1
|
Heiman CM, Antar H, Fournes F, Keel C, Vacheron J. The repressor PrtR1 and the global H-NS-like regulators MvaT and MvaV enable the fine-tuning of R-tailocin expression in Pseudomonas protegens. BMC Microbiol 2025; 25:286. [PMID: 40350448 PMCID: PMC12066065 DOI: 10.1186/s12866-025-03983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/21/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Bacteria rely on an arsenal of weapons to challenge their opponents in highly competitive environments. To specifically counter closely related bacteria, specialized weapons with a narrow activity spectrum are deployed, particularly contractile phage tail-like particles or R-tailocins. Their production leads to the lysis of the producing cells, indicating that their expression must be carefully orchestrated so that only a small percentage of cells produce R-tailocins for the benefit of the entire population. RESULTS In this study, we set out to better understand how the production of these phage tail-like weapons is regulated in environmental pseudomonads using the competitive plant root colonizer and environmental model strain Pseudomonas protegens CHA0. Using an RNA sequencing (RNA-seq) approach, we found that genes involved in DNA repair, particularly the SOS response program, are upregulated following exposure of the pseudomonad to the DNA-damaging agents mitomycin C and hydrogen peroxide, while genes involved in cell division and primary metabolism are downregulated. The R-tailocin and prophage gene clusters were also upregulated in response to these DNA damaging agents. By combining reverse genetics, transcriptional reporters and chromatin immunoprecipitation sequencing (ChIP-seq), we show that the R-tailocin locus-specific LexA-like regulator PrtR1 represses R-tailocin gene expression by binding directly to the promoter region of the cluster, while the histone-like nucleoid structuring (H-NS) proteins MvaT and MvaV act as master regulators that indirectly regulate R-tailocin cluster expression. CONCLUSION Our results suggest that at least these three regulators operate in concert to ensure tight control of R-tailocin expression and cell lytic release in environmental Pseudomonas protegens strains.
Collapse
Affiliation(s)
- Clara Margot Heiman
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Hammam Antar
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Florian Fournes
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland
| | - Christoph Keel
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| | - Jordan Vacheron
- Department of Fundamental Microbiology, University of Lausanne, Biophore Building, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
2
|
Mancuso CP, Baker JS, Qu E, Tripp AD, Balogun IO, Lieberman TD. Intraspecies warfare restricts strain coexistence in human skin microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.07.592803. [PMID: 38765968 PMCID: PMC11100718 DOI: 10.1101/2024.05.07.592803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Determining why only a fraction of encountered or applied strains engraft in a given person's microbiome is crucial for understanding and engineering these communities. Previous work has established that metabolic competition can restrict colonization success in vivo, but the relevance of bacterial warfare in preventing commensal engraftment has been less explored. Here, we demonstrate that intraspecies warfare presents a significant barrier to strain coexistence in the human skin microbiome by profiling 14,884 pairwise interactions between Staphylococcus epidermidis isolates cultured from eighteen people from six families. We find that intraspecies antagonisms are abundant, mechanistically diverse, independent of strain relatedness, and consistent with rapid evolution via horizontal gene transfer. Critically, these antagonisms are significantly depleted among strains residing on the same person relative to random assemblages, indicating a significant in vivo role. Together, our results emphasize that accounting for intraspecies warfare may be essential to the design of long-lasting probiotic therapeutics.
Collapse
Affiliation(s)
- Christopher P. Mancuso
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Jacob S. Baker
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Evan Qu
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - A. Delphine Tripp
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Systems Biology, Harvard University; Cambridge, MA 02138, USA
| | - Ishaq O. Balogun
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Ragon Institute of MGH, MIT, and Harvard; Cambridge, MA 02142, USA
| |
Collapse
|
3
|
Snopková K, Chaloupková E, Hrala M, Šmajs D. Characterization of tailocins of Pragia fontium 24613 and the tailocin loci within the family Budviciaceae. Res Microbiol 2025; 176:104261. [PMID: 39581287 DOI: 10.1016/j.resmic.2024.104261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Tailocins are nano-scale phage tail-like protein complexes that can mediate antagonistic interactions between closely related bacterial species. While the capacity to produce R-type tailocin was found widely across Gammaproteobacteria, the production of F-type tailocins seems comparatively rare. In this study, we examined the freshwater isolate, Pragia fontium 24613, which can produce both R- and F-type tailocins. We investigated their inhibition spectrum, focusing on clinically relevant enterobacteria, and identified the associated tailocin gene cluster. Transmission electron microscopy confirmed that inactivation of the tape measure protein within the tailocin cluster disrupted R-tailocin production. Comparative analysis of Budviciaceae gene clusters showed high conservation of R-type tailocin genes, whereas F-type tailocin genes were found in only a few species, with little conservation. Our findings indicate a high prevalence of bacteriocin production among underexplored Enterobacteriales species. Detected tailocins showed potential as antimicrobials targeting clinically significant pathogens.
Collapse
Affiliation(s)
- Kateřina Snopková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic; Institute for Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Eva Chaloupková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|
4
|
Gallardo-Navarro O, Aguilar-Salinas B, Rocha J, Olmedo-Álvarez G. Higher-order interactions and emergent properties of microbial communities: The power of synthetic ecology. Heliyon 2024; 10:e33896. [PMID: 39130413 PMCID: PMC11315108 DOI: 10.1016/j.heliyon.2024.e33896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Humans have long relied on microbial communities to create products, produce energy, and treat waste. The microbiota residing within our bodies directly impacts our health, while the soil and rhizosphere microbiomes influence the productivity of our crops. However, the complexity and diversity of microbial communities make them challenging to study and difficult to develop into applications, as they often exhibit the emergence of unpredictable higher-order phenomena. Synthetic ecology aims at simplifying complexity by constituting synthetic or semi-natural microbial communities with reduced diversity that become easier to study and analyze. This strategy combines methodologies that simplify existing complex systems (top-down approach) or build the system from its constituent components (bottom-up approach). Simplified communities are studied to understand how interactions among populations shape the behavior of the community and to model and predict their response to external stimuli. By harnessing the potential of synthetic microbial communities through a multidisciplinary approach, we can advance knowledge of ecological concepts and address critical public health, agricultural, and environmental issues more effectively.
Collapse
Affiliation(s)
- Oscar Gallardo-Navarro
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Bernardo Aguilar-Salinas
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| | - Jorge Rocha
- Centro de Investigaciones Biológicas del Noroeste, S. C., La Paz, Mexico
| | - Gabriela Olmedo-Álvarez
- Centro de Investigación y de Estudios Avanzado del Instituto Politécnico Nacional, Unidad Irapuato, Mexico
| |
Collapse
|
5
|
Arbulu S, Kjos M. Revisiting the Multifaceted Roles of Bacteriocins : The Multifaceted Roles of Bacteriocins. MICROBIAL ECOLOGY 2024; 87:41. [PMID: 38351266 PMCID: PMC10864542 DOI: 10.1007/s00248-024-02357-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
Bacteriocins are gene-encoded antimicrobial peptides produced by bacteria. These peptides are heterogeneous in terms of structure, antimicrobial activities, biosynthetic clusters, and regulatory mechanisms. Bacteriocins are widespread in nature and may contribute to microbial diversity due to their capacity to target specific bacteria. Primarily studied as food preservatives and therapeutic agents, their function in natural settings is however less known. This review emphasizes the ecological significance of bacteriocins as multifunctional peptides by exploring bacteriocin distribution, mobility, and their impact on bacterial population dynamics and biofilms.
Collapse
Affiliation(s)
- Sara Arbulu
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
6
|
Travers-Cook TJ, Jokela J, Buser CC. The evolutionary ecology of fungal killer phenotypes. Proc Biol Sci 2023; 290:20231108. [PMID: 37583325 PMCID: PMC10427833 DOI: 10.1098/rspb.2023.1108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
Ecological interactions influence evolutionary dynamics by selecting upon fitness variation within species. Antagonistic interactions often promote genetic and species diversity, despite the inherently suppressive effect they can have on the species experiencing them. A central aim of evolutionary ecology is to understand how diversity is maintained in systems experiencing antagonism. In this review, we address how certain single-celled and dimorphic fungi have evolved allelopathic killer phenotypes that engage in antagonistic interactions. We discuss the evolutionary pathways to the production of lethal toxins, the functions of killer phenotypes and the consequences of competition for toxin producers, their competitors and toxin-encoding endosymbionts. Killer phenotypes are powerful models because many appear to have evolved independently, enabling across-phylogeny comparisons of the origins, functions and consequences of allelopathic antagonism. Killer phenotypes can eliminate host competitors and influence evolutionary dynamics, yet the evolutionary ecology of killer phenotypes remains largely unknown. We discuss what is known and what remains to be ascertained about killer phenotype ecology and evolution, while bringing their model system properties to the reader's attention.
Collapse
Affiliation(s)
- Thomas J. Travers-Cook
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Jukka Jokela
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| | - Claudia C. Buser
- Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag, Dübendorf, Switzerland
| |
Collapse
|
7
|
Heiman CM, Maurhofer M, Calderon S, Dupasquier M, Marquis J, Keel C, Vacheron J. Pivotal role of O-antigenic polysaccharide display in the sensitivity against phage tail-like particles in environmental Pseudomonas kin competition. THE ISME JOURNAL 2022; 16:1683-1693. [PMID: 35273372 PMCID: PMC9213528 DOI: 10.1038/s41396-022-01217-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/09/2022]
Abstract
AbstractEnvironmental pseudomonads colonize various niches including insect and plant environments. When invading these environments, bacteria are confronted with the resident microbiota. To oppose with closely related strains, they rely on narrow-spectrum weaponry such as tailocins, i.e., phage tail-like particles. Little is known about the receptors for these tailocins especially among phylogenetically closely related species. Here, we studied the interaction between an R-tailocin from Pseudomonas protegens CHA0 and a targeted kin, Pseudomonas protegens Pf-5. Using genome-wide transposon insertion sequencing, we identified that lipopolysaccharides are involved in the sensitivity of Pf-5 towards the tailocin of CHA0. By generating Pf-5 lipopolysaccharide mutants and exposing them to extracted tailocin, we specified the two O-antigenic polysaccharides (O-PS) targeted by the tailocin. We affirmed the role of these O-PS through competition assays in vitro as well as in insects. Further, we demonstrate that O-PS are double-edge swords that are responsible for the sensitivity of P. protegens towards tailocins and phages produced by their kin, but shield bacteria from the immune system of the insect. Our results shed light on the trade-off that bacteria are confronted with, where specific O-PS decorations can both be of benefit or disadvantage depending on the host environment and its bacterial inhabitants.
Collapse
|
8
|
Sévellec Y, Ascencio E, Douarre PE, Félix B, Gal L, Garmyn D, Guillier L, Piveteau P, Roussel S. Listeria monocytogenes: Investigation of Fitness in Soil Does Not Support the Relevance of Ecotypes. Front Microbiol 2022; 13:917588. [PMID: 35770178 PMCID: PMC9234652 DOI: 10.3389/fmicb.2022.917588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Listeria monocytogenes (Lm) is a ubiquitous bacterium that causes the serious foodborne illness listeriosis. Although soil is a primary reservoir and a central habitat for Lm, little information is available on the genetic features underlying the fitness of Lm strains in this complex habitat. The aim of this study was to identify (i) correlations between the strains fitness in soil, their origin and their phylogenetic position (ii) identify genetic markers allowing Lm to survive in the soil. To this end, we assembled a balanced panel of 216 Lm strains isolated from three major ecological compartments (outdoor environment, animal hosts, and food) and from 33 clonal complexes occurring worldwide. The ability of the 216 strains to survive in soil was tested phenotypically. Hierarchical clustering identified three phenotypic groups according to the survival rate (SR): phenotype 1 “poor survivors” (SR < 2%), phenotype 2 “moderate survivors” (2% < SR < 5%) and phenotype 3 “good survivors” (SR > 5%). Survival in soil depended neither on strains’ origin nor on their phylogenetic position. Genome-wide-association studies demonstrated that a greater number of genes specifically associated with a good survival in soil was found in lineage II strains (57 genes) than in lineage I strains (28 genes). Soil fitness was mainly associated with variations in genes (i) coding membrane proteins, transcription regulators, and stress resistance genes in both lineages (ii) coding proteins related to motility and (iii) of the category “phage-related genes.” The cumulative effect of these small genomic variations resulted in significant increase of soil fitness.
Collapse
Affiliation(s)
- Yann Sévellec
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Eliette Ascencio
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Pierre-Emmanuel Douarre
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Benjamin Félix
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
| | - Laurent Gal
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Dominique Garmyn
- Agroecologie, AgroSup Dijon, INRAE, Bourgogne Franche-Comté University, Dijon, France
| | - Laurent Guillier
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), University of Paris-Est, Maisons-Alfort, France
| | | | - Sophie Roussel
- Maisons-Alfort Laboratory for Food Safety, Salmonella and Listeria Unit, University of Paris-Est, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maisons-Alfort, France
- *Correspondence: Sophie Roussel,
| |
Collapse
|
9
|
Snopková K, Dufková K, Chamrád I, Lenobel R, Čejková D, Kosina M, Hrala M, Holá V, Sedláček I, Šmajs D. Pyocin-mediated antagonistic interactions in Pseudomonas spp. isolated in James Ross Island, Antarctica. Environ Microbiol 2021; 24:1294-1307. [PMID: 34735036 DOI: 10.1111/1462-2920.15809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/15/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
Interactions within bacterial communities are frequently mediated by the production of antimicrobial agents. Despite the increasing interest in research of new antimicrobials, studies describing antagonistic interactions among cold-adapted microorganisms are still rare. Our study assessed the antimicrobial interactions of 36 Antarctic Pseudomonas spp. and described the genetic background of these interactions in selected strains. The overall bacteriocinogeny was greater compared to mesophilic Pseudomonas non-aeruginosa species. R-type tailocins were detected on transmission electron micrographs in 16 strains (44.4%); phylogenetic analysis of the corresponding gene clusters revealed that the P. prosekii CCM 8878 tailocin was related to the Rp3 group, whereas the tailocin in Pseudomonas sp. CCM 8880 to the Rp4 group. Soluble antimicrobials were produced by eight strains (22.-2%); gene mining found pyocin L homologues in the genomes of P. prosekii CCM 8881 and CCM 8879 and pyocin S9-like homologues in P. prosekii CCM 8881 and Pseudomonas sp. CCM 8880. Analysis of secretomes confirmed the production of all S- and L-type pyocin genes. Our results suggest that bacteriocin-based inhibition plays an important role in interactions among Antarctic soil bacteria, and these native, cold-adapted microorganisms could be a promising source of new antimicrobials.
Collapse
Affiliation(s)
- Kateřina Snopková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Kristýna Dufková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc-Holice, 779 00, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 241/27, Olomouc-Holice, 779 00, Czech Republic
| | - Darina Čejková
- Veterinary Research Institute, Hudcova 296/70, Brno, 621 00, Czech Republic
| | - Marcel Kosina
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Matěj Hrala
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Veronika Holá
- Faculty of Medicine, Institute for Microbiology, Masaryk University and St. Anne's University Hospital Brno, Pekařská 664/53, Brno, 656 91, Czech Republic
| | - Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| |
Collapse
|
10
|
Peterson SB, Bertolli SK, Mougous JD. The Central Role of Interbacterial Antagonism in Bacterial Life. Curr Biol 2021; 30:R1203-R1214. [PMID: 33022265 DOI: 10.1016/j.cub.2020.06.103] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The study of bacteria interacting with their environment has historically centered on strategies for obtaining nutrients and resisting abiotic stresses. We argue this focus has deemphasized a third facet of bacterial life that is equally central to their existence: namely, the threat to survival posed by antagonizing bacteria. The diversity and ubiquity of interbacterial antagonism pathways is becoming increasingly apparent, and the insidious manner by which interbacterial toxins disarm their targets emphasizes the highly evolved nature of these processes. Studies examining the role of antagonism in natural communities reveal it can serve many functions, from facilitating colonization of naïve habitats to maintaining bacterial community stability. The pervasiveness of antagonistic pathways is necessarily matched by an equally extensive array of defense strategies. These overlap with well characterized, central stress response pathways, highlighting the contribution of bacterial interactions to shaping cell physiology. In this review, we build the case for the ubiquity and importance of interbacterial antagonism.
Collapse
Affiliation(s)
- S Brook Peterson
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Savannah K Bertolli
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Joseph D Mougous
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
11
|
Butaitė E, Kramer J, Kümmerli R. Local adaptation, geographical distance and phylogenetic relatedness: Assessing the drivers of siderophore-mediated social interactions in natural bacterial communities. J Evol Biol 2021; 34:1266-1278. [PMID: 34101930 PMCID: PMC8453950 DOI: 10.1111/jeb.13883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/21/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
In heterogenous, spatially structured habitats, individuals within populations can become adapted to the prevailing conditions in their local environment. Such local adaptation has been reported for animals and plants, and for pathogens adapting to hosts. There is increasing interest in applying the concept of local adaptation to microbial populations, especially in the context of microbe-microbe interactions. Here, we tested whether cooperation and cheating on cooperation can spur patterns of local adaptation in soil and pond communities of Pseudomonas bacteria, collected across a geographical scale of 0.5 to 50 m. We focussed on the production of pyoverdines, a group of secreted iron-scavenging siderophores that often differ among pseudomonads in their chemical structure and the receptor required for their uptake. A combination of supernatant-feeding and competition assays between isolates from four distance categories revealed tremendous variation in the extent to which pyoverdine non- and low-producers can benefit from pyoverdines secreted by producers. However, this variation was not explained by geographical distance, but primarily depended on the phylogenetic relatedness between interacting isolates. A notable exception occurred in local pond communities, where the effect of phylogenetic relatedness was eroded in supernatant assays, probably due to the horizontal transfer of receptor genes. While the latter result could be a signature of local adaptation, our results overall indicate that common ancestry and not geographical distance is the main predictor of siderophore-mediated social interactions among pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
Absence of 4-Formylaminooxyvinylglycine Production by Pseudomonas fluorescens WH6 Results in Resource Reallocation from Secondary Metabolite Production to Rhizocompetence. Microorganisms 2021; 9:microorganisms9040717. [PMID: 33807194 PMCID: PMC8067088 DOI: 10.3390/microorganisms9040717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fluorescens WH6 produces the non-proteinogenic amino acid 4-formylaminooxyvinylglycine (FVG), a secondary metabolite with antibacterial and pre-emergent herbicidal activities. The gvg operon necessary for FVG production encodes eight required genes: one regulatory (gvgR), two of unknown functional potential (gvgA and C), three with putative biosynthetic function (gvgF, H, and I), and two small ORFs (gvgB and G). To gain insight into the role of GvgA and C in FVG production, we compared the transcriptome of knockout (KO) mutants of gvgR, A, and C to wild type (WT) to test two hypotheses: (1) GvgA and GvgC play a regulatory role in FVG production and (2) non-gvg cluster genes are regulated by GvgA and GvgC. Our analyses show that, collectively, 687 genes, including the gvg operon, are differentially expressed in all KO strains versus WT, representing >10% of the genome. Fifty-one percent of these genes were similarly regulated in all KO strains with GvgC having the greatest number of uniquely regulated genes. Additional transcriptome data suggest cluster regulation through feedback of a cluster product. We also discovered that FVG biosynthesis is regulated by L-glu, L-asp, L-gln, and L-asn and that resources are reallocated in KO strains to increase phenotypes involved in rhizocompetence including motility, biofilm formation, and denitrification. Altogether, differential transcriptome analyses of mutants suggest that regulation of the cluster is multifaceted and the absence of FVG production or its downregulation can dramatically shift the lifestyle of WH6.
Collapse
|
13
|
Hahne J, Lipski A. Growth interferences between bacterial strains from raw cow's milk and their impact on growth of Listeria monocytogenes and Staphylococcus aureus. J Appl Microbiol 2021; 131:2019-2032. [PMID: 33660914 DOI: 10.1111/jam.15056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/19/2021] [Accepted: 03/02/2021] [Indexed: 01/30/2023]
Abstract
AIMS The purpose of this study was to detect growth enhancing or inhibiting activity between bacterial populations from raw milk under different conditions (temperature, medium). METHODS AND RESULTS The interference of 24 raw milk isolates on growth of each other and on Listeria monocytogenes, Staphylococcus aureus, Bacillus subtilis and Micrococcus luteus was screened by drop assay and for selected pairs in co-cultivation experiments. By drop assay, antibacterial activity was observed for 40% of the strains. About 30% of the strains showed growth-enhancing activity on other strains. Most of the isolates were well adapted to cold temperatures and showed consistent or even increased inhibiting or enhancing effects on growth of other strains at 10°C. The growth of L. monocytogenes DSM 20600T and S. aureus DSM 1104T was significantly (P < 0·05) reduced in co-cultivation with Pseudomonas protegens JZ R-192. CONCLUSIONS Growth interferences between bacterial populations have an impact on the structure of raw milk microbiota, especially when it develops under cold storage, and it may have an effect on the prevalence of certain foodborne pathogens. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates growth-inhibiting and also growth-enhancing interactions between raw milk bacteria, which must be considered when predicting bacterial growth and spoilage in food. A Ps. protegens strain isolated from raw milk showed an antagonistic effect on growth of L. monocytogenes in refrigerated raw milk.
Collapse
Affiliation(s)
- J Hahne
- Department of Food Microbiology and Hygiene, Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| | - A Lipski
- Department of Food Microbiology and Hygiene, Institute of Nutritional and Food Science, University of Bonn, Bonn, Germany
| |
Collapse
|
14
|
Loss of Motility as a Non-Lethal Mechanism for Intercolony Inhibition ("Sibling Rivalry") in Marinobacter. Microorganisms 2021; 9:microorganisms9010103. [PMID: 33466273 PMCID: PMC7824750 DOI: 10.3390/microorganisms9010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022] Open
Abstract
Bacteria from the genus Marinobacter are ubiquitous throughout the worlds' oceans as "opportunitrophs" capable of surviving a wide range of conditions, including colonization of surfaces of marine snow and algae. To prevent too many bacteria from occupying this ecological niche simultaneously, some sort of population dependent control must be operative. Here, we show that while Marinobacter do not produce or utilize an acylhomoserine lactone (AHL)-based quorum sensing system, "sibling" colonies of many species of Marinobacter exhibit a form of non-lethal chemical communication that prevents colonies from overrunning each other's niche space. Evidence suggests that this inhibition is the result of a loss in motility for cells at the colony interfaces. Although not the signal itself, we have identified a protein, glycerophosphoryl diester phosphodiesterase, that is enriched in the inhibition zone between the spreading colonies that may be part of the overall response.
Collapse
|
15
|
Lakshmanan R, Kalaimurugan D, Sivasankar P, Arokiyaraj S, Venkatesan S. Identification and characterization of Pseudomonas aeruginosa derived bacteriocin for industrial applications. Int J Biol Macromol 2020; 165:2412-2418. [PMID: 33132130 DOI: 10.1016/j.ijbiomac.2020.10.126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 10/11/2020] [Accepted: 10/14/2020] [Indexed: 11/19/2022]
Abstract
Drug resistance has become a major threat due to the frequent use of commercial antibiotics and there is an urgent need to combat this problem. Having this in mind, the present research was aimed at developing a novel P. aeruginosa puBac bacteriocin molecule. The bacteriocin was purified by ammonium sulfate precipitation followed by Sepharose FF and Sephadex G15 column purification and the purified bacteriocin has been reported to have the molar mass of 43 kDa. The findings of the optimization showed that 3500 AU/mL of bacteriocin was obtained at 37 °C, 3410 AU/mL of bacteriocin at 6.5 pH and 3780 AU/mL of bacteriocin at 48 h of incubation time. In addition, 3863 AU/mL of bacteriocin activity was obtained with Tween-80 followed by 3789 AU/mL with a concentration of 2% NaCl and 4200 AU/mL for Fe2+. PuBac bacteriocin has been shown to have a significant effect on test pathogens. For example, E. coli was found to have 3.6 μM of MIC, followed by Staphylococcus sp. with 6.15 μM of MIC and Bacillus sp. with a 7.5 μM of MIC. The remarkable properties of bacteriocin suggest that it could be used in various pharmaceutical and food industries.
Collapse
Affiliation(s)
- Ramasamy Lakshmanan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Dharman Kalaimurugan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Palaniappan Sivasankar
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India
| | - Selvaraj Arokiyaraj
- Department of Food Science and Biotechnology, Sejong University, Republic of Korea
| | - Srinivasan Venkatesan
- Department of Environmental Science, School of Life Sciences, Periyar University, Salem 636011, Tamil Nadu, India.
| |
Collapse
|
16
|
Zboralski A, Filion M. Genetic factors involved in rhizosphere colonization by phytobeneficial Pseudomonas spp. Comput Struct Biotechnol J 2020; 18:3539-3554. [PMID: 33304453 PMCID: PMC7711191 DOI: 10.1016/j.csbj.2020.11.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Plant growth-promoting rhizobacteria (PGPR) actively colonize the soil portion under the influence of plant roots, called the rhizosphere. Many plant-beneficial Pseudomonas spp. have been characterized as PGPR. They are ubiquitous rod-shaped motile Gram-negative bacteria displaying a high metabolic versatility. Their capacity to protect plants from pathogens and improve plant growth closely depends on their rhizosphere colonization abilities. Various molecular and cellular mechanisms are involved in this complex process, such as chemotaxis, biofilm formation, secondary metabolites biosynthesis, metabolic versatility, and evasion of plant immunity. The burst in Pseudomonas spp. genome sequencing in recent years has been crucial to better understand how they colonize the rhizosphere. In this review, we discuss the recent advances regarding these mechanisms and the underlying bacterial genetic factors required for successful rhizosphere colonization.
Collapse
Affiliation(s)
- Antoine Zboralski
- Department of Biology, Université de Moncton, Moncton, NB E1A 3E9, Canada
| | - Martin Filion
- Research and Development Centre, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| |
Collapse
|
17
|
Mojesky AA, Remold SK. Spatial structure maintains diversity of pyocin inhibition in household Pseudomonas aeruginosa. Proc Biol Sci 2020; 287:20201706. [PMID: 33143580 PMCID: PMC7735282 DOI: 10.1098/rspb.2020.1706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nearly all bacteria produce narrow-spectrum antibiotics called bacteriocins. Studies have shown that bacteriocins can mediate microbial interactions, but the mechanisms underlying patterns of inhibition are less well understood. We assembled a spatially structured collection of isolates of Pseudomonas aeruginosa from bathroom and kitchen sink drains in nine households. Growth inhibition of these P. aeruginosa by bacteriocins, known as pyocins in this species, was measured using pairwise inhibition assays. Carbon source usage of these isolates was measured, and genetic distance was estimated using multilocus sequencing. We found that as the distance between sites of isolation increased, there was a significantly higher probability of inhibition, and that pyocin inhibition and susceptibility vary greatly among isolates collected from different houses. We also detected support for other mechanisms influencing diversity: inhibition outcomes were influenced by the type of drain from which isolates were collected, and while we found no indication that carbon source utilization influences inhibition, inhibition was favoured at an intermediate genetic distance. Overall, these results suggest that the combined effects of dispersal limitation among sites and competitive exclusion within them maintain diversity in pyocin inhibition and susceptibility phenotypes, and that additional processes such as local adaptation and effects of phylogenetic distance could further contribute to spatial variability.
Collapse
Affiliation(s)
- Aubrey A Mojesky
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Susanna K Remold
- Department of Biology, University of Louisville, Louisville, KY, USA.,Department of Biological Sciences, University of Massachusetts, Lowell, MA, USA
| |
Collapse
|
18
|
Abstract
Bacteria have evolved a wide range of mechanisms to harm and kill their competitors, including chemical, mechanical and biological weapons. Here we review the incredible diversity of bacterial weapon systems, which comprise antibiotics, toxic proteins, mechanical weapons that stab and pierce, viruses, and more. The evolution of bacterial weapons is shaped by many factors, including cell density and nutrient abundance, and how strains are arranged in space. Bacteria also employ a diverse range of combat behaviours, including pre-emptive attacks, suicidal attacks, and reciprocation (tit-for-tat). However, why bacteria carry so many weapons, and why they are so often used, remains poorly understood. By comparison with animals, we argue that the way that bacteria live - often in dense and genetically diverse communities - is likely to be key to their aggression as it encourages them to dig in and fight alongside their clonemates. The intensity of bacterial aggression is such that it can strongly affect communities, via complex coevolutionary and eco-evolutionary dynamics, which influence species over space and time. Bacterial warfare is a fascinating topic for ecology and evolution, as well as one of increasing relevance. Understanding how bacteria win wars is important for the goal of manipulating the human microbiome and other important microbial systems.
Collapse
|
19
|
Cauchie E, Delhalle L, Baré G, Tahiri A, Taminiau B, Korsak N, Burteau S, Fall PA, Farnir F, Daube G. Modeling the Growth and Interaction Between Brochothrix thermosphacta, Pseudomonas spp., and Leuconostoc gelidum in Minced Pork Samples. Front Microbiol 2020; 11:639. [PMID: 32328055 PMCID: PMC7160237 DOI: 10.3389/fmicb.2020.00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/20/2020] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to obtain the growth parameters of specific spoilage micro-organisms previously isolated in minced pork (MP) samples and to develop a three-spoilage species interaction model under different storage conditions. Naturally contaminated samples were used to validate this approach by considering the effect of the food microbiota. Three groups of bacteria were inoculated on irradiated samples, in mono- and in co-culture experiments (n = 1152): Brochothrix thermosphacta, Leuconostoc gelidum, and Pseudomonas spp. (Pseudomonas fluorescens and Pseudomonas fragi). Samples were stored in two food packaging [food wrap and modified atmosphere packaging (CO2 30%/O2 70%)] at three isothermal conditions (4, 8, and 12°C). Analysis was carried out by using both 16S rRNA gene amplicon sequencing and classical microbiology in order to estimate bacterial counts during the storage period. Growth parameters were obtained by fitting primary (Baranyi) and secondary (square root) models. The food packaging shows the highest impact on bacterial growth rates, which in turn have the strongest influence on the shelf life of food products. Based on these results, a three-spoilage species interaction model was developed by using the modified Jameson-effect model and the Lotka Volterra (prey-predator) model. The modified Jameson-effect model showed slightly better performances, with 40-86% out of the observed counts falling into the Acceptable Simulation Zone (ASZ). It only concerns 14-48% for the prey-predator approach. These results can be explained by the fact that the dynamics of experimental and validation datasets seems to follow a Jameson behavior. On the other hand, the Lotka Volterra model is based on complex interaction factors, which are included in highly variable intervals. More datasets are probably needed to obtained reliable factors, and so better model fittings, especially for three- or more-spoilage species interaction models. Further studies are also needed to better understand the interaction of spoilage bacteria between them and in the presence of natural microbiota.
Collapse
Affiliation(s)
- Emilie Cauchie
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Laurent Delhalle
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Ghislain Baré
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Assia Tahiri
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Bernard Taminiau
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Nicolas Korsak
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | | | | | - Frédéric Farnir
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Georges Daube
- Department of Food Sciences, Fundamental and Applied Research for Animal and Health, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
20
|
Schlatter DC, Paul NC, Shah DH, Schillinger WF, Bary AI, Sharratt B, Paulitz TC. Biosolids and Tillage Practices Influence Soil Bacterial Communities in Dryland Wheat. MICROBIAL ECOLOGY 2019; 78:737-752. [PMID: 30796467 DOI: 10.1007/s00248-019-01339-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Class B biosolids are used in dryland wheat (Triticum aestivum L.) production in eastern Washington as a source of nutrients and to increase soil organic matter, but little is known about their effects on bacterial communities and potential for harboring human pathogens. Moreover, conservation tillage is promoted to reduce erosion and soil degradation. We explored the impacts of biosolids or synthetic fertilizer in combination with traditional (conventional) or conservation tillage on soil bacterial communities. Bacterial communities were characterized from fresh biosolids, biosolid aggregates embedded in soil, and soil after a second application of biosolids using high-throughput amplicon sequencing. Biosolid application significantly affected bacterial communities, even 4 years after their application. Bacteria in the families Clostridiaceae, Norcardiaceae, Anaerolinaceae, Dietziaceae, and Planococcaceae were more abundant in fresh biosolids, biosolid aggregates, and soils treated with biosolids than in synthetically fertilized soils. Taxa identified as Turcibacter, Dietzia, Clostridiaceae, and Anaerolineaceae were highly abundant in biosolid aggregates in the soil and likely originated from the biosolids. In contrast, Oxalobacteriaceae, Streptomyceteaceae, Janthinobacterium, Pseudomonas, Kribbella, and Bacillus were rare in the fresh biosolids, but relatively abundant in biosolid aggregates in the soil, and probably originated from the soil to colonize the substrate. However, tillage had relatively minor effects on bacterial communities, with only a small number of taxa differing in relative abundance between traditional and conventional tillage. Although biosolid-associated bacteria persisted in soil, potentially pathogenic taxa were extremely rare and no toxin genes for key groups (Salmonella, Clostridium) were detectable, suggesting that although fecal contamination was apparent via indicator taxa, pathogen populations had declined to low levels. Thus, biosolid amendments had profound effects on soil bacterial communities both by introducing gut- or digester-derived bacteria and by enriching potentially beneficial indigenous soil populations.
Collapse
Affiliation(s)
- Daniel C Schlatter
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Narayan C Paul
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Devendra H Shah
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - William F Schillinger
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Andy I Bary
- Puyallup Research and Extension Center, Washington State University, Puyallup, WA, 98371, USA
| | - Brenton Sharratt
- Northwest Sustainable Agroecosystems Research Unit, USDA-ARS, Pullman, WA, 99164, USA
| | - Timothy C Paulitz
- Wheat Health, Genetics and Quality Research Unit, USDA-ARS, Pullman, WA, 99164, USA.
| |
Collapse
|
21
|
Boynton PJ. The ecology of killer yeasts: Interference competition in natural habitats. Yeast 2019; 36:473-485. [PMID: 31050852 DOI: 10.1002/yea.3398] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 12/31/2022] Open
Abstract
Killer yeasts are ubiquitous in the environment: They have been found in diverse habitats ranging from ocean sediment to decaying cacti to insect bodies and on all continents including Antarctica. However, environmental killer yeasts are poorly studied compared with laboratory and domesticated killer yeasts. Killer yeasts secrete so-called killer toxins that inhibit nearby sensitive yeasts, and the toxins are frequently assumed to be tools for interference competition in diverse yeast communities. The diversity and ubiquity of killer yeasts imply that interference competition is crucial for shaping yeast communities. Additionally, these toxins may have ecological functions beyond use in interference competition. This review introduces readers to killer yeasts in environmental systems, with a focus on what is and is not known about their ecology and evolution. It also explores how results from experimental killer systems in laboratories can be extended to understand how competitive strategies shape yeast communities in nature. Overall, killer yeasts are likely to occur everywhere yeasts are found, and the killer phenotype has the potential to radically shape yeast diversity in nature.
Collapse
Affiliation(s)
- Primrose J Boynton
- Max-Planck Institute for Evolutionary Biology, Environmental Genomics Group, Plön, Germany
| |
Collapse
|
22
|
Nelkner J, Henke C, Lin TW, Pätzold W, Hassa J, Jaenicke S, Grosch R, Pühler A, Sczyrba A, Schlüter A. Effect of Long-Term Farming Practices on Agricultural Soil Microbiome Members Represented by Metagenomically Assembled Genomes (MAGs) and Their Predicted Plant-Beneficial Genes. Genes (Basel) 2019; 10:E424. [PMID: 31163637 PMCID: PMC6627896 DOI: 10.3390/genes10060424] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 11/24/2022] Open
Abstract
To follow the hypothesis that agricultural management practices affect structure and function of the soil microbiome regarding soil health and plant-beneficial traits, high-throughput (HT) metagenome analyses were performed on Chernozem soil samples from a long-term field experiment designated LTE-1 carried out at Bernburg-Strenzfeld (Saxony-Anhalt, Germany). Metagenomic DNA was extracted from soil samples representing the following treatments: (i) plough tillage with standard nitrogen fertilization and use of fungicides and growth regulators, (ii) plough tillage with reduced nitrogen fertilization (50%), (iii) cultivator tillage with standard nitrogen fertilization and use of fungicides and growth regulators, and (iv) cultivator tillage with reduced nitrogen fertilization (50%). Bulk soil (BS), as well as root-affected soil (RS), were considered for all treatments in replicates. HT-sequencing of metagenomic DNA yielded approx. 100 Giga bases (Gb) of sequence information. Taxonomic profiling of soil communities revealed the presence of 70 phyla, whereby Proteobacteria, Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Thaumarchaeota, Firmicutes, Verrucomicrobia and Chloroflexi feature abundances of more than 1%. Functional microbiome profiling uncovered, i.a., numerous potential plant-beneficial, plant-growth-promoting and biocontrol traits predicted to be involved in nutrient provision, phytohormone synthesis, antagonism against pathogens and signal molecule synthesis relevant in microbe-plant interaction. Neither taxonomic nor functional microbiome profiling based on single-read analyses revealed pronounced differences regarding the farming practices applied. Soil metagenome sequences were assembled and taxonomically binned. The ten most reliable and abundant Metagenomically Assembled Genomes (MAGs) were taxonomically classified and metabolically reconstructed. Importance of the phylum Thaumarchaeota for the analyzed microbiome is corroborated by the fact that the four corresponding MAGs were predicted to oxidize ammonia (nitrification), thus contributing to the cycling of nitrogen, and in addition are most probably able to fix carbon dioxide. Moreover, Thaumarchaeota and several bacterial MAGs also possess genes with predicted functions in plant-growth-promotion. Abundances of certain MAGs (species resolution level) responded to the tillage practice, whereas the factors compartment (BS vs. RS) and nitrogen fertilization only marginally shaped MAG abundance profiles. Hence, soil management regimes promoting plant-beneficial microbiome members are very likely advantageous for the respective agrosystem, its health and carbon sequestration and accordingly may enhance plant productivity. Since Chernozem soils are highly fertile, corresponding microbiome data represent a valuable reference resource for agronomy in general.
Collapse
Affiliation(s)
- Johanna Nelkner
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Christian Henke
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Timo Wentong Lin
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Wiebke Pätzold
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Sebastian Jaenicke
- Justus-Liebig-University Gießen, Bioinformatics & Systems Biology, Heinrich-Buff-Ring 58, 35392 Gießen, Germany.
| | - Rita Grosch
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ) Großbeeren/Erfurt eV, Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany.
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Computational Metagenomics Group, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
23
|
Butaitė E, Kramer J, Wyder S, Kümmerli R. Environmental determinants of pyoverdine production, exploitation and competition in natural Pseudomonas communities. Environ Microbiol 2018; 20:3629-3642. [PMID: 30003663 DOI: 10.1111/1462-2920.14355] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 11/28/2022]
Abstract
Many bacteria rely on the secretion of siderophores to scavenge iron from the environment. Laboratory studies revealed that abiotic and biotic factors together determine how much siderophores bacteria make, and whether siderophores can be exploited by non-producing cheaters or be deployed by producers to inhibit competitors. Here, we explore whether these insights apply to natural communities, by comparing the production of the siderophore pyoverdine among 930 Pseudomonas strains from 48 soil and pond communities. We found that pH, iron content, carbon concentration and community diversity determine pyoverdine production levels, and the extent to which strains are either stimulated or inhibited by heterologous (non-self) pyoverdines. While pyoverdine non-producers occurred in both habitats, their prevalence was higher in soils. Environmental and genetic analyses suggest that non-producers can evolve as cheaters, exploiting heterologous pyoverdine, but also due to pyoverdine disuse in environments with increased iron availability. Overall, we found that environmental factors explained between-strain variation in pyoverdine production much better in soils than in ponds, presumably because high strain mixing in ponds impedes local adaption. Our study sheds light on the complexity of natural bacterial communities, and provides first insights into the multivariate nature of siderophore-based iron acquisition and competition among environmental pseudomonads.
Collapse
Affiliation(s)
- Elena Butaitė
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Jos Kramer
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Stefan Wyder
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Smith A, Moorhouse E, Monaghan J, Taylor C, Singleton I. Sources and survival of Listeria monocytogenes on fresh, leafy produce. J Appl Microbiol 2018; 125:930-942. [PMID: 30039586 DOI: 10.1111/jam.14025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/26/2022]
Abstract
Listeria monocytogenes is an intracellular human pathogen which enters the body through contaminated food stuffs and is known to contaminate fresh leafy produce such as spinach, lettuce and rocket. Routinely, fresh leafy produce is grown and processed on a large scale before reaching the consumer through various products such as sandwiches and prepared salads. From farm to fork, the fresh leafy produce supply chain (FLPSC) is complex and contains a diverse range of environments where L. monocytogenes is sporadically detected during routine sampling of produce and processing areas. This review describes sources of the bacteria in the FLPSC and outlines the physiological and molecular mechanisms behind its survival in the different environments associated with growing and processing fresh produce. Finally, current methods of source tracking the bacteria in the context of the food supply chain are discussed with emphasis on how these methods can provide additional, valuable information on the risk that L. monocytogenes isolates pose to the consumer.
Collapse
Affiliation(s)
- A Smith
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | | | - J Monaghan
- Crop and Environment Sciences, Harper Adams University, Newport, UK
| | - C Taylor
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - I Singleton
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| |
Collapse
|
25
|
Abstract
Lectin-like bacteriocins (LlpAs) are secreted by proteobacteria and selectively kill strains of their own or related species, and they are composed of two B-lectin domains with divergent sequences. In Pseudomonas spp., initial binding of these antibacterial proteins to cells is mediated by the carboxy-terminal domain through d-rhamnose residues present in the common polysaccharide antigen of their lipopolysaccharide, whereas the amino-terminal domain accounts for strain selectivity of killing. Here, we show that spontaneous LlpA-resistant mutants carry mutations in one of three surface-exposed moieties of the essential β-barrel outer membrane protein insertase BamA, the core component of the BAM complex. Polymorphism of this loop in different Pseudomonas groups is linked to LlpA susceptibility, and targeted cells all share the same signature motif in this loop. Since heterologous expression of such a bamA gene confers LlpA susceptibility upon a resistant strain, BamA represents the primary bacteriocin selectivity determinant in pseudomonads. Contrary to modular bacteriocins that require uptake via the Tol or Ton system, parasitism of BamA as an LlpA receptor advocates a novel bacteriocin killing mechanism initiated by impairment of the BAM machinery. Bacteria secrete a variety of molecules to eliminate microbial rivals. Bacteriocins are a pivotal group of peptides and proteins that assist in this fight, specifically killing related bacteria. In Gram-negative bacteria, these antibacterial proteins often comprise distinct domains for initial binding to a target cell’s surface and subsequent killing via enzymatic or pore-forming activity. Here, we show that lectin-like bacteriocins, a family of bacteriocins that lack the prototypical modular toxin architecture, also stand out by parasitizing BamA, the core component of the outer membrane protein assembly machinery. A particular surface-exposed loop of BamA, critical for its function, serves as a key discriminant for cellular recognition, and polymorphisms in this loop determine whether a strain is susceptible or immune to a particular bacteriocin. These findings suggest a novel mechanism of contact-dependent killing that does not require cellular uptake. The evolutionary advantage of piracy of an essential cellular compound is highlighted by the observation that contact-dependent growth inhibition, a distinct antagonistic system, can equally take advantage of this receptor.
Collapse
|
26
|
Lopes LD, Davis EW, Pereira E Silva MDC, Weisberg AJ, Bresciani L, Chang JH, Loper JE, Andreote FD. Tropical soils are a reservoir for fluorescent Pseudomonas spp. biodiversity. Environ Microbiol 2017; 20:62-74. [PMID: 29027341 DOI: 10.1111/1462-2920.13957] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Fluorescent Pseudomonas spp. are widely studied for their beneficial activities to plants. To explore the genetic diversity of Pseudomonas spp. in tropical regions, we collected 76 isolates from a Brazilian soil. Genomes were sequenced and compared to known strains, mostly collected from temperate regions. Phylogenetic analyses classified the isolates in the P. fluorescens (57) and P. putida (19) groups. Among the isolates in the P. fluorescens group, most (37) were classified in the P. koreensis subgroup and two in the P. jessenii subgroup. The remaining 18 isolates fell into two phylogenetic subclades distinct from currently recognized P. fluorescens subgroups, and probably represent new subgroups. Consistent with their phylogenetic distance from described subgroups, the genome sequences of strains in these subclades are asyntenous to the genome sequences of members of their neighbour subgroups. The tropical isolates have several functional genes also present in known fluorescent Pseudomonas spp. strains. However, members of the new subclades share exclusive genes not detected in other subgroups, pointing to the potential for novel functions. Additionally, we identified 12 potential new species among the 76 isolates from the tropical soil. The unexplored diversity found in the tropical soil is possibly related to biogeographical patterns.
Collapse
Affiliation(s)
- Lucas Dantas Lopes
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Michele de C Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Luana Bresciani
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Fernando D Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
27
|
Bruce JB, Cooper GA, Chabas H, West SA, Griffin AS. Cheating and resistance to cheating in natural populations of the bacteriumPseudomonas fluorescens. Evolution 2017; 71:2484-2495. [DOI: 10.1111/evo.13328] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 07/14/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Affiliation(s)
- John B. Bruce
- Department of Zoology; University of Oxford; Oxford UK
| | - Guy A. Cooper
- Department of Zoology; University of Oxford; Oxford UK
| | - Hélène Chabas
- CEFE UMR 5175, CNRS-Université de Montpellier; Université Paul-Valéry Montpellier; Montpellier Cedex 5 France
| | | | | |
Collapse
|
28
|
Kraemer SA, Soucy JPR, Kassen R. Antagonistic interactions of soil pseudomonads are structured in time. FEMS Microbiol Ecol 2017; 93:3106319. [DOI: 10.1093/femsec/fix046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/05/2017] [Indexed: 12/15/2022] Open
|