1
|
Leyria J, Fruttero LL, Paglione PA, Canavoso LE. How Insects Balance Reproductive Output and Immune Investment. INSECTS 2025; 16:311. [PMID: 40266843 PMCID: PMC11943238 DOI: 10.3390/insects16030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 04/25/2025]
Abstract
Insects face the constant challenge of balancing energy allocation between reproduction and immune responses, both of which are highly energy-demanding processes. Immune challenges frequently result in decreased fecundity, reduced egg viability, and delayed ovarian development. Conversely, heightened reproductive activity often suppresses immune functions. This trade-off has profound ecological and evolutionary consequences, shaping insects' survival, adaptation, and population dynamics. The intricate interplay between reproduction and immunity in insects is regulated by the neuroendocrine and endocrine systems, which orchestrate resource distribution alongside other biological processes. Key hormones, such as juvenile hormone and ecdysteroids, serve as central regulators, influencing both immune responses and reproductive activities. Additionally, macromolecules like vitellogenin and lipophorin, primarily known for their functions as yolk protein precursors and lipid carriers, play crucial roles in pathogen recognition and transgenerational immune priming. Advancements in molecular and omics tools have unveiled the complexity of these regulatory mechanisms, providing new insights into how insects dynamically allocate resources to optimize their fitness. This delicate balance underscores critical evolutionary strategies and the integration of physiological systems across species. This review synthesizes insights from life history theory, oogenesis, and immunity, offering new perspectives on the trade-offs between reproductive output and immune investment.
Collapse
Affiliation(s)
- Jimena Leyria
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Leonardo L. Fruttero
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Pedro A. Paglione
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| | - Lilián E. Canavoso
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, CP, Argentina; (J.L.); (L.L.F.); (P.A.P.)
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba 5000, CP, Argentina
| |
Collapse
|
2
|
Zhang S, Wang Z, Luo Q, Zhou L, Du X, Ren Y. Effects of Microbes on Insect Host Physiology and Behavior Mediated by the Host Immune System. INSECTS 2025; 16:82. [PMID: 39859663 PMCID: PMC11765777 DOI: 10.3390/insects16010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/12/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens. The innate immune system of insects primarily comprises cellular immunity and humoral immunity. Toll, immune deficiency, and Janus kinase/signal transducers and activators of transcription are the main signaling pathways regulating insect humoral immunity. Nevertheless, increasing research has revealed that immune signaling activated by microbes also performs non-immune roles while exerting immune roles, and insulin signaling performs a key role in mediating the connection between the immune system and non-immune physiological activities. Therefore, this paper first briefly reviews the main innate immune signaling and insulin signaling of insects, then summarizes the relationship between immune signaling activated by microbes and insect growth and development, reproduction, pesticide resistance, chemical communication, cell turnover, lifespan, sleep, energy generation pathways and their possible underlying mechanisms. Future research directions and methodologies are also proposed, aiming to provide insights into further study on the physiological mechanism linking microbes and insect hosts.
Collapse
Affiliation(s)
- Shan Zhang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Zhengyan Wang
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Qiong Luo
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Lizhen Zhou
- School of Food and Strategic Reserves, Henan University of Technology, Zhengzhou 450001, China; (S.Z.); (Q.L.); (L.Z.)
| | - Xin Du
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia; (X.D.); (Y.R.)
| |
Collapse
|
3
|
Song G, Shin D, Kim JS. Microbiome changes in Akanthomyces attenuatus JEF-147-infected two-spotted spider mites. J Invertebr Pathol 2024; 204:108102. [PMID: 38604562 DOI: 10.1016/j.jip.2024.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/14/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
The two-spotted spider mite (Tetranychus urticae Koch) is an agriculturally serious polyphagous pest that has acquired strong resistance against acaricides because of its short life cycle and continuous exposure to acaricides. As an alternative, mite-pathogenic fungi with different modes of action could be used to control the mites. The spider mite has symbiotic microorganisms that could be involved in the physiological and ecological adaptations to biotic stresses. In this study, mite-pathogenic fungi were used to control female adults, and the microbiomes changes in the fungus-infected mites were analyzed. The acaricidal activity of 77 fungal isolates was tested, and Akanthomyces attenuatus JEF-147 exhibited the highest acaricidal activity. Subsequently a dose-response assay and morphological characterization was undertaken For microbiome analysis in female adults infected with A. attenuatus JEF-147, 16S rDNA and ITS1 were sequenced using Illumina Miseq. Infected mite showed a higher Shannon index in bacterial diversity but lower index in fungal diversity. In beta diversity using principal component analysis, JEF-147-treated mites were significantly different from non-treated controls in both bacteria and fungi. Particularly in bacterial abundance, arthropod defense-related Rickettsia increased, but arthropod reproduction-associated Wolbachia decreased. The change in major bacterial abundance in the infected mites could be explained by a trade-off between reproduction and immunity against the early stage of fungal attack. In fungal abundance, Akanthomyces showed up as expected. Foremost, this work reports microbiome changes in a fungus-infected mite and suggests a possible trade-off in mites against fungal pathogens. Future studies will focus on gene-based investigations related to this topic.
Collapse
Affiliation(s)
- Gahyeon Song
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea
| | - Jae Su Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju, Korea; Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Korea.
| |
Collapse
|
4
|
McAfee A, Chapman A, Bao G, Tarpy DR, Foster LJ. Investigating trade-offs between ovary activation and immune protein expression in bumble bee ( Bombus impatiens) workers and queens. Proc Biol Sci 2024; 291:20232463. [PMID: 38264776 PMCID: PMC10806398 DOI: 10.1098/rspb.2023.2463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Evidence for a trade-off between reproduction and immunity has manifested in many animal species, including social insects. However, investigations in social insect queens present a conundrum: new gynes of many social hymenopterans, such as bumble bees and ants, must first mate, then transition from being solitary to social as they establish their nests, thus experiencing confounding shifts in environmental conditions. Worker bumble bees offer an opportunity to investigate patterns of immune protein expression associated with ovary activation while minimizing extraneous environmental factors and genetic differences. Here, we use proteomics to interrogate the patterns of immune protein expression of female bumble bees (Bombus impatiens) by (i) sampling queens at different stages of their life cycle, then (ii) by sampling workers with different degrees of ovary activation. Patterns of immune protein expression in the haemolymph of queens are consistent with a reproduction-immunity trade-off, but equivalent samples from workers are not. This brings into question whether queen bumble bees really experience a reproduction-immunity trade-off, or if patterns of immune protein expression may actually be due to the selective pressure of the different environmental conditions they are exposed to during their life cycle.
Collapse
Affiliation(s)
- Alison McAfee
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Abigail Chapman
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - Grace Bao
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| | - David R. Tarpy
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695-7617, USA
| | - Leonard J. Foster
- Department of Biochemistry and Molecular Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada V6T1Z4
| |
Collapse
|
5
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
6
|
Belavilas-Trovas A, Tastsoglou S, Dong S, Kefi M, Tavadia M, Mathiopoulos KD, Dimopoulos G. Long non-coding RNAs regulate Aedes aegypti vector competence for Zika virus and reproduction. PLoS Pathog 2023; 19:e1011440. [PMID: 37319296 DOI: 10.1371/journal.ppat.1011440] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play critical regulatory roles in various cellular and metabolic processes in mosquitoes and all other organisms studied thus far. In particular, their involvement in essential processes such as reproduction makes them potential targets for the development of novel pest control approaches. However, their function in mosquito biology remains largely unexplored. To elucidate the role of lncRNAs in mosquitoes' reproduction and vector competence for arboviruses, we have implemented a computational and experimental pipeline to mine, screen, and characterize lncRNAs related to these two biological processes. Through analysis of publicly available Zika virus (ZIKV) infection-regulated Aedes aegypti transcriptomes, at least six lncRNAs were identified as being significantly upregulated in response to infection in various mosquito tissues. The roles of these ZIKV-regulated lncRNAs (designated Zinc1, Zinc2, Zinc3, Zinc9, Zinc10 and Zinc22), were further investigated by dsRNA-mediated silencing studies. Our results show that silencing of Zinc1, Zinc2, and Zinc22 renders mosquitoes significantly less permissive to ZIKV infection, while silencing of Zinc22 also reduces fecundity, indicating a potential role for Zinc22 in trade-offs between vector competence and reproduction. We also found that silencing of Zinc9 significantly increases fecundity but has no effect on ZIKV infection, suggesting that Zinc9 may be a negative regulator of oviposition. Our work demonstrates that some lncRNAs play host factor roles by facilitating viral infection in mosquitoes. We also show that lncRNAs can influence both mosquito reproduction and permissiveness to virus infection, two biological systems with important roles in mosquito vectorial capacity.
Collapse
Affiliation(s)
- Alexandros Belavilas-Trovas
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - Spyros Tastsoglou
- DIANA-Lab, Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mary Kefi
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Mihra Tavadia
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kostas D Mathiopoulos
- Laboratory of Molecular Biology and Genomics, Department of Biochemistry & Biotechnology, University of Thessaly, Larissa, Greece
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
7
|
Rai KE, Yin H, Bengo ALC, Cheek M, Courville R, Bagheri E, Ramezan R, Behseta S, Shahrestani P. Immune defense in Drosophila melanogaster depends on diet, sex, and mating status. PLoS One 2023; 18:e0268415. [PMID: 37053140 PMCID: PMC10101424 DOI: 10.1371/journal.pone.0268415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
Immune defense is a complex trait that affects and is affected by many other host factors, including sex, mating, and dietary environment. We used the agriculturally relevant fungal emtomopathogen, Beauveria bassiana, and the model host organism Drosophila melanogaster to examine how the impacts of sex, mating, and dietary environment on immunity are interrelated. We showed that the direction of sexual dimorphism in immune defense depends on mating status and mating frequency. We also showed that post-infection dimorphism in immune defense changes over time and is affected by dietary condition both before and after infection. Supplementing the diet with protein-rich yeast improved post-infection survival but more so when supplementation was done after infection instead of before. The multi-directional impacts among immune defense, sex, mating, and diet are clearly complex, and while our study shines light on some of these relationships, further study is warranted. Such studies have potential downstream applications in agriculture and medicine.
Collapse
Affiliation(s)
- Kshama Ekanath Rai
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| | - Han Yin
- Department of Mathematics, California State University, Fullerton, Fullerton, California, United States of America
| | - Arnie Lynn C Bengo
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| | - Madison Cheek
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| | - Robert Courville
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| | - Elnaz Bagheri
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| | - Reza Ramezan
- Department of Statistic and Actuarial Science, University of Waterloo, Ontario, Canada
| | - Sam Behseta
- Department of Mathematics, California State University, Fullerton, Fullerton, California, United States of America
| | - Parvin Shahrestani
- Department of Biological Sciences, California State University, Fullerton, Fullerton, California, United States of America
| |
Collapse
|
8
|
Fertility costs of cryptic viral infections in a model social insect. Sci Rep 2022; 12:15857. [PMID: 36151143 PMCID: PMC9508145 DOI: 10.1038/s41598-022-20330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 09/12/2022] [Indexed: 11/08/2022] Open
Abstract
Declining insect populations emphasize the importance of understanding the drivers underlying reductions in insect fitness. Here, we investigated viruses as a threat to social insect reproduction, using honey bees as a model species. We report that in two independent surveys (N = 93 and N = 54, respectively) of honey bee (Apis mellifera) queens taken from a total of ten beekeeping operations across British Columbia, high levels of natural viral infection are associated with decreased ovary mass. Failed (poor quality) queens displayed higher levels of viral infection, reduced sperm viability, smaller ovaries, and altered ovary protein composition compared to healthy queens. We experimentally infected queens with Israeli acute paralysis virus (IAPV) and found that the ovary masses of IAPV-injected queens were significantly smaller than control queens, demonstrating a causal relationship between viral infection and ovary size. Queens injected with IAPV also had significantly lower expression of vitellogenin, the main source of nutrition deposited into developing oocytes, and higher levels of heat-shock proteins, which are part of the honey bee’s antiviral response. This work together shows that viral infections occurring naturally in the field are compromising queen reproductive success.
Collapse
|
9
|
Wang M, Wang Y, Chang M, Wang X, Shi Z, Raikhel AS, Zou Z. Ecdysone signaling mediates the trade-off between immunity and reproduction via suppression of amyloids in the mosquito Aedes aegypti. PLoS Pathog 2022; 18:e1010837. [PMID: 36137163 PMCID: PMC9531809 DOI: 10.1371/journal.ppat.1010837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
The balance between immunity and reproduction is essential for many key physiological functions. We report that to maintain an optimal fertility, 20-hydroxyecdysone (20E) and the ecdysone receptor (EcR) downregulate the immune deficiency (IMD) pathway during the post blood meal phase (PBM) of the Aedes aegypti reproductive cycle. RNA interference-mediated depletion of EcR elicited an increased expression of the IMD pathway components, and these mosquitoes were more resistant to infection by Gram-negative bacteria. Moreover, 20E and EcR recruit Pirk-like, the mosquito ortholog of Drosophila melanogaster Pirk. CRISPR-Cas9 knockout of Pirk-like has shown that it represses the IMD pathway by interfering with IMD-mediated formation of amyloid aggregates. 20E and EcR disruption of the amyloid formation is pivotal for maintaining normal yolk protein production and fertility. Additionally, 20E and its receptor EcR directly induce Pirk-like to interfere with cRHIM-mediated formation of amyloid. Our study highlights the vital role of 20E in governing the trade-off between immunity and reproduction. Pirk-like might be a potential target for new methods to control mosquito reproduction and pathogen transmission.
Collapse
Affiliation(s)
- Mao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mengmeng Chang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xueli Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zuokun Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Alexander S. Raikhel
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, California, United States of America
- * E-mail: (ASR); (ZZ)
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- * E-mail: (ASR); (ZZ)
| |
Collapse
|
10
|
Hu YW, Wang SH, Tang Y, Xie GQ, Ding YJ, Xu QY, Tang B, Zhang L, Wang SG. Suppression of yolk formation, oviposition and egg quality of locust (Locusta migratoria manilensis) infected by Paranosema locustae. Front Immunol 2022; 13:848267. [PMID: 35935997 PMCID: PMC9352533 DOI: 10.3389/fimmu.2022.848267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Locusta migratoria manilensis is one of the most important agricultural pests in China. The locust has high fecundity and consumes large quantities of food, causing severe damage to diverse crops such as corn, sorghum, and rice. Immunity against pathogens and reproductive success are two important components of individual fitness, and many insects have a trade-off between reproduction and immunity when resources are limited, which may be an important target for pest control. In this study, adult females L. migratoria manilensis were treated with different concentrations (5 × 106 spores/mL or 2 × 107 spores/mL) of the entomopathogenic fungus Paranosema locustae. Effects of input to immunity on reproduction were studied by measuring feeding amount, enzyme activity, vitellogenin (Vg) and vitellogenin receptor (VgR) production, ovary development, and oviposition amount. When infected by P. locustae, feeding rate and phenol oxidase and lysozyme activities increased, mRNA expression of Vg and VgR genes decreased, and yolk deposition was blocked. Weight of ovaries decreased, with significant decreases in egg, length and weight.Thus, locusts used nutritive input required for reproduction to resist invasion by microsporidia. This leads to a decrease in expression of Vg and VgR genes inhibited ovarian development, and greatly decreased total fecundity. P. locustae at 2 × 107 spores/mL had a more obvious inhibitory effect on the ovarian development in migratory locusts. This study provides a detailed trade-off between reproduction and immune input of the female, which provides a reliable basis to find pest targets for biological control from those trade-off processes.
Collapse
Affiliation(s)
- Yao-Wen Hu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Shao-Hua Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Qiang Xie
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan-Juan Ding
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qing-Ye Xu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Long Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Shi-Gui Wang,
| |
Collapse
|
11
|
Early Queen Development in Honey Bees: Social Context and Queen Breeder Source Affect Gut Microbiota and Associated Metabolism. Microbiol Spectr 2022; 10:e0038322. [PMID: 35867384 PMCID: PMC9430896 DOI: 10.1128/spectrum.00383-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly social honey bee has dense populations but a significantly reduced repertoire of immune genes relative to solitary species, suggesting a greater reliance on social immunity. Here we investigate immune gene expression and gut microbial succession in queens during colony introduction. Recently mated queens were placed into an active colony or a storage hive for multiple queens: a queen-bank. Feeding intensity, social context, and metabolic demand differ greatly between the two environments. After 3 weeks, we examined gene expression associated with oxidative stress and immunity and performed high-throughput sequencing of the queen gut microbiome across four alimentary tract niches. Microbiota and gene expression in the queen hindgut differed by time, queen breeder source, and metabolic environment. In the ileum, upregulation of most immune and oxidative stress genes occurred regardless of treatment conditions, suggesting postmating effects on gut gene expression. Counterintuitively, queens exposed to the more social colony environment contained significantly less bacterial diversity indicative of social immune factors shaping the queens microbiome. Queen bank queens resembled much older queens with decreased Alpha 2.1, greater abundance of Lactobacillus firm5 and Bifidobacterium in the hindgut, and significantly larger ileum microbiotas, dominated by blooms of Snodgrassella alvi. Combined with earlier findings, we conclude that the queen gut microbiota experiences an extended period of microbial succession associated with queen breeder source, postmating development, and colony assimilation. IMPORTANCE In modern agriculture, honey bee queen failure is repeatedly cited as one of the major reasons for yearly colony loss. Here we discovered that the honey bee queen gut microbiota alters according to early social environment and is strongly tied to the identity of the queen breeder. Like human examples, this early life variation appears to set the trajectory for ecological succession associated with social assimilation and queen productivity. The high metabolic demand of natural colony assimilation is associated with less bacterial diversity, a smaller hindgut microbiome, and a downregulation of genes that control pathogens and oxidative stress. Queens placed in less social environments with low metabolic demand (queen banks) developed a gut microbiota that resembled much older queens that produce fewer eggs. The queens key reproductive role in the colony may rely in part on a gut microbiome shaped by social immunity and the early queen rearing environment.
Collapse
|
12
|
The Immune Response of the Invasive Golden Apple Snail to a Nematode-Based Molluscicide Involves Different Organs. BIOLOGY 2020; 9:biology9110371. [PMID: 33143352 PMCID: PMC7692235 DOI: 10.3390/biology9110371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Simple Summary Sustainable solutions to the spreading of invasive species are difficult to find due to the absence of biological information about basic immune mechanisms of the target pests. Here, we present evidence of the effects of a commercially available roundworm, Phasmarhabditis hermaphrodita, against the invasive apple snail Pomacea canaliculata. The effects are principally evaluated in terms of snail survival and immune activation. Via molecular and microscopy-based approaches, we demonstrate that dosage and temperature are critical in determining the effects of the roundworm, and that the apple snail response to this immune challenge involves different organs. To our knowledge, these findings are the first demonstration that a P. hermaphrodita-based molluscicide can effectively kill P. canaliculata and that the snail can mount a multi-organ response against this pathogenic roundworm. Abstract The spreading of alien and invasive species poses new challenges for the ecosystem services, the sustainable production of food, and human well-being. Unveiling and targeting the immune system of invasive species can prove helpful for basic and applied research. Here, we present evidence that a nematode (Phasmarhabditis hermaphrodita)-based molluscicide exerts dose-dependent lethal effects on the golden apple snail, Pomacea canaliculata. When used at 1.7 g/L, this biopesticide kills about 30% of snails within one week and promotes a change in the expression of Pc-bpi, an orthologue of mammalian bactericidal/permeability increasing protein (BPI). Changes in Pc-bpi expression, as monitored by quantitative PCR (qPCR), occurred in two immune-related organs, namely the anterior kidney and the gills, after exposure at 18 and 25 °C, respectively. Histological analyses revealed the presence of the nematode in the snail anterior kidney and the gills at both 18 and 25 °C. The mantle and the central nervous system had a stable Pc-bpi expression and seemed not affected by the nematodes. Fluorescence in situ hybridization (FISH) experiments demonstrated the expression of Pc-bpi in circulating hemocytes, nurturing the possibility that increased Pc-bpi expression in the anterior kidney and gills may be due to the hemocytes patrolling the organs. While suggesting that P. hermaphrodita-based biopesticides enable the sustainable control of P. canaliculata spread, our experiments also unveiled an organ-specific and temperature-dependent response in the snails exposed to the nematodes. Overall, our data indicate that, after exposure to a pathogen, the snail P. canaliculata can mount a complex, multi-organ innate immune response.
Collapse
|
13
|
Yu D, Huang P, Lin Y, Yao J, Lan Y, Akutse KS, Hou X. Immunocompetence of Gynaikothrips uzeli (Thysanoptera: Phlaeothripidae) populations from different latitudes against Beauveria bassiana (Hypocreales: Cordycipitaceae). J Invertebr Pathol 2020; 171:107343. [PMID: 32057749 DOI: 10.1016/j.jip.2020.107343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/06/2020] [Accepted: 02/08/2020] [Indexed: 11/19/2022]
Abstract
Gynaikothrips uzeli gall thrips are protected from insecticide exposure by their leaf gall habitat. A biocontrol strategy based on entomopathogenic fungi is an alternative approach for the control of G. uzeli. Higher temperatures can promote the reproduction and spread of pests; however, the impact of higher temperatures on biological control is unclear. We studied the immunocompetence of thrips from different latitudes and determined the effect of degree days on thrips immunity. We examined the potential impact of temperature on the biocontrol provided by entomopathogenic fungi. Beauveria bassiana pathogenicity against thrips increased with decreasing latitude, suggesting that immunity of thrips increased as latitude increased. The phenoloxidase activity of G. uzeli increased with increasing latitude but there was no significant change in hemocyte concentration. This indicated that the humoral immunity of thrips was significantly associated with degree days, and this was confirmed by transcriptome data. Transcriptome and RT-PCR results showed that the expression of key genes in eight toll pathways increased with increasing latitude. The relative expression of key genes in the Toll pathway of thrips and the activity of phenoloxidase decreased with increasing degree days that are characteristic of lower latitudes. These changes led to a decrease in humoral immunity. The immunity of G. uzeli against entomopathogenic fungi increased as degree days characteristic of lower latitudes decreased. Increased temperatures associated with lower latitude may therefore increase biocontrol efficacy. This study clarified immune level changes and molecular mechanisms of thrips under different degree days.
Collapse
Affiliation(s)
- Deyi Yu
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China.
| | - Peng Huang
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China
| | - Yongwen Lin
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China; College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Jinai Yao
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China
| | - Yanyang Lan
- Research and Development Centre of Zhangzhou National Agricultural Science and Technology Zone, Zhangzhou, Fujian 363000, PR China
| | - Komivi Senyo Akutse
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
| | - Xiangyu Hou
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian 350013, PR China
| |
Collapse
|
14
|
Albuquerque Tomilhero Frias A, Ibanez F, Mendoza A, de Carvalho Nunes WM, Tamborindeguy C. Effects of "Candidatus Liberibacter solanacearum" (haplotype B) on Bactericera cockerelli fitness and vitellogenesis. INSECT SCIENCE 2020; 27:58-68. [PMID: 29676854 DOI: 10.1111/1744-7917.12599] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/04/2018] [Accepted: 04/08/2018] [Indexed: 06/08/2023]
Abstract
"Candidatus Liberibacter solanacearum" (Lso) are phloem-restricted and unculturable Gram-negative bacteria. Presently five haplotypes have been identified worldwide; but only haplotypes A and B are associated with the vector Bactericera cockerelli (Šulc.) in the Americas. Previous studies showed that Lso-infection reduces B. cockerelli reproductive output and that Lso haplotype B is more pathogenic than Lso haplotype A. To understand the interaction of Lso haplotype B and B. cockerelli, the fitness of Lso-free and Lso B-infected insects, and the expression of vitellogenin (BcVg1-like), a gene involved directly in the insect reproduction were analyzed. Statistical differences in the number of eggs oviposited, and the total number of progeny nymphs and adults were found among crosses of insects with or without Lso. Significant differences in sex proportions were found between Lso B-infected and Lso-free crosses: a higher proportion of F1 adult females were obtained from Lso B-infected mothers. A significant reduction of BcVg1-like was observed in crosses performed with Lso B-infected females compared to the Lso-free insects. In female cohorts of different age, a significant reduction of BcVg1-like expression was measured in 7-d-old Lso B-infected females (virgin and mated) compared with 7-d-old Lso-free females (virgin and mated), respectively. The reduction of BcVg1-like transcript was associated with a lower number of developing oocytes observed in female's reproductive systems. Overall, this study represents the first step to understand the interaction of Lso B with B. cockerelli, highlighting the effect of Lso B infection on egg production, BcVg1-like expression, and oocyte development.
Collapse
Affiliation(s)
- Angélica Albuquerque Tomilhero Frias
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
- UEM-Depto. de Agronomia, Núcleo de Pesquisa em Biotecnologia Aplicada, Maringá, Brazil
| | - Freddy Ibanez
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | - Azucena Mendoza
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| | | | - Cecilia Tamborindeguy
- Department of Entomology, Texas A&M University, 412 Heep Center, College Station, Texas, USA
| |
Collapse
|
15
|
Sublethal Pyrethroid Insecticide Exposure Carries Positive Fitness Effects Over Generations in a Pest Insect. Sci Rep 2019; 9:11320. [PMID: 31383885 PMCID: PMC6683203 DOI: 10.1038/s41598-019-47473-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/26/2019] [Indexed: 02/04/2023] Open
Abstract
Stress tolerance and adaptation to stress are known to facilitate species invasions. Many invasive species are also pests and insecticides are used to control them, which could shape their overall tolerance to stress. It is well-known that heavy insecticide usage leads to selection of resistant genotypes but less is known about potential effects of mild sublethal insecticide usage. We studied whether stressful, sublethal pyrethroid insecticide exposure has within-generational and/or maternal transgenerational effects on fitness-related traits in the Colorado potato beetle (Leptinotarsa decemlineata) and whether maternal insecticide exposure affects insecticide tolerance of offspring. Sublethal insecticide stress exposure had positive within-and transgenerational effects. Insecticide-stressed larvae had higher adult survival and higher adult body mass than those not exposed to stress. Furthermore, offspring whose mothers were exposed to insecticide stress had higher larval and pupal survival and were heavier as adults (only females) than those descending from control mothers. Maternal insecticide stress did not explain differences in lipid content of the offspring. To conclude, stressful insecticide exposure has positive transgenerational fitness effects in the offspring. Therefore, unsuccessful insecticide control of invasive pest species may lead to undesired side effects since survival and higher body mass are known to facilitate population growth and invasion success.
Collapse
|
16
|
Dolezal T, Krejcova G, Bajgar A, Nedbalova P, Strasser P. Molecular regulations of metabolism during immune response in insects. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:31-42. [PMID: 30959109 DOI: 10.1016/j.ibmb.2019.04.005] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/12/2019] [Accepted: 04/01/2019] [Indexed: 06/09/2023]
Abstract
Mounting an immune response is an energy-consuming process. Activating immune functions requires the synthesis of many new molecules and the undertaking of numerous cellular tasks and it must happen rapidly. Therefore, immune cells undergo a metabolic switch, which enables the rapid production of ATP and new biomolecules. Such metabolism is very nutrient-demanding, especially of glucose and glutamine, and thus the immune response is associated with a systemic metabolic switch, redirecting nutrient flow towards immunity and away from storage and consumption by non-immune processes. The immune system during its activation becomes privileged in terms of using organismal resources and the activated immune cells usurp nutrients by producing signals which reduce the metabolism of non-immune tissues. The insect fat body plays a dual role in which it is both a metabolic organ, storing energy and providing energy to the rest of the organism, but also an organ important for humoral immunity. Therefore, the internal switch from anabolism to the production of antimicrobial peptides occurs in the fat body during infection. The mechanisms regulating metabolism during the immune response ensure adequate energy for an effective response (resistance) but they must be properly regulated because energy is not unlimited and the energy needs of the immune system thus interfere with the needs of other physiological traits. If not properly regulated, the immune response may in the end decrease fitness via decreasing disease tolerance.
Collapse
Affiliation(s)
- Tomas Dolezal
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.
| | - Gabriela Krejcova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Adam Bajgar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Pavla Nedbalova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| | - Paul Strasser
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska 31, 37005, Ceske Budejovice, Czech Republic
| |
Collapse
|
17
|
Kruitwagen A, Beukeboom LW, Wertheim B. Optimization of native biocontrol agents, with parasitoids of the invasive pest Drosophila suzukii as an example. Evol Appl 2018; 11:1473-1497. [PMID: 30344621 PMCID: PMC6183459 DOI: 10.1111/eva.12648] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
The development of biological control methods for exotic invasive pest species has become more challenging during the last decade. Compared to indigenous natural enemies, species from the pest area of origin are often more efficient due to their long coevolutionary history with the pest. The import of these well-adapted exotic species, however, has become restricted under the Nagoya Protocol on Access and Benefit Sharing, reducing the number of available biocontrol candidates. Finding new agents and ways to improve important traits for control agents ("biocontrol traits") is therefore of crucial importance. Here, we demonstrate the potential of a surprisingly under-rated method for improvement of biocontrol: the exploitation of intraspecific variation in biocontrol traits, for example, by selective breeding. We propose a four-step approach to investigate the potential of this method: investigation of the amount of (a) inter- and (b) intraspecific variation for biocontrol traits, (c) determination of the environmental and genetic factors shaping this variation, and (d) exploitation of this variation in breeding programs. We illustrate this approach with a case study on parasitoids of Drosophila suzukii, a highly invasive pest species in Europe and North America. We review all known parasitoids of D. suzukii and find large variation among and within species in their ability to kill this fly. We then consider which genetic and environmental factors shape the interaction between D. suzukii and its parasitoids to explain this variation. Insight into the causes of variation informs us on how and to what extent candidate agents can be improved. Moreover, it aids in predicting the effectiveness of the agent upon release and provides insight into the selective forces that are limiting the adaptation of indigenous species to the new pest. We use this knowledge to give future research directions for the development of selective breeding methods for biocontrol agents.
Collapse
Affiliation(s)
- Astrid Kruitwagen
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
18
|
Nystrand M, Cassidy EJ, Dowling DK. The effects of a bacterial challenge on reproductive success of fruit flies evolved under low or high sexual selection. Ecol Evol 2018; 8:9341-9352. [PMID: 30377505 PMCID: PMC6194216 DOI: 10.1002/ece3.4450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 06/24/2018] [Accepted: 07/09/2018] [Indexed: 01/22/2023] Open
Abstract
The capacity of individuals to cope with stress, for example, from pathogen exposure, might decrease with increasing levels of sexual selection, although it remains unclear which sex should be more sensitive. Here, we measured the ability of each sex to maintain high reproductive success following challenges with either heat-killed bacteria or procedural control, across replicate populations of Drosophila melanogaster evolved under either high or low levels of sexual selection. Our experiment was run across four separate sampling blocks. We found an interaction between bacterial treatment, sexual selection treatment, and sampling block on female reproductive success. Specifically, and only in the fourth block, we observed that bacterial-challenged females that had evolved under high sexual selection, exhibited lower reproductive success than bacterial-challenged females that had evolved under low sexual selection. Furthermore, we could trace this block-specific effect to a reduction in viscosity of the ovipositioning substrate in the fourth block, in which females laid around 50% more eggs than in previous blocks. In contrast, patterns of male reproductive success were consistent across blocks. Males that evolved under high sexual selection exhibited higher reproductive success than their low-selection counterparts, regardless of whether they were subjected to a bacterial challenge or not. Our results are consistent with the prediction that heightened sexual selection will invoke male-specific evolutionary increases in reproductive fitness. Furthermore, our findings suggest that females might pay fitness costs when exposed to high levels of sexual selection, but that these costs may lie cryptic, and only be revealed under certain environmental contexts.
Collapse
Affiliation(s)
| | - Elizabeth J. Cassidy
- School of Biological SciencesMonash UniversityClaytonVic.Australia
- Department of Plant and Organismal BiologyUniversity of CopenhagenCopenhagenDenmark
| | | |
Collapse
|
19
|
Arp AP, Martini X, Pelz-Stelinski KS. Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Nystrand M, Cassidy EJ, Dowling DK. No effect of mitochondrial genotype on reproductive plasticity following exposure to a non-infectious pathogen challenge in female or male Drosophila. Sci Rep 2017; 7:42009. [PMID: 28181526 PMCID: PMC5299430 DOI: 10.1038/srep42009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 01/03/2017] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial genetic variation shapes the expression of life-history traits associated with reproduction, development and survival, and has also been associated with the prevalence and progression of infectious bacteria and viruses in humans. The breadth of these effects on multifaceted components of health, and their link to disease susceptibility, led us to test whether variation across mitochondrial haplotypes affected reproductive success following an immune challenge in the form of a non-infectious pathogen. We test this, by challenging male and female fruit flies (Drosophila melanogaster), harbouring each of three distinct mitochondrial haplotypes in an otherwise standardized genetic background, to either a mix of heat-killed bacteria, or a procedural control, prior to measuring their subsequent reproductive performance. The effect of the pathogen challenge on reproductive success did not differ across mitochondrial haplotypes; thus there was no evidence that patterns of reproductive plasticity were modified by the mitochondrial genotype following a non-infectious pathogen exposure. We discuss the implications of our data, and suggest future research avenues based on these results.
Collapse
Affiliation(s)
- M Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - E J Cassidy
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Department of Plant and Organismal Biology, University of Copenhagen, Denmark
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
21
|
Nystrand M, Cassidy EJ, Dowling DK. Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies. BMC Evol Biol 2016; 16:171. [PMID: 27567640 PMCID: PMC5002108 DOI: 10.1186/s12862-016-0737-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/08/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. RESULTS We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. CONCLUSIONS The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.
Collapse
Affiliation(s)
- M. Nystrand
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - E. J. Cassidy
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| | - D. K. Dowling
- School of Biological Sciences, Monash University, Clayton, VIC 3800 Australia
| |
Collapse
|
22
|
Devigili A, Belluomo V, Locatello L, Rasotto MB, Pilastro A. Postcopulatory cost of immune system activation in Poecilia reticulata. ETHOL ECOL EVOL 2016. [DOI: 10.1080/03949370.2016.1152305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Vincenzo Belluomo
- Department of Life Science, Second University of Naples, 81100 Caserta, Italy
| | - Lisa Locatello
- Department of Biology, University of Padua, 35131 Padua, Italy
| | | | - Andrea Pilastro
- Department of Biology, University of Padua, 35131 Padua, Italy
| |
Collapse
|
23
|
Abstract
Immune defense and reproduction are physiologically and energetically demanding processes and have been observed to trade off in a diversity of female insects. Increased reproductive effort results in reduced immunity, and reciprocally, infection and activation of the immune system reduce reproductive output. This trade-off can manifest at the physiological level (within an individual) and at the evolutionary level (genetic distinction among individuals in a population). The resource allocation model posits that the trade-off arises because of competition for one or more limiting resources, and we hypothesize that pleiotropic signaling mechanisms regulate allocation of that resource between reproductive and immune processes. We examine the role of juvenile hormone, 20-hydroxyecdysone, and insulin/insulin-like growth factor-like signaling in regulating both oogenesis and immune system activity, and propose a signaling network that may mechanistically regulate the trade-off. Finally, we discuss implications of the trade-off in an ecological and evolutionary context.
Collapse
Affiliation(s)
- Robin A Schwenke
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development
- Department of Entomology
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853; , ,
| |
Collapse
|
24
|
Nystrand M, Dowling DK. Transgenerational interactions involving parental age and immune status affect female reproductive success in Drosophila melanogaster. Proc Biol Sci 2015; 281:20141242. [PMID: 25253454 DOI: 10.1098/rspb.2014.1242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well established that the parental phenotype can influence offspring phenotypic expression, independent of the effects of the offspring's own genotype. Nonetheless, the evolutionary implications of such parental effects remain unclear, partly because previous studies have generally overlooked the potential for interactions between parental sources of non-genetic variance to influence patterns of offspring phenotypic expression. We tested for such interactions, subjecting male and female Drosophila melanogaster of two different age classes to an immune activation challenge or a control treatment. Flies were then crossed in all age and immune status combinations, and the reproductive success of their immune- and control-treated daughters measured. We found that daughters produced by two younger parents exhibited reduced reproductive success relative to those of other parental age combinations. Furthermore, immune-challenged daughters exhibited higher reproductive success when produced by immune-challenged relative to control-treated mothers, a pattern consistent with transgenerational immune priming. Finally, a complex interplay between paternal age and parental immune statuses influenced daughter's reproductive success. These findings demonstrate the dynamic nature of age- and immune-mediated parental effects, traceable to both parents, and regulated by interactions between parents and between parents and offspring.
Collapse
Affiliation(s)
- M Nystrand
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - D K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
25
|
The effect of parasites on sex differences in selection. Heredity (Edinb) 2015; 114:367-72. [PMID: 25649503 DOI: 10.1038/hdy.2014.110] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 10/26/2014] [Accepted: 10/27/2014] [Indexed: 11/08/2022] Open
Abstract
The life history strategies of males and females are often divergent, creating the potential for sex differences in selection. Deleterious mutations may be subject to stronger selection in males, owing to sexual selection, which can improve the mean fitness of females and reduce mutation load in sexual populations. However, sex differences in selection might also maintain sexually antagonistic genetic variation, creating a sexual conflict load. The overall impact of separate sexes on fitness is unclear, but the net effect is likely to be positive when there is a large sex difference in selection against deleterious mutations. Parasites can also have sex-specific effects on fitness, and there is evidence that parasites can intensify the fitness consequences of deleterious mutations. Using lines that accumulated mutations for over 60 generations, we studied the effect of the pathogenic bacterium Pseudomonas aeruginosa on sex differences in selection in the fruit fly Drosophila melanogaster. Pseudomonas infection increased the sex difference in selection, but may also have weakened the intersexual correlation for fitness. Our results suggest that parasites may increase the benefits of sexual selection.
Collapse
|
26
|
Brace AJ, Sheikali S, Martin LB. Highway to the danger zone: exposure‐dependent costs of immunity in a vertebrate ectotherm. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12402] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amber J. Brace
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| | - Sam Sheikali
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| | - Lynn B. Martin
- Department of Integrative Biology University of South Florida Tampa Florida 33620 USA
| |
Collapse
|