for the expression of foreign genes, but is acquired during their domestication.
Collapse
|
31
|
Dimond KL, Zufall RA. Hidden genetic variation in the germline genome of Tetrahymena thermophila. J Evol Biol 2016; 29:1284-92. [PMID: 26998689 DOI: 10.1111/jeb.12868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/29/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Genome architecture varies greatly among eukaryotes. This diversity may profoundly affect the origin and maintenance of genetic variation within a population. Ciliates are microbial eukaryotes with unusual genome features, such as the separation of germline and somatic genomes within a single cell and amitotic division. These features have previously been proposed to increase the rate of molecular evolution in these species. Here, we assessed the fitness effects of genetic variation in the two genomes of natural isolates of the ciliate Tetrahymena thermophila. We find more extensive genetic variation in fitness in the transcriptionally silent germline genome than in the expressed somatic genome. Surprisingly, this variation is not primarily deleterious, but has both beneficial and deleterious effects. We conclude that Tetrahymena genome architecture allows for the maintenance of genetic variation that would otherwise be eliminated by selection. We consider the effect of selection on the two genomes and the impacts of reproductive strategies and the mechanism of sex determination on the structure of this variation.
Collapse
Affiliation(s)
- K L Dimond
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - R A Zufall
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| |
Collapse
|
32
|
Debortoli N, Li X, Eyres I, Fontaneto D, Hespeels B, Tang CQ, Flot JF, Van Doninck K. Genetic Exchange among Bdelloid Rotifers Is More Likely Due to Horizontal Gene Transfer Than to Meiotic Sex. Curr Biol 2016; 26:723-32. [PMID: 26948882 DOI: 10.1016/j.cub.2016.01.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 11/27/2015] [Accepted: 01/13/2016] [Indexed: 10/22/2022]
Abstract
Although strict asexuality is supposed to be an evolutionary dead end, morphological, cytogenetic, and genomic data suggest that bdelloid rotifers, a clade of microscopic animals, have persisted and diversified for more than 60 Myr in an ameiotic fashion. Moreover, the genome of bdelloids of the genus Adineta comprises 8%-10% of genes of putative non-metazoan origin, indicating that horizontal gene transfers are frequent within this group and suggesting that this mechanism may also promote genetic exchanges among bdelloids as well. To test this hypothesis, we used five independent sequence markers to study the genetic diversity of 576 Adineta vaga individuals from a park in Belgium. Haplowebs and GMYC analyses revealed the existence of six species among our sampled A. vaga individuals, with strong evidence of both intra- and interspecific recombination. Comparison of genomic regions of three allele-sharing individuals further revealed signatures of genetic exchanges scattered among regions evolving asexually. Our findings suggest that bdelloids evolve asexually but exchange DNA horizontally both within and between species.
Collapse
Affiliation(s)
- Nicolas Debortoli
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Xiang Li
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Isobel Eyres
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK
| | - Diego Fontaneto
- Institute of Ecosystem Study, National Research Council, Largo Tonolli 50, 28922 Verbania Pallanza, Italy
| | - Boris Hespeels
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Cuong Q Tang
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire SL5 7PY, UK; Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Jean-François Flot
- Evolutionary Biology & Ecology, Université Libre de Bruxelles, C.P. 160/12, Avenue F.D. Roosevelt 50, 1050 Bruxelles, Belgium.
| | - Karine Van Doninck
- Laboratory of Evolutionary Genetics and Ecology, URBE, NAXYS, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium.
| |
Collapse
|
33
|
Eyres I, Boschetti C, Crisp A, Smith TP, Fontaneto D, Tunnacliffe A, Barraclough TG. Horizontal gene transfer in bdelloid rotifers is ancient, ongoing and more frequent in species from desiccating habitats. BMC Biol 2015; 13:90. [PMID: 26537913 PMCID: PMC4632278 DOI: 10.1186/s12915-015-0202-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 10/20/2015] [Indexed: 11/26/2022] Open
Abstract
Background Although prevalent in prokaryotes, horizontal gene transfer (HGT) is rarer in multicellular eukaryotes. Bdelloid rotifers are microscopic animals that contain a higher proportion of horizontally transferred, non-metazoan genes in their genomes than typical of animals. It has been hypothesized that bdelloids incorporate foreign DNA when they repair their chromosomes following double-strand breaks caused by desiccation. HGT might thereby contribute to species divergence and adaptation, as in prokaryotes. If so, we expect that species should differ in their complement of foreign genes, rather than sharing the same set of foreign genes inherited from a common ancestor. Furthermore, there should be more foreign genes in species that desiccate more frequently. We tested these hypotheses by surveying HGT in four congeneric species of bdelloids from different habitats: two from permanent aquatic habitats and two from temporary aquatic habitats that desiccate regularly. Results Transcriptomes of all four species contain many genes with a closer match to non-metazoan genes than to metazoan genes. Whole genome sequencing of one species confirmed the presence of these foreign genes in the genome. Nearly half of foreign genes are shared between all four species and an outgroup from another family, but many hundreds are unique to particular species, which indicates that HGT is ongoing. Using a dated phylogeny, we estimate an average of 12.8 gains versus 2.0 losses of foreign genes per million years. Consistent with the desiccation hypothesis, the level of HGT is higher in the species that experience regular desiccation events than those that do not. However, HGT still contributed hundreds of foreign genes to the species from permanently aquatic habitats. Foreign genes were mainly enzymes with various annotated functions that include catabolism of complex polysaccharides and stress responses. We found evidence of differential loss of ancestral foreign genes previously associated with desiccation protection in the two non-desiccating species. Conclusions Nearly half of foreign genes were acquired before the divergence of bdelloid families over 60 Mya. Nonetheless, HGT is ongoing in bdelloids and has contributed to putative functional differences among species. Variation among our study species is consistent with the hypothesis that desiccating habitats promote HGT. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isobel Eyres
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.,Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield, S10 2TN, UK
| | - Chiara Boschetti
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Alastair Crisp
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Thomas P Smith
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK
| | - Diego Fontaneto
- National Research Council, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania Pallanza, Italy
| | - Alan Tunnacliffe
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, CB2 3RA, UK
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, SL5 7PY, UK.
| |
Collapse
|
34
|
Against All Odds: Trehalose-6-Phosphate Synthase and Trehalase Genes in the Bdelloid Rotifer Adineta vaga Were Acquired by Horizontal Gene Transfer and Are Upregulated during Desiccation. PLoS One 2015; 10:e0131313. [PMID: 26161530 PMCID: PMC4498783 DOI: 10.1371/journal.pone.0131313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/31/2015] [Indexed: 01/15/2023] Open
Abstract
The disaccharide sugar trehalose is essential for desiccation resistance in most metazoans that survive dryness; however, neither trehalose nor the enzymes involved in its metabolism have ever been detected in bdelloid rotifers despite their extreme resistance to desiccation. Here we screened the genome of the bdelloid rotifer Adineta vaga for genes involved in trehalose metabolism. We discovered a total of four putative trehalose-6-phosphate synthase (TPS) and seven putative trehalase (TRE) gene copies in the genome of this ameiotic organism; however, no trehalose-6-phosphate phosphatase (TPP) gene or domain was detected. The four TPS copies of A. vaga appear more closely related to plant and fungi proteins, as well as to some protists, whereas the seven TRE copies fall in bacterial clades. Therefore, A. vaga likely acquired its trehalose biosynthesis and hydrolysis genes by horizontal gene transfers. Nearly all residues important for substrate binding in the predicted TPS domains are highly conserved, supporting the hypothesis that several copies of the genes might be functional. Besides, RNAseq library screening showed that trehalase genes were highly expressed compared to TPS genes, explaining probably why trehalose had not been detected in previous studies of bdelloids. A strong overexpression of their TPS genes was observed when bdelloids enter desiccation, suggesting a possible signaling role of trehalose-6-phosphate or trehalose in this process.
Collapse
|
35
|
Fontaneto D, Barraclough TG. Do Species Exist in Asexuals? Theory and Evidence from Bdelloid Rotifers. Integr Comp Biol 2015; 55:253-63. [PMID: 25912362 DOI: 10.1093/icb/icv024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The possibility for independently evolving entities to form and persist in the absence of sexual recombination in eukaryotes has been questioned; nevertheless, there are organisms that are known to be asexual and that have apparently diversified into multiple species as recognized by taxonomists. These organisms have therefore been identified as an evolutionary paradox. We explore three alternative hypotheses attempting to solve the apparent paradox, focusing on bdelloid rotifers, the most studied group of organisms in which all species are considered asexual: (1) they may have some hidden form of sex; (2) species do not represent biological entities but simply convenient names; and (3) sex may not be a necessary requirement for speciation. We provide ample evidence against the first two hypotheses, reporting several studies supporting (1) bdelloids asexuality from different approaches, and (2) the existence of species from genetics, jaw morphology, ecology, and physiology. Thus, we (3) explore the role of sex in speciation comparing bdelloid and monogonont rotifers, and conclude with some caveats that could still change our understanding of bdelloid species.
Collapse
Affiliation(s)
- Diego Fontaneto
- *National Research Council, Institute of Ecosystem Study, Largo Tonolli 50, 28922 Verbania Pallanza, Italy;
| | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot SL5 7PY, UK
| |
Collapse
|
36
|
Schwander T, Marais G, Roze D. Sex uncovered: the evolutionary biology of reproductive systems. J Evol Biol 2015; 27:1287-91. [PMID: 24975885 DOI: 10.1111/jeb.12424] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- T Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|