1
|
Li T, Jiang P, Liu J, Zhu J, Zhao S, Li Z, Zhong M, Ma C, Qin Y. Considering climate change impact on the global potential geographical distribution of the invasive Argentine ant and little fire ant. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024; 114:454-465. [PMID: 38751346 DOI: 10.1017/s0007485324000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The Argentine ant (Linepithema humile) and the little fire ant (Wasmannia auropunctata) are among the top 100 invasive alien species globally, causing significant ecological and economic harm. Therefore, it is crucial to study their potential geographic distribution worldwide. This study aimed to predict their global distribution under current and future climate conditions. We used distribution data from various sources, including CABI, GBIF, and PIAKey, and key climate variables selected from 19 environmental factors to model their potential geographic distribution using MaxEnt. The AUC values were 0.925 and 0.937 for L. humile and W. auropunctata, respectively, indicating good predictive performance. Suitable areas for L. humile were mainly in southern North America, northern South America, Europe, central Asia, southern Oceania, and parts of Africa, while W. auropunctata suitable areas were mostly in southern North America, most of South America, a small part of Europe, southern Asia, central Africa, and some parts of Oceania. Under climate change scenario, suitable areas for L. humile increased, while highly suitable areas for W. auropunctata decreased. The top four countries with the largest areas of overlapping suitable habitat under current climate were Brazil, China, Australia, and Argentina, while under future SSP585 climate scenario, the top four countries were Brazil, China, Indonesia, and Argentina. Some countries, such as Estonia and Finland, will see an overlapping adaptation area under climate change. In conclusion, this study provides insight into controlling the spread and harm of L. humile and W. auropunctata.
Collapse
Affiliation(s)
- Tong Li
- Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Pei Jiang
- National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Jingyuan Liu
- Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs District, Shanghai, 200135, China
| | - Jingquan Zhu
- National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Shouqi Zhao
- National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Zhihong Li
- Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| | - Mina Zhong
- Forest Pest Control and Quarantine Station of Xining City, Qinghai, 810008, China
| | - Chen Ma
- National Agro-tech Extension and Service Center, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Yujia Qin
- Department of Plant Biosecurity, Key Laboratory of Surveillance and Management for Plant Quarantine Pests of MARA, College of Plant Protection, China Agricultural University, Beijing, P. R. China
| |
Collapse
|
2
|
Rojas P, Fragoso C. A Regional Approach Shows Differences Among Invasive Ants Solenopsis geminata and Wasmannia auropunctata (Hymenoptera: Formicidae) Within Its Native Range of Distribution. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:12. [PMID: 34137894 PMCID: PMC8210469 DOI: 10.1093/jisesa/ieab039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, two of the most harmful invasive ants typical of disturbed sites are Solenopsis geminata (Fabricius) and Wasmannia auropunctata (Roger). Both are natives of the Neotropics and are widely distributed all over the tropics. Within its original geographic range, there are few data on its abundance and potential damage to natural ecosystems. In this study, we recorded their abundance and relationships to diversity and richness of soil ant communities in two localities with different amount of forested area (López Mateos, LM 77% and Venustiano Carranza, VC 27%), at Los Tuxtlas reserve. In each locality, four land use systems (LUS) were sampled: tropical rain forests, agroforestry plantations, annual crops, and pastures. Data were gathered from 360 ant samples obtained from litter squares, pitfall traps, and soil monoliths in 40 sampling points (20 per locality, and five per LUS). Solenopsis geminata was more abundant in LM than in VC; the opposite trend was observed for W. auropunctata. In LM, S. geminata was more abundant in crops than in the other LUS, whereas W. auropunctata tended to have higher abundances in less managed sites of both localities. Abundance and species richness of ant communities were higher in LM than in VC. At regional and local levels, we found negative relationships between the abundance of S. geminata and species richness; the inverse pattern was found for W. auropunctata. We conclude that at Los Tuxtlas, W. auropunctata can be considered as a typical dominant native species, whereas S. geminata is the common exotic invasive ant.
Collapse
Affiliation(s)
- Patricia Rojas
- Biodiversity and Systematic Network, Institute of Ecology A.C., Carretera Antigua a Coatepec 351 Xalapa, Ver. 91073Mexico
| | - Carlos Fragoso
- Biodiversity and Systematic Network, Institute of Ecology A.C., Carretera Antigua a Coatepec 351 Xalapa, Ver. 91073Mexico
| |
Collapse
|
3
|
Leme Pablos J, Kristina Silva A, Seraphim N, de Moraes Magaldi L, Pereira de Souza A, Victor Lucci Freitas A, Lucas Silva-Brandão K. North-south and climate-landscape-associated pattern of population structure for the Atlantic Forest White Morpho butterflies. Mol Phylogenet Evol 2021; 161:107157. [PMID: 33753193 DOI: 10.1016/j.ympev.2021.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 01/25/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Atlantic Forest White Morpho butterflies, currently classified as Morpho epistrophus and M. iphitus, are endemic to the Atlantic Forest, where they are widely distributed throughout heterogeneous environmental conditions. Studies with endemic butterflies allow to elucidate questions on both patterns of diversity distribution and current and past processes acting on insect groups in this biodiversity hotspot. In the present study, we characterized one mtDNA marker (COI sequences) and developed 11 polymorphic loci of microsatellite for 22 sampling locations distributed throughout the entire Atlantic Forest domain. We investigated both the taxonomic limits of taxa classified as White Morpho and the structure and distribution of the genetic diversity throughout their populations. Genetic markers and distribution data failed to identify species diversification, population structure, or isolation among subpopulations attributed to different taxa proposed for the White Morpho, suggesting that the current distinction between two species is unreasonable. The Bayesian coalescent tree based on COI sequences also failed to recover monophyletic clades for the putative species, and pointed instead to a north-south oriented pattern of genetic structure, with the northern clade coalescing later than the southern clade. Northern samples also showed more intragroup structure than southern samples based on mtDNA data. Clustering tests based on microsatellites indicated the existence of three genetic clusters, with turnover between the states of Paraná and São Paulo. The north-south pattern found for the White Morpho populations is showed for the first time to a endemic AF insect and coincides with the two different bioclimatic domains previously described for vertebrates and plants. Population structure observed for these butterflies is related to climate- and landscape-associated variables, mainly precipitation and elevation.
Collapse
Affiliation(s)
- Julia Leme Pablos
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Ana Kristina Silva
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Noemy Seraphim
- Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Campus Campinas, Rua Heitor Lacerda Guedes, 1000, 13059-581 Campinas, SP, Brazil
| | - Luiza de Moraes Magaldi
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Anete Pereira de Souza
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil
| | - André Victor Lucci Freitas
- Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Karina Lucas Silva-Brandão
- Universidade Estadual de Campinas, Centro de Biologia Molecular e Engenharia Genética, Av. Candido Rondom, 400, 13083-875 Campinas, SP, Brazil; Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Av. dos Estados, 5001, 09210-580 Santo André, SP, Brazil.
| |
Collapse
|
4
|
Linking thermo-tolerances of the highly invasive ant, Wasmannia auropunctata, to its current and potential distribution. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02063-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
5
|
Eyer PA, McDowell B, Johnson LNL, Calcaterra LA, Fernandez MB, Shoemaker D, Puckett RT, Vargo EL. Supercolonial structure of invasive populations of the tawny crazy ant Nylanderia fulva in the US. BMC Evol Biol 2018; 18:209. [PMID: 30594137 PMCID: PMC6310932 DOI: 10.1186/s12862-018-1336-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/17/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Social insects are among the most serious invasive pests in the world, particularly successful at monopolizing environmental resources to outcompete native species and achieve ecological dominance. The invasive success of some social insects is enhanced by their unicolonial structure, under which the presence of numerous queens and the lack of aggression against non-nestmates allow high worker densities, colony growth, and survival while eliminating intra-specific competition. In this study, we investigated the population genetics, colony structure and levels of aggression in the tawny crazy ant, Nylanderia fulva, which was recently introduced into the United States from South America. RESULTS We found that this species experienced a genetic bottleneck during its invasion lowering its genetic diversity by 60%. Our results show that the introduction of N. fulva is associated with a shift in colony structure. This species exhibits a multicolonial organization in its native range, with colonies clearly separated from one another, whereas it displays a unicolonial system with no clear boundaries among nests in its invasive range. We uncovered an absence of genetic differentiation among populations across the entire invasive range, and a lack of aggressive behaviors towards conspecifics from different nests, even ones separated by several hundreds of kilometers. CONCLUSIONS Overall, these results suggest that across its entire invasive range in the U.S.A., this species forms a single supercolony spreading more than 2000 km. In each invasive nest, we found several, up to hundreds, of reproductive queens, each being mated with a single male. The many reproductive queens per nests, together with the free movement of individuals between nests, leads to a relatedness coefficient among nestmate workers close to zero in introduced populations, calling into question the stability of this unicolonial system in which indirect fitness benefits to workers is apparently absent.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Bryant McDowell
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Luis A Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - Maria Belen Fernandez
- Fundación para el Estudio de Especies Invasivas (FuEDEI) and CONICET, Bolívar 1559, B1686EFA, Hurlingham, Buenos Aires, Argentina
| | - DeWayne Shoemaker
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996-4560, USA
| | - Robert T Puckett
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
6
|
Southern expansion of the invasive ant Wasmannia auropunctata within its native range and its relation with clonality and human activity. PLoS One 2018; 13:e0206602. [PMID: 30462663 PMCID: PMC6248933 DOI: 10.1371/journal.pone.0206602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022] Open
Abstract
The little fire ant Wasmannia auropunctata, native to the Neotropics, has become a serious pest worldwide over the past 100 years. It was originally distributed from Mexico to northern Argentina and new evidence suggests a recent southern range expansion during the last 60 years reaching central Argentina. This supercolonial ant species has a polymorphic reproductive system. Some populations, mostly found in undisturbed natural environments, are characterised by a classical sexual haplodiploid reproductive system. In other populations, which mainly occur in human-modified habitats, diploid queens and haploid males are produced clonally while workers are produced sexually. Here we studied the association between the recent southern range expansion of W. auropunctata in relation to human activity and clonality. We carried out an extensive survey within the southern limit of the species’ native distribution and characterised the type of habitat where populations were found. Moreover, we genetically determined the type of reproductive system in 35 populations by genotyping at 12 microsatellite loci a total of 191 reproductive individuals (i.e. queens and/or males). Clonality was the most common reproductive system, occurring in 31 out of 35 populations analysed. All the populations found in the recently colonised area in central Argentina were clonal and established in human-modified habitats, suggesting that clonality together with human activity might have facilitated the southwards expansion of W. auropunctata.
Collapse
|
7
|
Sotka EE, Baumgardner AW, Bippus PM, Destombe C, Duermit EA, Endo H, Flanagan BA, Kamiya M, Lees LE, Murren CJ, Nakaoka M, Shainker SJ, Strand AE, Terada R, Valero M, Weinberger F, Krueger‐Hadfield SA. Combining niche shift and population genetic analyses predicts rapid phenotypic evolution during invasion. Evol Appl 2018; 11:781-793. [PMID: 29875819 PMCID: PMC5978718 DOI: 10.1111/eva.12592] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The rapid evolution of non-native species can facilitate invasion success, but recent reviews indicate that such microevolution rarely yields expansion of the climatic niche in the introduced habitats. However, because some invasions originate from a geographically restricted portion of the native species range and its climatic niche, it is possible that the frequency, direction, and magnitude of phenotypic evolution during invasion have been underestimated. We explored the utility of niche shift analyses in the red seaweed Gracilaria vermiculophylla, which expanded its range from the northeastern coastline of Japan to North America, Europe, and northwestern Africa within the last 100 years. A genetically informed climatic niche shift analysis indicates that native source populations occur in colder and highly seasonal habitats, while most non-native populations typically occur in warmer, less seasonal habitats. This climatic niche expansion predicts that non-native populations evolved greater tolerance for elevated heat conditions relative to native source populations. We assayed 935 field-collected and 325 common-garden thalli from 40 locations, and as predicted, non-native populations had greater tolerance for ecologically relevant extreme heat (40°C) than did Japanese source populations. Non-native populations also had greater tolerance for cold and low-salinity stresses relative to source populations. The importance of local adaptation to warm temperatures during invasion was reinforced by evolution of parallel clines: Populations from warmer, lower-latitude estuaries had greater heat tolerance than did populations from colder, higher-latitude estuaries in both Japan and eastern North America. We conclude that rapid evolution plays an important role in facilitating the invasion success of this and perhaps other non-native marine species. Genetically informed ecological niche analyses readily generate clear predictions of phenotypic shifts during invasions and may help to resolve debate over the frequency of niche conservatism versus rapid adaptation during invasion.
Collapse
Affiliation(s)
- Erik E. Sotka
- Department of BiologyCollege of CharlestonCharlestonSCUSA
| | | | | | - Christophe Destombe
- UMI EBEA 3614, CNRSSorbonne UniversitésUPMC, UCCh, UACHStation Biologique de RoscoffRoscoffFrance
| | | | - Hikaru Endo
- United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | | | - Mits Kamiya
- Faculty of Marine BioscienceFukui Prefectural UniversityObamaFukuiJapan
| | - Lauren E. Lees
- Department of BiologyCollege of CharlestonCharlestonSCUSA
| | | | - Masahiro Nakaoka
- Akkeshi Marine StationField Science Center for Northern BiosphereHokkaido UniversityHokkaidoJapan
| | | | | | - Ryuta Terada
- United Graduate School of Agricultural SciencesKagoshima UniversityKagoshimaJapan
| | - Myriam Valero
- UMI EBEA 3614, CNRSSorbonne UniversitésUPMC, UCCh, UACHStation Biologique de RoscoffRoscoffFrance
| | | | | |
Collapse
|
8
|
Rodriguero MS, Wirth SA, Alberghina JS, Lanteri AA, Confalonieri VA. A tale of swinger insects: Signatures of past sexuality between divergent lineages of a parthenogenetic weevil revealed by ribosomal intraindividual variation. PLoS One 2018; 13:e0195551. [PMID: 29718921 PMCID: PMC5931498 DOI: 10.1371/journal.pone.0195551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/23/2018] [Indexed: 12/02/2022] Open
Abstract
Naupactus cervinus (Boheman) (Curculionidae, Naupactini) is a parthenogenetic weevil native to the Paranaense Forest which displays high levels of genetic variation. Two divergent clades were identified, one ranging in forest areas (Forest clade), and the other in open vegetation areas (Grassland clade). Both of them have individuals with high levels of heterozygosity in ribosomal sequences. Investigation of intraindividual variation in ITS1 sequences through cloning and posterior sequencing suggested that mating between both groups most likely occurred in the Paranaense Forest after a secondary contact, which led to fixed heterozygotes as a consequence of parthenogenesis. Otherwise, sexual segregation would have disrupted multilocus genotypes. Only a small number of heterozygous genotypes of all the possible combinations are found in nature. We propose the occurrence of a hybrid zone in the Paranaense Forest. The fact that it is one of the most important biodiversity hotspots of the world, together with its key role for investigating evolutionary processes, makes it worthy of conservation. This is the first genetic evidence of bisexuality in N. cervinus.
Collapse
Affiliation(s)
- Marcela S. Rodriguero
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - Sonia A. Wirth
- Laboratorio de Agrobiotecnología, Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA—CONICET/UBA), Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Josefina S. Alberghina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - Analía A. Lanteri
- División Entomología, Museo de La Plata, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata—CONICET, La Plata, Buenos Aires, Argentina
| | - Viviana A. Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Lavinia PD, Núñez Bustos EO, Kopuchian C, Lijtmaer DA, García NC, Hebert PDN, Tubaro PL. Barcoding the butterflies of southern South America: Species delimitation efficacy, cryptic diversity and geographic patterns of divergence. PLoS One 2017; 12:e0186845. [PMID: 29049373 PMCID: PMC5648246 DOI: 10.1371/journal.pone.0186845] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/09/2017] [Indexed: 01/26/2023] Open
Abstract
Because the tropical regions of America harbor the highest concentration of butterfly species, its fauna has attracted considerable attention. Much less is known about the butterflies of southern South America, particularly Argentina, where over 1,200 species occur. To advance understanding of this fauna, we assembled a DNA barcode reference library for 417 butterfly species of Argentina, focusing on the Atlantic Forest, a biodiversity hotspot. We tested the efficacy of this library for specimen identification, used it to assess the frequency of cryptic species, and examined geographic patterns of genetic variation, making this study the first large-scale genetic assessment of the butterflies of southern South America. The average sequence divergence to the nearest neighbor (i.e. minimum interspecific distance) was 6.91%, ten times larger than the mean distance to the furthest conspecific (0.69%), with a clear barcode gap present in all but four of the species represented by two or more specimens. As a consequence, the DNA barcode library was extremely effective in the discrimination of these species, allowing a correct identification in more than 95% of the cases. Singletons (i.e. species represented by a single sequence) were also distinguishable in the gene trees since they all had unique DNA barcodes, divergent from those of the closest non-conspecific. The clustering algorithms implemented recognized from 416 to 444 barcode clusters, suggesting that the actual diversity of butterflies in Argentina is 3%-9% higher than currently recognized. Furthermore, our survey added three new records of butterflies for the country (Eurema agave, Mithras hannelore, Melanis hillapana). In summary, this study not only supported the utility of DNA barcoding for the identification of the butterfly species of Argentina, but also highlighted several cases of both deep intraspecific and shallow interspecific divergence that should be studied in more detail.
Collapse
Affiliation(s)
- Pablo D. Lavinia
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Ezequiel O. Núñez Bustos
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Cecilia Kopuchian
- Laboratorio de Biología de la Conservación, Centro de Ecología Aplicada del Litoral (CECOAL-CONICET), Corrientes, Argentina
| | - Darío A. Lijtmaer
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Natalia C. García
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| | - Paul D. N. Hebert
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - Pablo L. Tubaro
- Museo Argentino de Ciencias Naturales ‘Bernardino Rivadavia’ (MACN-CONICET), Buenos Aires, Argentina
| |
Collapse
|
10
|
The roles of barriers, refugia, and chromosomal clines underlying diversification in Atlantic Forest social wasps. Sci Rep 2017; 7:7689. [PMID: 28794485 PMCID: PMC5550474 DOI: 10.1038/s41598-017-07776-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 07/03/2017] [Indexed: 12/11/2022] Open
Abstract
Phylogeographic studies have sought to explain the genetic imprints of historical climatic changes and geographic barriers within the Brazilian Atlantic Forest (AF) biota, and consequently two processes of diversification (refugia and barriers) have been proposed. Additionally, there is evidence that eustatic changes influenced the biogeographic history of the AF. Here we evaluate these contrasting diversification processes using two AF social wasp species – the mid-montane Synoeca cyanea and the lowland Synoeca aff. septentrionalis. We analyzed several sources of data including multilocus DNA sequence, climatic niche models and chromosomal features. We find support for idiosyncratic phylogeographic patterns between these wasps, involving different levels of population structure and genetic diversity, contrary suitable climatic conditions during the last glaciation, and contrasting historical movements along the AF. Our data indicate that neotectonics and refugia played distinct roles in shaping the genetic structure of these wasps. However, we argue that eustatic changes influenced the demographic expansion but not population structure in AF biota. Notably, these wasps exhibited chromosomal clines, involving chromosome number and decreasing of GC content, latitudinally oriented along the AF. Together, these results reinforce the need to consider individual organismal histories and indicate that barriers and refugia are significant factors in understanding AF evolution.
Collapse
|