1
|
Sniegula S, Stoks R, Golab MJ. Insect responses to seasonal time constraints under global change are facilitated by warming and counteracted by invasive alien predators. Sci Rep 2024; 14:24565. [PMID: 39427019 PMCID: PMC11490650 DOI: 10.1038/s41598-024-76057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024] Open
Abstract
In seasonal environments, organisms with complex life cycles not only contend with seasonal time constraints (TC) but also increasingly face global change stressors that may interfere with responses to TC. Here, we tested how warming and predator stress imposed during the egg and larval stages shaped life history and behavioural responses to TC in the temperate damselfly Ischnura elegans. Eggs from early and late clutches in the season were subjected to ambient and 4 °C warming temperature and the presence or absence of predator cues from perch and signal crayfish. After hatching, larvae were retained at the same thermal regime, and the predator treatment was continued or not up to emergence. The late eggs decreased their development time, especially under warming and when not exposed to predator cues. However, the late eggs increased their development time when exposed to predator cues, especially to crayfish cues. The TC decreased survival of late larvae that were as eggs exposed to crayfish cues, indicating a carry-over effect. The TC and warming additively reduced late larvae development time to emergence. Independent of the TC, predator cue effects on development time were stronger during the egg than during the larval stage. The late individuals expressed lower mass at emergence, which mirrored the size difference between field-collected mothers. Warming caused a higher mass at emergence. The late individuals increased their boldness and showed a higher number of moves, whereas warming caused a decreased boldness. There was no predator cue effect on larval behaviour. The results indicate that late individuals compensate for late season egg laying, which is facilitated under warming but counteracted under predation risk, especially when imposed by the crayfish.
Collapse
Affiliation(s)
- Szymon Sniegula
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Maria J Golab
- Institute of Nature Conservation Polish Academy of Sciences, al. Adama Mickiewicza 33, 31-120, Kraków, Poland.
| |
Collapse
|
2
|
Amer NR, Stoks R, Antoł A, Sniegula S. Microgeographic differentiation in thermal and antipredator responses and their carry-over effects across life stages in a damselfly. PLoS One 2024; 19:e0295707. [PMID: 38394143 PMCID: PMC10889876 DOI: 10.1371/journal.pone.0295707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024] Open
Abstract
Global warming and invasive species, separately or combined, can impose a large impact on the condition of native species. However, we know relatively little about how these two factors, individually and in combination, shape phenotypes in ectotherms across life stages and how this can differ between populations. We investigated the non-consumptive predator effects (NCEs) imposed by native (perch) and invasive (signal crayfish) predators experienced only during the egg stage or during both the egg and larval stages in combination with warming on adult life history traits of the damselfly Ischnura elegans. To explore microgeographic differentiation, we compared two nearby populations differing in thermal conditions and predator history. In the absence of predator cues, warming positively affected damselfly survival, possibly because the warmer temperature was closer to the optimal temperature. In the presence of predator cues, warming decreased survival, indicating a synergistic effect of these two variables on survival. In one population, predator cues from perch led to increased survival, especially under the current temperature, likely because of predator stress acclimation phenomena. While warming decreased, predator cues increased larval development time with a proportionally stronger effect of signal crayfish cues experienced during the egg stage, indicating a negative carry-over effect from egg to larva. Warming and predator cues increased mass at emergence, with the predator effect driven mainly by exposure to signal crayfish cues during the egg stage, indicating a positive carry-over effect from egg to adult. Notably, warming and predator effects were not consistent across the two studied populations, suggesting a phenotypic signal of adaptation at a microgeographic scale to thermal conditions and predator history. We also observed pronounced shifts during ontogeny from synergistic (egg and early larval stage) toward additive (late larval stage up to emergence) effects between warming and predator stress. The results point out that population- and life-stage-specific responses in life-history traits to NCEs are needed to predict fitness consequences of exposure to native and invasive predators and warming in prey at a microgeographic scale.
Collapse
Affiliation(s)
- Nermeen R. Amer
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
- Department of Entomology, Faculty of Science, Cairo University, Giza, Egypt
| | - Robby Stoks
- Department of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Leuven, Belgium
| | - Andrzej Antoł
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Szymon Sniegula
- Department of Biodiversity, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
3
|
Palomar G, Wos G, Stoks R, Sniegula S. Latitude-specific urbanization effects on life history traits in the damselfly Ischnura elegans. Evol Appl 2023; 16:1503-1515. [PMID: 37622092 PMCID: PMC10445092 DOI: 10.1111/eva.13583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
Many species are currently adapting to cities at different latitudes. Adaptation to urbanization may require eco-evolutionary changes in response to temperature and invasive species that may differ between latitudes. Here, we studied single and combined effects of increased temperatures and an invasive alien predator on the phenotypic response of replicated urban and rural populations of the damselfly Ischnura elegans and contrasted these between central and high latitudes. Adult females were collected in rural and urban ponds at central and high latitudes. Their larvae were exposed to temperature treatments (current [20°C], mild warming [24°C], and heat wave [28°C; for high latitude only]) crossed with the presence or absence of chemical cues released by the spiny-cheek crayfish (Faxonius limosus), only present at the central latitude. We measured treatment effects on larval development time, mass, and growth rate. Urbanization type affected all life history traits, yet these responses were often dependent on latitude, temperature, and sex. Mild warming decreased mass in rural and increased growth rate in urban populations. The effects of urbanization type on mass were latitude-dependent, with central-latitude populations having a greater phenotypic difference. Urbanization type effects were sex-specific with urban males being lighter and having a lower growth rate than rural males. At the current temperature and mild warming, the predator cue reduced the growth rate, and this independently of urbanization type and latitude of origin. This pattern was reversed during a heat wave in high-latitude damselflies. Our results highlight the context-dependency of evolutionary and plastic responses to urbanization, and caution for generalizing how populations respond to cities based on populations at a single latitude.
Collapse
Affiliation(s)
- Gemma Palomar
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
- Department of Genetics, Physiology, and MicrobiologyComplutense University of MadridMadridSpain
| | - Guillaume Wos
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and EcotoxicologyKU LeuvenLeuvenBelgium
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of SciencesKrakowPoland
| |
Collapse
|
4
|
Auerbach BM, Savell KRR, Agosto ER. Morphology, evolution, and the whole organism imperative: Why evolutionary questions need multi-trait evolutionary quantitative genetics. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023. [PMID: 37060292 DOI: 10.1002/ajpa.24733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Since Washburn's New Physical Anthropology, researchers have sought to understand the complexities of morphological evolution among anatomical regions in human and non-human primates. Researchers continue, however, to preferentially use comparative and functional approaches to examine complex traits, but these methods cannot address questions about evolutionary process and often conflate function with fitness. Moreover, researchers also tend to examine anatomical elements in isolation, which implicitly assumes independent evolution among different body regions. In this paper, we argue that questions asked in primate evolution are best examined using multiple anatomical regions subjected to model-bound methods built from an understanding of evolutionary quantitative genetics. A nascent but expanding number of studies over the last two decades use this approach, examining morphological integration, evolvability, and selection modeling. To help readers learn how to use these methods, we review fundamentals of evolutionary processes within a quantitative genetic framework, explore the importance of neutral evolutionary theory, and explain the basics of evolutionary quantitative genetics, namely the calculation of evolutionary potential for multiple traits in response to selection. Leveraging these methods, we demonstrate their use to understand non-independence in possible evolutionary responses across the limbs, limb girdles, and basicranium of humans. Our results show that model-bound quantitative genetic methods can reveal unexpected genetic covariances among traits that create a novel but measurable understanding of evolutionary complexity among multiple traits. We advocate for evolutionary quantitative genetic methods to be a standard whenever appropriate to keep studies of primate morphological evolution relevant for the next seventy years and beyond.
Collapse
Affiliation(s)
- Benjamin M Auerbach
- Department of Anthropology, The University of Tennessee, Knoxville, Tennessee, USA
- Department of Ecology and Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, USA
| | - Kristen R R Savell
- Department of Biology, Sacred Heart University, Fairfield, Connecticut, USA
| | - Elizabeth R Agosto
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
5
|
Johansson F, Berger D, Outomuro D, Sniegula S, Tunon M, Watts PC, Rohner PT. Mixed support for an alignment between phenotypic plasticity and genetic differentiation in damselfly wing shape. J Evol Biol 2023; 36:368-380. [PMID: 36571263 PMCID: PMC10107333 DOI: 10.1111/jeb.14145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/28/2022] [Accepted: 11/18/2022] [Indexed: 12/27/2022]
Abstract
The relationship between genetic differentiation and phenotypic plasticity can provide information on whether plasticity generally facilitates or hinders adaptation to environmental change. Here, we studied wing shape variation in a damselfly (Lestes sponsa) across a latitudinal gradient in Europe that differed in time constraints mediated by photoperiod and temperature. We reared damselflies from northern and southern populations in the laboratory using a reciprocal transplant experiment that simulated time-constrained (i.e. northern) and unconstrained (southern) photoperiods and temperatures. After emergence, adult wing shape was analysed using geometric morphometrics. Wings from individuals in the northern and southern populations differed significantly in shape when animals were reared in their respective native environment. Comparing wing shape across environments, we found evidence for phenotypic plasticity in wing shape, and this response differed across populations (i.e. G × E interactions). This interaction was driven by a stronger plastic response by individuals from the northern population and differences in the direction of plastic wing shape changes among populations. The alignment between genetic and plastic responses depended on the specific combination of population and rearing environment. For example, there was an alignment between plasticity and genetic differentiation under time-constrained, but not under non-time-constrained conditions for forewings. We thus find mixed support for the hypothesis that environmental plasticity and genetic population differentiation are aligned. Furthermore, although our laboratory treatments mimicked the natural climatic conditions at northern and southern latitudes, the effects of population differences on wing shape were two to four times stronger than plastic effects. We discuss our results in terms of time constraints and the possibility that natural and sexual selection is acting differently on fore- and hindwings.
Collapse
Affiliation(s)
- Frank Johansson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - David Outomuro
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Szymon Sniegula
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Warsaw, Poland
| | - Meagan Tunon
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, Sweden
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | |
Collapse
|
6
|
Laurich JR, Reid CG, Biel C, Wu T, Knox C, Frederickson ME. Genetic architecture of multiple mutualisms and mating system in Turnera ulmifolia. J Evol Biol 2023; 36:280-295. [PMID: 36196911 DOI: 10.1111/jeb.14098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 07/08/2022] [Accepted: 07/15/2022] [Indexed: 01/11/2023]
Abstract
Plants often associate with multiple arthropod mutualists. These partners provide important services to their hosts, but multiple interactions can constrain a plant's ability to respond to complex, multivariate selection. Here, we quantified patterns of genetic variance and covariance among rewards for pollination, biotic defence and seed dispersal mutualisms in multiple populations of Turnera ulmifolia to better understand how the genetic architecture of multiple mutualisms might influence their evolution. We phenotyped plants cultivated from 17 Jamaican populations for several mutualism and mating system-related traits. We then fit genetic variance-covariance (G) matrices for the island metapopulation and the five largest individual populations. At the metapopulation level, we observed significant positive genetic correlations among stigma-anther separation, floral nectar production and extrafloral nectar production. These correlations have the potential to significantly constrain or facilitate the evolution of multiple mutualisms in T. ulmifolia and suggest that pollination, seed dispersal and defence mutualisms do not evolve independently. In particular, we found that positive genetic correlations between floral and extrafloral nectar production may help explain their stable coexistence in the face of physiological trade-offs and negative interactions between pollinators and ant bodyguards. Locally, we found only small differences in G among our T. ulmifolia populations, suggesting that geographic variation in G may not shape the evolution of multiple mutualisms.
Collapse
Affiliation(s)
- Jason R Laurich
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Christopher G Reid
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Caroline Biel
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Tianbi Wu
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada.,Faculty of the Environment, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher Knox
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Megan E Frederickson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
de Jong MJ, White CR, Wong BBM, Chapple DG. Univariate and multivariate plasticity in response to incubation temperature in an Australian lizard. J Exp Biol 2022; 225:281298. [PMID: 36354342 PMCID: PMC10112869 DOI: 10.1242/jeb.244352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022]
Abstract
Environments, particularly developmental environments, can generate a considerable amount of phenotypic variation through phenotypic plasticity. Plasticity in response to incubation temperature is well characterised in egg-laying reptiles. However, traits do not always vary independently of one another, and studies encompassing a broad range of traits spanning multiple categories are relatively rare but crucial to better understand whole-organism responses to environmental change, particularly if covariation among traits may constrain plasticity. In this study, we investigated multivariate plasticity in response to incubation across three temperatures in the delicate skink, Lampropholis delicata, and whether this was affected by covariation among traits. At approximately 1 month of age, a suite of growth, locomotor performance, thermal physiology and behavioural traits were measured. Plasticity in the multivariate phenotype of delicate skinks was distinct for different incubation temperatures. Cool temperatures drove shifts in growth, locomotor performance and thermal physiology, while hot temperatures primarily caused changes in locomotor performance and behaviour. These differences are likely due to variation in thermal reaction norms, as there was little evidence that covariation among traits or phenotypic integration influenced plasticity, and there was no effect of incubation temperature on the direction or strength of covariation. While there were broad themes in terms of which trait categories were affected by different incubation treatments, traits appeared to be affected independently by developmental temperature. Comparing reaction norms of a greater range of traits and temperatures will enable better insight into these patterns among trait categories, as well as the impacts of environmental change.
Collapse
Affiliation(s)
- Madeleine J de Jong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Craig R White
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - Bob B M Wong
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| | - David G Chapple
- School of Biological Sciences, Monash University, Melbourne, 3800 VIC, Australia
| |
Collapse
|
8
|
Milocco L, Salazar-Ciudad I. Evolution of the G Matrix under Nonlinear Genotype-Phenotype Maps. Am Nat 2022; 199:420-435. [DOI: 10.1086/717814] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Lisandro Milocco
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Isaac Salazar-Ciudad
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Centre de Recerca Matemàtica, Barcelona, Spain; and Genomics, Bioinformatics, and Evolution, Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Raczyński M, Stoks R, Johansson F, Sniegula S. Size‐mediated priority effects are trait‐dependent and consistent across latitudes in a damselfly. OIKOS 2021. [DOI: 10.1111/oik.08353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mateusz Raczyński
- Dept of Ecosystem Conservation, Inst. of Nature Conservation, Polish Academy of Sciences Krakow Poland
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, Univ. of Leuven Leuven Belgium
| | - Frank Johansson
- Dept of Ecology and Genetics, Animal Ecology, Uppsala Univ. Uppsala Sweden
| | - Szymon Sniegula
- Dept of Ecosystem Conservation, Inst. of Nature Conservation, Polish Academy of Sciences Krakow Poland
| |
Collapse
|
10
|
Johansson F, Watts PC, Sniegula S, Berger D. Natural selection mediated by seasonal time constraints increases the alignment between evolvability and developmental plasticity. Evolution 2021; 75:464-475. [PMID: 33368212 PMCID: PMC7986058 DOI: 10.1111/evo.14147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/25/2020] [Accepted: 11/25/2020] [Indexed: 12/26/2022]
Abstract
Phenotypic plasticity can either hinder or promote adaptation to novel environments. Recent studies that have quantified alignments between plasticity, genetic variation, and divergence propose that such alignments may reflect constraints that bias future evolutionary trajectories. Here, we emphasize that such alignments may themselves be a result of natural selection and do not necessarily indicate constraints on adaptation. We estimated developmental plasticity and broad sense genetic covariance matrices (G) among damselfly populations situated along a latitudinal gradient in Europe. Damselflies were reared at photoperiod treatments that simulated the seasonal time constraints experienced at northern (strong constraints) and southern (relaxed constraints) latitudes. This allowed us to partition the effects of (1) latitude, (2) photoperiod, and (3) environmental novelty on G and its putative alignment with adaptive plasticity and divergence. Environmental novelty and latitude did not affect G, but photoperiod did. Photoperiod increased evolvability in the direction of observed adaptive divergence and developmental plasticity when G was assessed under strong seasonal time constraints at northern (relative to southern) photoperiod. Because selection and adaptation under time constraints is well understood in Lestes damselflies, our results suggest that natural selection can shape the alignment between divergence, plasticity, and evolvability.
Collapse
Affiliation(s)
- Frank Johansson
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden
| | - Phillip C Watts
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Szymon Sniegula
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, 31-120, Poland
| | - David Berger
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, Uppsala, 752 36, Sweden
| |
Collapse
|
11
|
Golab MJ, Brodin T, Sniegula S. Two experimental designs generate contrasting patterns of behavioral differentiation along a latitudinal gradient in Lestes sponsa-Common-garden not so common after all? Ecol Evol 2020; 10:10242-10253. [PMID: 33005379 PMCID: PMC7520208 DOI: 10.1002/ece3.6686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding why and how behavioral profiles differ across latitudes can help predict behavioral responses to environmental change. The first response to environmental change that an organism exhibits is commonly a behavioral response. Change in one behavior usually results in shifts in other correlated behaviors, which may adaptively or maladaptively vary across environments and/or time. However, one important aspect that is often neglected when studying behavioral expressions among populations is if/how the experimental design might affect the results. This is unfortunate since animals often plastically modify their behavior to the environment, for example, rearing conditions. We studied behavioral traits and trait correlations in larvae of a univoltine damselfly, Lestes sponsa, along its latitudinal distribution, spreading over 3,300 km. We compared behavioral profiles among larvae grown in two conditions: (a) native temperatures and photoperiods or (b) averaged constant temperatures and photoperiods (common-garden). We hypothesized latitudinal differences in behavioral traits regardless of the conditions in which larvae were grown, with northern populations expressing higher activity, boldness, and foraging efficiency. When grown in native conditions, northern larvae were bolder, more active and more effective in prey capture than central and low latitude populations, respectively, as well as showed the strongest behavioral correlations. In contrast, larvae reared in common-garden conditions showed no differences between regions in both individual traits and trait correlations. The results suggest different selective pressures acting on the studied traits across populations, with environment as a central determinant of the observed trait values. Common-garden designed experiments may evoke population-dependent levels of plastic response to the artificial conditions and, hence, generate results that lack ecological relevance when studying multi-population differences in behavior.
Collapse
Affiliation(s)
- Maria J. Golab
- Institute of Nature Conservation Polish Academy of SciencesKrakówPoland
| | - Tomas Brodin
- Department of Wildlife, Fish and Environmental StudiesSwedish University of Agricultural Sciences (SLU)UmeåSweden
| | - Szymon Sniegula
- Institute of Nature Conservation Polish Academy of SciencesKrakówPoland
| |
Collapse
|
12
|
Comparative analysis of the multivariate genetic architecture of morphological traits in three species of Gomphocerine grasshoppers. Heredity (Edinb) 2019; 124:367-382. [PMID: 31649325 DOI: 10.1038/s41437-019-0276-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/08/2019] [Accepted: 09/18/2019] [Indexed: 11/08/2022] Open
Abstract
Evolutionary change is the change in trait values across generations, and usually occurs in multidimensional trait space rather than along isolated traits. Genetic covariation influences the magnitude and direction of evolutionary change and can be statistically summarized by the additive genetic (co)variance matrix, G. While G can affect the response to selection, it is exposed to evolutionary change by selection and genetic drift, but the magnitude and speed of these changes are poorly understood. We use comparative G matrix analyses to assess evolution of the shape and orientation of G over longer timescales in three species of Gomphocerine grasshoppers. We estimate 10 × 10 G matrices for five morphological traits expressed in both sexes. We find low-to-moderate heritabilities (average 0.36), mostly large cross-sex correlations (average 0.54) and moderate between-trait correlations (average 0.34). G matrices differ significantly among species with wing length contributing most to these differences. Wing length is the trait that is most divergent among species, suggesting it has been under selection during species divergence. The more distantly related species, Pseudochorthippus parallelus, was the most different in the shape of G. Projection of contemporary genetic variation into the divergence space D illustrates that the major axis of genetic variation in Gomphocerippus rufus is aligned with divergence from Chorthippus biguttulus, while the major axis of genetic variation in neither of the species is aligned with the divergence between Pseudochorthippus parallelus and the other two species. Our results demonstrate significant differences in G matrices with a phylogenetic signal in the differentiation.
Collapse
|
13
|
Sniegula S, Golab MJ, Johansson F. Size-mediated priority and temperature effects on intra-cohort competition and cannibalism in a damselfly. J Anim Ecol 2019; 88:637-648. [PMID: 30659605 DOI: 10.1111/1365-2656.12947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
A shift in the relative arrival of offspring, for example a shift in hatching time, can affect competition at the intraspecific level through size-mediated priority effects, where the larger individuals gain more resources. These priority effects are likely to be affected by climate warming and the rate of intraspecific predation, that is cannibalism. In a laboratory experiment, we examined size-mediated priority effects in larvae of the univoltine damselfly, Lestes sponsa, at two different temperatures (21 and 23°C). We created three size groups of larvae by manipulating hatching time: early hatched with a large size (extra-advanced), intermediate hatched with an intermediate size (advanced) and late hatched with a small size (non-advanced). Thereafter, we reared the larvae from these groups in non-mixed and mixed groups of 12 larvae. We found strong priority and temperature effects. First, extra-advanced larvae most often had higher survival, growth and development rates than non-advanced larvae in mixed groups, compared to groups that consisted of only extra-advanced larvae. Second, temperature increased growth and development rates and cannibalism. However, the strength of priority effects did not differ between the two experimental temperatures, because there was no statistical interaction between temperature and treatments. That is, the mixed and non-mixed groups of non-advanced, advanced and extra-advanced larvae showed the same relative change in life-history traits across the two temperatures. Non-advanced and advanced larvae had similar or higher growth rate and mass in mixed groups compared to non-mixed groups, suggesting that predation from advanced larvae in the mixed group released resources for the non-advanced and advanced larvae that survived despite cannibalism risk. Thus, a thinning effect occurred due to cannibalism caused by priority effects. The results suggest that a shift in the relative arrival of offspring can cause temperature-dependent priority effects, mediated through cannibalism, growth and development, which may change the size distribution and abundance of emerging aquatic insects.
Collapse
Affiliation(s)
- Szymon Sniegula
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Maria J Golab
- Department of Ecosystem Conservation, Institute of Nature Conservation, Polish Academy of Sciences, Krakow, Poland
| | - Frank Johansson
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|