1
|
Costa RM, Alvarez-Acosta L, Curtis K, Kelleher J, Lamichhane BS, Valesano AL, Fitzsimmons WJ, Lauring AS, Seger J, Adler FR, Potts WK. Host genotype and sex shape influenza evolution and defective viral genomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.26.638946. [PMID: 40060519 PMCID: PMC11888471 DOI: 10.1101/2025.02.26.638946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Viral evolution during initial pandemic waves favors mutations that enhance replication and transmission over antigenic escape. Host genotype and sex strongly shape this early adaptation, yet their individual and combined effects remain unclear. We experimentally adapted influenza A virus to male and female BALB/c and C57BL/6 mice, generating 28 independent lineages, and employed a novel 'rolling sphere' approach to identify mutational hotspots in three-dimensional protein structures. In BALB/c mice, adaptation favored nonsynonymous substitutions linked to increased virulence, including a hemagglutinin variant exclusively fixed in female lineages. It also revealed the first demonstration of sex-dependent selection shaping a viral protein interface. In female-adapted viruses, substitutions disrupting a key NS1 dimerization motif converged on a single residue, while in male-adapted viruses, they were dispersed across the same interface. Conversely, adaptation to C57BL/6 resulted in fewer substitutions but promoted defective viral genome formation, leading to reduced cytopathic effect and attenuated virulence. This provides the first in vivo evidence that host genotype alone can modulate defective viral genome formation. Our results offer critical insights into host-pathogen interactions and reveal that selective pressures imposed by specific genotype-sex combinations can increase virulence across host genotypes, enabling new epidemiological modeling and disease control strategies.
Collapse
|
2
|
Rodríguez-Pastor R, Knossow N, Shahar N, Hasik AZ, Deatherage DE, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. Pathogen contingency loci and the evolution of host specificity: Simple sequence repeats mediate Bartonella adaptation to a wild rodent host. PLoS Pathog 2024; 20:e1012591. [PMID: 39348417 PMCID: PMC11466379 DOI: 10.1371/journal.ppat.1012591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/10/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
Parasites, including pathogens, can adapt to better exploit their hosts on many scales, ranging from within an infection of a single individual to series of infections spanning multiple host species. However, little is known about how the genomes of parasites in natural communities evolve when they face diverse hosts. We investigated how Bartonella bacteria that circulate in rodent communities in the dunes of the Negev Desert in Israel adapt to different species of rodent hosts. We propagated 15 Bartonella populations through infections of either a single host species (Gerbillus andersoni or Gerbillus pyramidum) or alternating between the two. After 20 rodent passages, strains with de novo mutations replaced the ancestor in most populations. Mutations in two mononucleotide simple sequence repeats (SSRs) that caused frameshifts in the same adhesin gene dominated the evolutionary dynamics. They appeared exclusively in populations that encountered G. andersoni and altered the dynamics of infections of this host. Similar SSRs in other genes are conserved and exhibit ON/OFF variation in Bartonella isolates from the Negev Desert dunes. Our results suggest that SSR-based contingency loci could be important not only for rapidly and reversibly generating antigenic variation to escape immune responses but that they may also mediate the evolution of host specificity.
Collapse
Affiliation(s)
- Ruth Rodríguez-Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Naama Shahar
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Adam Z. Hasik
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Daniel E. Deatherage
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Ricardo Gutiérrez
- National Reference Center for Bacteriology, Costa Rican Institute for Research and Teaching in Nutrition and Health (Inciensa), Cartago, Costa Rica
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis, West Indies
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, Center for the Study of Complex Systems, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Richard E. Lenski
- Department of Microbiology, Genetics, and Immunology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jeffrey E. Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
3
|
Castiglioni VG, Olmo-Uceda MJ, Martín S, Félix MA, González R, Elena SF. Experimental evolution of an RNA virus in Caenorhabditis elegans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105623. [PMID: 38901623 DOI: 10.1016/j.meegid.2024.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The discovery of Orsay virus (OrV), the first virus infecting wild populations of Caenorhabditis elegans, has boosted studies of viral immunity pathways in this nematode. Considering the many advantages that C. elegans offers for fundamental research in host-pathogen interactions, this pathosystem has high potential to become a model system for experimental virus evolution studies. However, the evolutionary constraints - i.e, the balance between genetic variation, selection, drift and historical contingency- operating in this pathosystem have barely been explored. Here we describe for the first time an evolution experiment of two different OrV strains in C. elegans. Comparison of the two ancestral strains showed differences in infectivity and sequence, and highlighted the importance of consistently normalize viral inocula for meaningful comparisons among strains. After 10 serial passages of evolution, we report slight changes in infectivity and non-synonymous mutations fixed in the evolved viral populations. In addition, we observed numerous minor variants emerging in the viral population. These minor variants were not randomly distributed along the genome but concentrated in polymorphic genomic regions. Overall, our work established the grounds for future experimental virus evolution studies using Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - María J Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Susana Martín
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Santa Fe Institute, Sant Fe, NM 87501, USA.
| |
Collapse
|
4
|
Rodríguez‐Pastor R, Shafran Y, Knossow N, Gutiérrez R, Harrus S, Zaman L, Lenski RE, Barrick JE, Hawlena H. A road map for in vivo evolution experiments with blood-borne parasitic microbes. Mol Ecol Resour 2022; 22:2843-2859. [PMID: 35599628 PMCID: PMC9796859 DOI: 10.1111/1755-0998.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/14/2022] [Accepted: 05/13/2022] [Indexed: 01/07/2023]
Abstract
Laboratory experiments in which blood-borne parasitic microbes evolve in their animal hosts offer an opportunity to study parasite evolution and adaptation in real time and under natural settings. The main challenge of these experiments is to establish a protocol that is both practical over multiple passages and accurately reflects natural transmission scenarios and mechanisms. We provide a guide to the steps that should be considered when designing such a protocol, and we demonstrate its use via a case study. We highlight the importance of choosing suitable ancestral genotypes, treatments, number of replicates per treatment, types of negative controls, dependent variables, covariates, and the timing of checkpoints for the experimental design. We also recommend specific preliminary experiments to determine effective methods for parasite quantification, transmission, and preservation. Although these methodological considerations are technical, they also often have conceptual implications. To this end, we encourage other researchers to design and conduct in vivo evolution experiments with blood-borne parasitic microbes, despite the challenges that the work entails.
Collapse
Affiliation(s)
- Ruth Rodríguez‐Pastor
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Yarden Shafran
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Nadav Knossow
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| | - Ricardo Gutiérrez
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Shimon Harrus
- Koret School of Veterinary Medicine, Faculty of Agricultural, Nutritional and Environmental SciencesThe Hebrew University of JerusalemRehovotIsrael
| | - Luis Zaman
- Department of Ecology and Evolutionary Biology, The Center for the Study of Complex Systems (CSCS)University of MichiganAnn ArborMichiganUSA
| | - Richard E. Lenski
- Department of Microbiology and Molecular GeneticsMichigan State UniversityEast LansingMichiganUSA
| | - Jeffrey E. Barrick
- Department of Molecular BiosciencesThe University of Texas AustinAustinTexasUSA
| | - Hadas Hawlena
- Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, The Jacob Blaustein Institutes for Desert ResearchBen‐Gurion University of the NegevMidreshet Ben‐GurionIsrael
| |
Collapse
|
5
|
Friend virus severity is associated with male mouse social status and environmental temperature. Anim Behav 2022; 187:221-231. [PMID: 35602411 PMCID: PMC9119425 DOI: 10.1016/j.anbehav.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pathogen virulence is highly variable within populations, and although many factors contributing to virulence differences are known, there is still much variation left unexplained. Identifying and characterizing environmental conditions associated with different virulence levels is therefore an important undertaking in infectious disease research. One factor considered to be a major determinant of overall health and susceptibility to disease in social animals is social status. Health differences associated with social status are thought to be caused by different levels of chronic stress in higher- versus lower-status individuals. There is considerable evidence that these effects extend to the standing immune profile and that social status directly influences susceptibility to pathogens. Here we examined the association between dominance status in male wild-derived house mice, Mus musculus, and susceptibility to Friend virus complex in the context of seminatural populations with intense male-male competition and no predation. Due to an interruption in our facility's heating system, we were unexpectedly presented with the opportunity to assess how reduced ambient temperature influences the association of host social status and pathogen virulence. Environmental temperature has been implicated as a contributor to pathogen virulence, giving us a unique chance to examine its role in a previously unexamined pathogen system, while the added context of social status can expand our understanding of how the interaction of different environmental conditions affects virulence. We found that pathogen virulence and replication were lower in socially dominant hosts compared to nondominant hosts. When temperature was reduced, cool enclosure-housed dominant males were more susceptible to infection than their warm enclosure-housed counterparts. The mechanistic underpinnings that link infectious disease and social status remain difficult to disentangle from their associated factors, but this study opens the door for future experiments using a novel approach in the most well-studied mammalian model available.
Collapse
|
6
|
Middlebrook EA, Stark DL, Cornwall DH, Kubinak JL, Potts WK. Deep Sequencing of MHC-Adapted Viral Lines Reveals Complex Recombinational Exchanges With Endogenous Retroviruses Leading to High-Frequency Variants. Front Genet 2021; 12:716623. [PMID: 34512727 PMCID: PMC8430262 DOI: 10.3389/fgene.2021.716623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/05/2021] [Indexed: 12/03/2022] Open
Abstract
Experimental evolution (serial passage) of Friend virus complex (FVC) in mice demonstrates phenotypic adaptation to specific host major histocompatibility complex (MHC) genotypes. These evolved viral lines show increased fitness and virulence in their host-genotype-of-passage, but display fitness and virulence tradeoffs when infecting unfamiliar host MHC genotypes. Here, we deep sequence these viral lines in an attempt to discover the genetic basis of FVC adaptation. The principal prediction for genotype-specific adaptation is that unique mutations would rise to high frequency in viral lines adapted to each host MHC genotype. This prediction was not supported by our sequencing data as most observed high-frequency variants were present in each of our independently evolved viral lines. However, using a multi-variate approach to measure divergence between viral populations, we show that populations of replicate evolved viral lines from the same MHC congenic mouse strain were more similar to one another than to lines derived from different MHC congenic mouse strains, suggesting that MHC genotype does predictably act on viral evolution in our model. Sequence analysis also revealed rampant recombination with endogenous murine leukemia virus sequences (EnMuLVs) that are encoded within the BALB/c mouse genome. The highest frequency variants in all six lines contained a 12 bp insertion from a recombinant EnMuLV source, suggesting such recombinants were either being favored by selection or were contained in a recombinational hotspot. Interestingly, they did not reach fixation, as if they are low fitness. The amount of background mutations linked to FVC/EnMuLV variable sites indicated that FVC/EnMuLV recombinants had not reached mutation selection equilibrium and thus, that EnMuLV sequences are likely continuously introgressing into the replicating viral population. These discoveries raise the question: is the expression of EnMuLV sequences in mouse splenocytes that permit recombination with exogenous FVC a pathogen or host adaptation?
Collapse
Affiliation(s)
- Earl A. Middlebrook
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Biosecurity and Public Health, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Derek L. Stark
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| | - Douglas H. Cornwall
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
- Department of Pathology, University of Utah, Salt Lake City, UT, United States
| | - Jason L. Kubinak
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Wayne K. Potts
- School of Biological Sciences, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Cornwall DH, Ruff JS, Zachary ER, Young CP, Maguire KM, Painter RJ, Trujillo SM, Potts WK. Horizontal transmission of a murine retrovirus is driven by males within semi‐natural enclosures. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Douglas H. Cornwall
- School of Biological Sciences University of Utah Salt Lake City UT USA
- Department of Pathology University of Utah Salt Lake City UT USA
| | - James S. Ruff
- School of Biological Sciences University of Utah Salt Lake City UT USA
| | | | - Chloe P. Young
- School of Biological Sciences University of Utah Salt Lake City UT USA
| | | | - Rachel J. Painter
- School of Biological Sciences University of Utah Salt Lake City UT USA
| | | | - Wayne K. Potts
- School of Biological Sciences University of Utah Salt Lake City UT USA
| |
Collapse
|
8
|
Visher E, Boots M. The problem of mediocre generalists: population genetics and eco-evolutionary perspectives on host breadth evolution in pathogens. Proc Biol Sci 2020; 287:20201230. [PMID: 32811306 PMCID: PMC7482275 DOI: 10.1098/rspb.2020.1230] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/22/2020] [Indexed: 01/29/2023] Open
Abstract
Many of our theories for the generation and maintenance of diversity in nature depend on the existence of specialist biotic interactions which, in host-pathogen systems, also shape cross-species disease emergence. As such, niche breadth evolution, especially in host-parasite systems, remains a central focus in ecology and evolution. The predominant explanation for the existence of specialization in the literature is that niche breadth is constrained by trade-offs, such that a generalist is less fit on any particular environment than a given specialist. This trade-off theory has been used to predict niche breadth (co)evolution in both population genetics and eco-evolutionary models, with the different modelling methods providing separate, complementary insights. However, trade-offs may be far from universal, so population genetics theory has also proposed alternate mechanisms for costly generalism, including mutation accumulation. However, these mechanisms have yet to be integrated into eco-evolutionary models in order to understand how the mechanism of costly generalism alters the biological and ecological circumstances predicted to maintain specialism. In this review, we outline how population genetics and eco-evolutionary models based on trade-offs have provided insights for parasite niche breadth evolution and argue that the population genetics-derived mutation accumulation theory needs to be better integrated into eco-evolutionary theory.
Collapse
Affiliation(s)
- Elisa Visher
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
| | - Mike Boots
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Ringgold Standard Institution, Penryn, Cornwall, UK
| |
Collapse
|
9
|
González R, Butković A, Elena SF. Role of host genetic diversity for susceptibility-to-infection in the evolution of virulence of a plant virus. Virus Evol 2019; 5:vez024. [PMID: 31768264 PMCID: PMC6863064 DOI: 10.1093/ve/vez024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Predicting viral emergence is difficult due to the stochastic nature of the underlying processes and the many factors that govern pathogen evolution. Environmental factors affecting the host, the pathogen and the interaction between both are key in emergence. In particular, infectious disease dynamics are affected by spatiotemporal heterogeneity in their environments. A broad knowledge of these factors will allow better estimating where and when viral emergence is more likely to occur. Here, we investigate how the population structure for susceptibility-to-infection genes of the plant Arabidopsis thaliana shapes the evolution of Turnip mosaic virus (TuMV). For doing so we have evolved TuMV lineages in two radically different host population structures: (1) a metapopulation subdivided into six demes (subpopulations); each one being composed of individuals from only one of six possible A. thaliana ecotypes and (2) a well-mixed population constituted by equal number of plants from the same six A. thaliana ecotypes. These two populations were evolved for twelve serial passages. At the end of the experimental evolution, we found faster adaptation of TuMV to each ecotype in the metapopulation than in the well-mixed heterogeneous host populations. However, viruses evolved in well-mixed populations were more pathogenic and infectious than viruses evolved in the metapopulation. Furthermore, the viruses evolved in the demes showed stronger signatures of local specialization than viruses evolved in the well-mixed populations. These results illustrate how the genetic diversity of hosts in an experimental ecosystem favors the evolution of virulence of a pathogen.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, València 46980, Spain.,The Santa Fe Institute, Santa Fe, 1399 Hyde Park Road, NM 87501, USA
| |
Collapse
|
10
|
Sagonas K, Runemark A, Antoniou A, Lymberakis P, Pafilis P, Valakos ED, Poulakakis N, Hansson B. Selection, drift, and introgression shape MHC polymorphism in lizards. Heredity (Edinb) 2019; 122:468-484. [PMID: 30258107 PMCID: PMC6460769 DOI: 10.1038/s41437-018-0146-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 01/12/2023] Open
Abstract
The major histocompatibility complex (MHC) has long served as a model for the evolution of adaptive genetic diversity in wild populations. Pathogen-mediated selection is thought to be a main driver of MHC diversity, but it remains elusive to what degree selection shapes MHC diversity in complex biogeographical scenarios where other evolutionary processes (e.g. genetic drift and introgression) may also be acting. Here we focus on two closely related green lizard species, Lacerta trilineata and L. viridis, to address the evolutionary forces acting on MHC diversity in populations with different biogeographic structure. We characterized MHC class I exon 2 and exon 3, and neutral diversity (microsatellites), to study the relative importance of selection, drift, and introgression in shaping MHC diversity. As expected, positive selection was a significant force shaping the high diversity of MHC genes in both species. Moreover, introgression significantly increased MHC diversity in mainland populations, with a primary direction of gene flow from L. viridis to L. trilineata. Finally, we found significantly fewer MHC alleles in island populations, but maintained MHC sequence and functional diversity, suggesting that positive selection counteracted the effect of drift. Overall, our data support that different evolutionary processes govern MHC diversity in different biogeographical scenarios: positive selection occurs broadly while introgression acts in sympatry and drift when the population sizes decrease.
Collapse
Affiliation(s)
- K Sagonas
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece.
| | - A Runemark
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - A Antoniou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Gournes Pediados, 71003, Heraklion, Crete, Greece
| | - P Lymberakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
| | - P Pafilis
- Department of Zoology and Marine Biology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - E D Valakos
- Department of Human and Animal Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimioupoli Zografou, 15784, Athens, Greece
| | - N Poulakakis
- Natural History Museum of Crete, School of Sciences and Engineering, University of Crete, 71409, Heraklion, Crete, Greece
- Department of Biology, School of Sciences and Engineering, University of Crete, Vasilika Vouton, 71003, Heraklion, Crete, Greece
| | - B Hansson
- Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|