1
|
Ekholm A, Faticov M, Tack AJM, Berger J, Stone GN, Vesterinen E, Roslin T. Community phenology of insects on oak: local differentiation along a climatic gradient. Ecosphere 2021. [DOI: 10.1002/ecs2.3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Adam Ekholm
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| | - Maria Faticov
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Ayco J. M. Tack
- Department of Ecology, Environment and Plant Sciences Stockholm University Svante Arrhenius väg 20A Stockholm Sweden
| | - Josef Berger
- Department of Biology Biodiversity Unit Lund University Sölvegatan 37 Lund 22362 Sweden
| | - Graham N. Stone
- Institute of Evolutionary Biology University of Edinburgh Edinburgh EH9 3FL United Kingdom
| | - Eero Vesterinen
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
- Department of Biology University of Turku Vesilinnantie 5 Turku FI‐20014 Finland
| | - Tomas Roslin
- Department of Ecology Swedish University of Agricultural Sciences Box 7044 Uppsala SE‐750 07 Sweden
| |
Collapse
|
2
|
Moraiti CA, Köppler K, Vogt H, Papadopoulos NT. Effects of photoperiod and relative humidity on diapause termination and post-winter development of Rhagoletis cerasi pupae. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:588-596. [PMID: 32160932 DOI: 10.1017/s0007485320000073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The European cherry fruit fly, Rhagoletis cerasi (Diptera: Tephritidae), is a univoltine species that undergoes obligatory summer-winter diapause at pupal stage in the soil (2-5 cm) beneath host trees. To study the effects of photoperiod and relative humidity on diapause termination and post-winter developmental duration of R. cerasi, pupae collected from Dossenheim (Germany) were exposed to different photoperiod or relative humidity regimes during a chilling period ranging from 2 to 8.5 months. Specifically, pupae were exposed to four photoperiod regimes: (a) light conditions (24L:00D), (b) dark conditions (00L:24D), (c) short photoperiod (08L:16D) and (d) long photoperiod (16L:08D), as well as to three relative humidity regimes: (a) low (40% RH), (b) medium (60% RH) and (c) high (70-80% RH). Data revealed that relative humidity is not a significant predictor of diapause termination, but it affects the post-winter developmental period. Higher relative humidity promotes post-winter pupae development. On the other hand, photoperiod significantly affected both diapause termination and post-winter development of R. cerasi pupae. Light conditions (24L:00D) accelerate adult emergence, particularly for females. Regardless of the photoperiod (24L:00D, 00L:24D, 08L:16D), rates of adult emergence were high (>75%) for chilling intervals longer than 6.5 months. Nonetheless, exposure to a long day photoperiod (16L:08D), during chilling, dramatically reduced the proportion of adult emergence following 6 months exposure to chilling. Our findings broaden the understanding of factors regulating diapause responses in European cherry fruit fly, local adaptation and synchronization of adult emergence with the ripening period of major hosts.
Collapse
Affiliation(s)
- Cleopatra A Moraiti
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou ST., Volos, 384 46Magnesia, Greece
| | - Kirsten Köppler
- Centre for Agricultural Technology Augustenberg (LTZ), Neßlerstr. 25, 76227Karlsruhe, Germany
| | - Heidrun Vogt
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Straße 101, 69221Dossenheim, Germany
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Fytokou ST., Volos, 384 46Magnesia, Greece
| |
Collapse
|
3
|
Powell THQ, Nguyen A, Xia Q, Feder JL, Ragland GJ, Hahn DA. A rapidly evolved shift in life‐history timing during ecological speciation is driven by the transition between developmental phases. J Evol Biol 2020; 33:1371-1386. [DOI: 10.1111/jeb.13676] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 06/08/2020] [Accepted: 06/29/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Thomas H. Q. Powell
- Entomology and Nematology Department University of Florida Gainesville Florida USA
- Department of Biological Sciences Binghamton University (State University of New York) Binghamton New York USA
| | - Andrew Nguyen
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Qinwen Xia
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| | - Jeffrey L. Feder
- Department of Biological Sciences University of Notre DameNotre Dame Indiana USA
| | - Gregory J. Ragland
- Department of Integrative Biology University of Colorado Denver Denver Colorado USA
| | - Daniel A. Hahn
- Entomology and Nematology Department University of Florida Gainesville Florida USA
| |
Collapse
|
4
|
Khelifa R, Blanckenhorn WU, Roy J, Rohner PT, Mahdjoub H. Usefulness and limitations of thermal performance curves in predicting ectotherm development under climatic variability. J Anim Ecol 2019; 88:1901-1912. [PMID: 31365760 DOI: 10.1111/1365-2656.13077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/31/2019] [Indexed: 01/25/2023]
Abstract
Thermal performance curves (TPCs) have been estimated in multiple ectotherm species to understand their thermal plasticity and adaptation and to predict the effect of global warming. However, TPCs are typically assessed under constant temperature regimes, so their reliability for predicting thermal responses in the wild where temperature fluctuates diurnally and seasonally remains poorly documented. Here, we use distant latitudinal populations of five species of sepsid flies (Diptera: Sepsidae) from the temperate region (Europe, North Africa, North America) to compare estimates derived from constant TPCs with observed development rate under fluctuating temperatures in laboratory and field conditions. TPCs changed across gradients in that flies originating from higher latitudes showed accelerated development at higher temperatures, an adaptive response. TPCs were then used to predict development rates observed under fluctuating temperatures; these predictions were relatively accurate in the laboratory but not the field. Interestingly, the precision of TPC predictions depended not only on the resolution of temperature data, with daily and overall temperature summing performing better than hourly temperature summing, but also on the frequency of temperatures falling below the estimated critical minimum temperature. Hourly temperature resolution most strongly underestimated actual development rates, because flies apparently either did not stop growing when temperatures dropped below this threshold, or they sped up their growth when the temperature rose again, thus most severely reflecting this error. We conclude that when flies do not encounter cold temperatures, TPC predictions based on constant temperatures can accurately reflect performance under fluctuating temperatures if adequately adjusted for nonlinearities, but when encountering cold temperatures, this method is more error-prone. Our study emphasizes the importance of the resolution of temperature data and cold temperatures in shaping thermal reaction norms.
Collapse
Affiliation(s)
- Rassim Khelifa
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.,Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Wolf U Blanckenhorn
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Jeannine Roy
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Patrick T Rohner
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Hayat Mahdjoub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Davies WJ. Multiple temperature effects on phenology and body size in wild butterflies predict a complex response to climate change. Ecology 2019; 100:e02612. [DOI: 10.1002/ecy.2612] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 11/19/2018] [Accepted: 12/20/2018] [Indexed: 11/07/2022]
Affiliation(s)
- W. James Davies
- Institute of Integrative Biology University of Liverpool Biosciences Building, Crown Street Liverpool L69 7ZB UK
| |
Collapse
|
6
|
Posledovich D, Toftegaard T, Wiklund C, Ehrlén J, Gotthard K. Phenological synchrony between a butterfly and its host plants: Experimental test of effects of spring temperature. J Anim Ecol 2017; 87:150-161. [PMID: 29048758 DOI: 10.1111/1365-2656.12770] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/08/2017] [Indexed: 11/28/2022]
Abstract
Climate-driven changes in the relative phenologies of interacting species may potentially alter the outcome of species interactions. Phenotypic plasticity is expected to be important for short-term response to new climate conditions, and differences between species in plasticity are likely to influence their temporal overlap and interaction patterns. As reaction norms of interacting species may be locally adapted, any such climate-induced change in interaction patterns may vary among localities. However, consequences of spatial variation in plastic responses for species interactions are understudied. We experimentally explored how temperature affected synchrony between spring emergence of a butterfly, Anthocharis cardamines, and onset of flowering of five of its host plant species across a latitudinal gradient. We also studied potential effects on synchrony if climate-driven northward expansions would be faster in the butterflies than in host plants. Lastly, to assess how changes in synchrony influence host use we carried out an experiment to examine the importance of the developmental stage of plant reproductive structures for butterfly oviposition preference. In southern locations, the butterflies were well-synchronized with the majority of their local host plant species across temperatures, suggesting that thermal plasticity in butterfly development matches oviposition to host plant development and that thermal reaction norms of insects and plants result in similar advancement of spring phenology in response to warming. In the most northern region, however, relative phenology between the butterfly and two of its host plant species changed with increased temperature. We also show that the developmental stage of plants was important for egg-laying, and conclude that temperature-induced changes in synchrony in the northernmost region are likely to lead to shifts in host use in A. cardamines if spring temperatures become warmer. Northern expansion of butterfly populations might possibly have a positive effect on keeping up with host plant phenology with more northern host plant populations. Considering that the majority of insect herbivores exploit multiple plant species differing in their phenological response to spring temperatures, temperature-induced changes in synchrony might lead to shifts in host use and changes in species interactions in many temperate communities.
Collapse
Affiliation(s)
| | - Tenna Toftegaard
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Stålhandske S, Gotthard K, Leimar O. Winter chilling speeds spring development of temperate butterflies. J Anim Ecol 2017; 86:718-729. [DOI: 10.1111/1365-2656.12673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/15/2017] [Indexed: 11/30/2022]
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology; Stockholm University; 106 91 Stockholm Sweden
| | - Olof Leimar
- Department of Zoology; Stockholm University; 106 91 Stockholm Sweden
| |
Collapse
|
8
|
Davies WJ, Saccheri IJ. Evolution of Adaptive Phenotypic Plasticity in Male Orange-Tip Butterflies. ANN ZOOL FENN 2017. [DOI: 10.5735/086.054.0120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- W. James Davies
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Ilik J. Saccheri
- Institute of Integrative Biology, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
9
|
Moraiti CA, Nakas CT, Papadopoulos NT. Local adaptation, intrapopulation adult emergence patterns, sex and prolonged diapause regulate the rate of postwinter development in pupae of the European cherry fruit fly. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blw042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
10
|
Stålhandske S, Lehmann P, Pruisscher P, Leimar O. Effect of winter cold duration on spring phenology of the orange tip butterfly, Anthocharis cardamines. Ecol Evol 2015; 5:5509-20. [PMID: 27069602 PMCID: PMC4813107 DOI: 10.1002/ece3.1773] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/04/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022] Open
Abstract
The effect of spring temperature on spring phenology is well understood in a wide range of taxa. However, studies on how winter conditions may affect spring phenology are underrepresented. Previous work on Anthocharis cardamines (orange tip butterfly) has shown population‐specific reaction norms of spring development in relation to spring temperature and a speeding up of post‐winter development with longer winter durations. In this experiment, we examined the effects of a greater and ecologically relevant range of winter durations on post‐winter pupal development of A. cardamines of two populations from the United Kingdom and two from Sweden. By analyzing pupal weight loss and metabolic rate, we were able to separate the overall post‐winter pupal development into diapause duration and post‐diapause development. We found differences in the duration of cold needed to break diapause among populations, with the southern UK population requiring a shorter duration than the other populations. We also found that the overall post‐winter pupal development time, following removal from winter cold, was negatively related to cold duration, through a combined effect of cold duration on diapause duration and on post‐diapause development time. Longer cold durations also lead to higher population synchrony in hatching. For current winter durations in the field, the A. cardamines population of southern UK could have a reduced development rate and lower synchrony in emergence because of short winters. With future climate change, this might become an issue also for other populations. Differences in winter conditions in the field among these four populations are large enough to have driven local adaptation of characteristics controlling spring phenology in response to winter duration. The observed phenology of these populations depends on a combination of winter and spring temperatures; thus, both must be taken into account for accurate predictions of phenology.
Collapse
Affiliation(s)
| | - Philipp Lehmann
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| | - Peter Pruisscher
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| | - Olof Leimar
- Department of Zoology Stockholm University 106 91 Stockholm Sweden
| |
Collapse
|
11
|
Posledovich D, Toftegaard T, Wiklund C, Ehrlén J, Gotthard K. The developmental race between maturing host plants and their butterfly herbivore - the influence of phenological matching and temperature. J Anim Ecol 2015; 84:1690-9. [DOI: 10.1111/1365-2656.12417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/17/2015] [Indexed: 11/28/2022]
Affiliation(s)
| | - Tenna Toftegaard
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Stockholm Sweden
| | | | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences; Stockholm University; Stockholm Sweden
| | - Karl Gotthard
- Department of Zoology; Stockholm University; Stockholm Sweden
| |
Collapse
|
12
|
Latitudinal variation in diapause duration and post-winter development in two pierid butterflies in relation to phenological specialization. Oecologia 2014; 177:181-90. [PMID: 25362581 DOI: 10.1007/s00442-014-3125-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 10/24/2022]
Abstract
Diapause plays a central role in insect life cycles by allowing survival during adverse seasonal conditions as well as synchronizing life cycles with the period of mate and food availability. Seasonal timing is expected to be particularly important for species that are dependent on resources available during a short time window-so-called phenological specialists-and latitudinal clines in seasonality are expected to favor local adaptation in phenological timing. However, to what degree latitudinal variation in diapause dynamics and post-winter development due to such local adaptation is influenced by the degree of phenological specialization is not well known. We experimentally studied two pierid butterfly species and found that the phenological specialist Anthocharis cardamines had shorter diapause duration than the phenological generalist Pieris napi along a latitudinal gradient in Sweden. Moreover, diapause duration increased with latitude in P. napi but not in A. cardamines. Sensitivity of the two species to winter thermal conditions also differed; additional cold temperature during the winter period shortened diapause duration for P. napi pupae but not for A. cardamines pupae. In both species, post-winter pupal development was faster after longer periods of cold conditions, and more southern populations developed faster than northern populations. Post-winter development was also invariably faster at higher temperatures in both species. We argue that the observed differences in diapause dynamics between the two species might be explained by the difference in phenological specialization that influences the costs of breaking diapause too early in the season.
Collapse
|