1
|
Leung K, Beukeboom LW, Zwaan BJ. Inbreeding and Outbreeding Depression in Wild and Captive Insect Populations. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:271-292. [PMID: 39874143 DOI: 10.1146/annurev-ento-022924-020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Major changes in genetic variation are generally considered deleterious to populations. The massive biodiversity of insects distinguishes them from other animal groups. Insect deviant effective population sizes, alternative modes of reproduction, advantageous inbreeding, endosymbionts, and other factors translate to highly specific inbreeding and outbreeding outcomes. We review the evidence for inbreeding and outbreeding depression and consequences across wild and captive insect populations, highlighting conservation, invasion, and commercial production entomology. We not only discern patterns but also explain why they are often inconsistent or absent. We discuss how insect inbreeding and outbreeding depression operates in complex, sometimes contradictory directions, such as inbreeding being detrimental to individuals but beneficial to populations. We conclude by giving recommendations to (a) more comprehensively account for important variables in insect inbreeding and outbreeding depression, (b) standardize the means of measuring genetic variation and phenotypic impacts for insect populations so as to more reliably predict when inbreeding or outbreeding depression applies, and (c) outline possible remediation options, both nongenetic and genetic, including revision of restrictive international trade laws.
Collapse
Affiliation(s)
- Kelley Leung
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands;
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
2
|
Luecke D, Luo Y, Krzystek H, Jones C, Kopp A. Highly contiguous genome assembly of Drosophila prolongata-a model for evolution of sexual dimorphism and male-specific innovations. G3 (BETHESDA, MD.) 2024; 14:jkae155. [PMID: 39001868 PMCID: PMC11457088 DOI: 10.1093/g3journal/jkae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/15/2024]
Abstract
Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of Southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2 Mb) genome assembly of 220 Mb. The repetitive content of the genome is 24.6%, the plurality of which are long terminal repeats retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, genome-wide association studies (GWAS), and other genomic analyses.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
- USDA, ARS, PA, US Livestock Insects Research Lab, 2700 Fredericksburg Road, Kerrville, TX 78028, USA
| | - Yige Luo
- Department of Evolution and Ecology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| | - Halina Krzystek
- Biology Department of the University of North Carolina (UNC), 3159 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, USA
| | - Corbin Jones
- Biology Department of the University of North Carolina (UNC), 3159 Genome Sciences Building, 250 Bell Tower Drive, Chapel Hill, NC 27599, USA
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, One Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
3
|
Lacy KD, Hart T, Kronauer DJC. Co-inheritance of recombined chromatids maintains heterozygosity in a parthenogenetic ant. Nat Ecol Evol 2024; 8:1522-1533. [PMID: 39014144 PMCID: PMC11310076 DOI: 10.1038/s41559-024-02455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/30/2024] [Indexed: 07/18/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Non-random segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte. Here we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi, in which both alleles are co-inherited at all loci across the entire genome. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole-genome sequencing, we show that crossover recombination is, in fact, common but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular 'memory' of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
| |
Collapse
|
4
|
Lacy KD, Hart T, Kronauer DJ. Unselfish meiotic drive maintains heterozygosity in a parthenogenetic ant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579553. [PMID: 38405725 PMCID: PMC10888755 DOI: 10.1101/2024.02.09.579553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
According to Mendel's second law, chromosomes segregate randomly in meiosis. Nonrandom segregation is primarily known for cases of selfish meiotic drive in females, in which particular alleles bias their own transmission into the oocyte1,2. Here, we report a rare example of unselfish meiotic drive for crossover inheritance in the clonal raider ant, Ooceraea biroi. This species produces diploid offspring parthenogenetically via fusion of two haploid nuclei from the same meiosis3. This process should cause rapid genotypic degeneration due to loss of heterozygosity, which results if crossover recombination is followed by random (Mendelian) segregation of chromosomes4,5. However, by comparing whole genomes of mothers and daughters, we show that loss of heterozygosity is exceedingly rare, raising the possibility that crossovers are infrequent or absent in O. biroi meiosis. Using a combination of cytology and whole genome sequencing, we show that crossover recombination is, in fact, common, but that loss of heterozygosity is avoided because crossover products are faithfully co-inherited. This results from a programmed violation of Mendel's law of segregation, such that crossover products segregate together rather than randomly. This discovery highlights an extreme example of cellular "memory" of crossovers, which could be a common yet cryptic feature of chromosomal segregation.
Collapse
Affiliation(s)
- Kip D. Lacy
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Taylor Hart
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Daniel J.C. Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| |
Collapse
|
5
|
Luecke D, Luo Y, Krzystek H, Jones C, Kopp A. Highly Contiguous Genome Assembly of Drosophila prolongata - a Model for Evolution of Sexual Dimorphism and Male-specific Innovations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577853. [PMID: 38352395 PMCID: PMC10862779 DOI: 10.1101/2024.01.29.577853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Drosophila prolongata is a member of the melanogaster species group and rhopaloa subgroup native to the subtropical highlands of southeast Asia. This species exhibits an array of recently evolved male-specific morphological, physiological, and behavioral traits that distinguish it from its closest relatives, making it an attractive model for studying the evolution of sexual dimorphism and testing theories of sexual selection. The lack of genomic resources has impeded the dissection of the molecular basis of sex-specific development and behavior in this species. To address this, we assembled the genome of D. prolongata using long-read sequencing and Hi-C scaffolding, resulting in a highly complete and contiguous (scaffold N50 2.2Mb) genome assembly of 220Mb. The repetitive content of the genome is 24.6%, the plurality of which are LTR retrotransposons (33.2%). Annotations based on RNA-seq data and homology to related species revealed a total of 19,330 genes, of which 16,170 are protein-coding. The assembly includes 98.5% of Diptera BUSCO genes, including 93.8% present as a single copy. Despite some likely regional duplications, the completeness of this genome suggests that it can be readily used for gene expression, GWAS, and other genomic analyses.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California Davis, One Shields Ave Davis CA 95616
| | - Yige Luo
- Department of Evolution and Ecology, University of California Davis, One Shields Ave Davis CA 95616
| | - Halina Krzystek
- Biology Department of the University of North Carolina (UNC), 3159 Genome Sciences Building. 250 Bell Tower Drive. Chapel Hill, NC 27599
| | - Corbin Jones
- Biology Department of the University of North Carolina (UNC), 3159 Genome Sciences Building. 250 Bell Tower Drive. Chapel Hill, NC 27599
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California Davis, One Shields Ave Davis CA 95616
| |
Collapse
|
6
|
Chaumier T, Yang F, Manirakiza E, Ait-Mohamed O, Wu Y, Chandola U, Jesus B, Piganeau G, Groisillier A, Tirichine L. Genome-wide assessment of genetic diversity and transcript variations in 17 accessions of the model diatom Phaeodactylum tricornutum. ISME COMMUNICATIONS 2024; 4:ycad008. [PMID: 38304080 PMCID: PMC10833087 DOI: 10.1093/ismeco/ycad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/01/2023] [Accepted: 12/13/2023] [Indexed: 02/03/2024]
Abstract
Diatoms, a prominent group of phytoplankton, have a significant impact on both the oceanic food chain and carbon sequestration, thereby playing a crucial role in regulating the climate. These highly diverse organisms show a wide geographic distribution across various latitudes. In addition to their ecological significance, diatoms represent a vital source of bioactive compounds that are widely used in biotechnology applications. In the present study, we investigated the genetic and transcriptomic diversity of 17 accessions of the model diatom Phaeodactylum tricornutum including those sampled a century ago as well as more recently collected accessions. The analysis of the data reveals a higher genetic diversity and the emergence of novel clades, indicating an increasing diversity within the P. tricornutum population structure, compared to the previous study and a persistent long-term balancing selection of genes in old and newly sampled accessions. However, the study did not establish a clear link between the year of sampling and genetic diversity, thereby, rejecting the hypothesis of loss of heterozygoty in cultured strains. Transcript analysis identified novel transcript including noncoding RNA and other categories of small RNA such as PiwiRNAs. Additionally, transcripts analysis using differential expression as well as Weighted Gene Correlation Network Analysis has provided evidence that the suppression or downregulation of genes cannot be solely attributed to loss-of-function mutations. This implies that other contributing factors, such as epigenetic modifications, may play a crucial role in regulating gene expression. Our study provides novel genetic resources, which are now accessible through the platform PhaeoEpiview (https://PhaeoEpiView.univ-nantes.fr), that offer both ease of use and advanced tools to further investigate microalgae biology and ecology, consequently enriching our current understanding of these organisms.
Collapse
Affiliation(s)
| | - Feng Yang
- Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Eric Manirakiza
- Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Ouardia Ait-Mohamed
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris 75005, France
| | - Yue Wu
- Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Udita Chandola
- Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| | - Bruno Jesus
- Institut des Substances et Organismes de la Mer, ISOMer, Nantes Université, UR 2160, Nantes F-44000, France
| | - Gwenael Piganeau
- Sorbonne Université, CNRS, Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, F-66650 Banyuls-sur-Mer, France
| | | | - Leila Tirichine
- Nantes Université, CNRS, US2B, UMR 6286, Nantes F-44000, France
| |
Collapse
|
7
|
Freitas S, Parker DJ, Labédan M, Dumas Z, Schwander T. Evidence for cryptic sex in parthenogenetic stick insects of the genus Timema. Proc Biol Sci 2023; 290:20230404. [PMID: 37727092 PMCID: PMC10509586 DOI: 10.1098/rspb.2023.0404] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Obligately parthenogenetic species are expected to be short lived since the lack of sex and recombination should translate into a slower adaptation rate and increased accumulation of deleterious alleles. Some, however, are thought to have been reproducing without males for millions of years. It is not clear how these old parthenogens can escape the predicted long-term costs of parthenogenesis, but an obvious explanation is cryptic sex. In this study, we screen for signatures of cryptic sex in eight populations of four parthenogenetic species of Timema stick insects, some estimated to be older than 1 Myr. Low genotype diversity, homozygosity of individuals and high linkage disequilibrium (LD) unaffected by marker distances support exclusively parthenogenetic reproduction in six populations. However, in two populations (namely, of the species Timema douglasi and T. monikensis) we find strong evidence for cryptic sex, most likely mediated by rare males. These populations had comparatively high genotype diversities, lower LD, and a clear LD decay with genetic distance. Rare sex in species that are otherwise largely parthenogenetic could help explain the unusual success of parthenogenesis in the Timema genus and raises the question whether episodes of rare sex are in fact the simplest explanation for the persistence of many old parthenogens in nature.
Collapse
Affiliation(s)
- Susana Freitas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Darren J. Parker
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- School of Natural Sciences, Bangor University, Bangor, UK
| | - Marjorie Labédan
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Dumas
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Sperling AL, Glover DM. Parthenogenesis in dipterans: a genetic perspective. Proc Biol Sci 2023; 290:20230261. [PMID: 36946111 PMCID: PMC10031431 DOI: 10.1098/rspb.2023.0261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Parthenogenesis has been documented in almost every phylum of animals, and yet this phenomenon is largely understudied. It has particular importance in dipterans since some parthenogenetic species are also disease vectors and agricultural pests. Here, we present a catalogue of parthenogenetic dipterans, although it is likely that many more remain to be identified, and we discuss how their developmental biology and interactions with diverse environments may be linked to different types of parthenogenetic reproduction. We discuss how the advances in genetics and genomics have identified chromosomal loci associated with parthenogenesis. In particular, a polygenic cause of facultative parthenogenesis has been uncovered in Drosophila mercatorum, allowing the corresponding genetic variants to be tested for their ability to promote parthenogenesis in another species, Drosophila melanogaster. This study probably identifies just one of many routes that could be followed in the evolution of parthenogenesis. We attempt to account for why the phenomenon has evolved so many times in the dipteran order and why facultative parthenogenesis appears particularly prevalent. We also discuss the significance of coarse genomic changes, including non-disjunction, aneuploidy, and polyploidy and how, together with changes to specific genes, these might relate to both facultative and obligate parthenogenesis in dipterans and other parthenogenetic animals.
Collapse
Affiliation(s)
- A. L. Sperling
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - D. M. Glover
- Department of Genetics, University of Cambridge, Cambridge, UK
- California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Du S, Ye F, Xu S, Liang Y, Wan F, Guo J, Liu W. Apomixis for no bacteria-induced thelytoky in Diglyphus wani (Hymenoptera: Eulophidae). Front Genet 2023; 13:1061100. [PMID: 36755874 PMCID: PMC9899834 DOI: 10.3389/fgene.2022.1061100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 01/24/2023] Open
Abstract
In Hymenoptera species, the reproductive mode is usually arrhenotoky, where haploid males arise from unfertilized eggs and diploid females from fertilized eggs. In addition, a few species reproduce by thelytoky, where diploid females arise from unfertilized eggs. Diploid females can be derived through various cytological mechanisms in thelytokous Hymenoptera species. Hitherto, these mechanisms were revealed mainly in endosymbiont-induced thelytokous Hymenoptera species. In contrast, thelytokous Hymenoptera species in which a reproductive manipulator has not been verified or several common endosymbionts have been excluded were paid less attention in their cytological mechanisms, for instance, Diglyphus wani (Hymenoptera: Eulophidae). Here, we investigated the cytological mechanism of D. wani using cytological methods and genetic markers. Our observations indicated that the diploid karyotypes of two strains of D. wani consist of four pairs of relatively large metacentric chromosomes and one pair of short submetacentric chromosomes (2n = 10). The arrhenotokous strains could complete normal meiosis, whereas the thelytokous strain lacked meiosis and did not expulse any polar bodies. This reproductive type of lacking meiosis is classified as apomictic thelytoky. Moreover, a total of 636 microsatellite sequences were obtained from thelytokous D. wani, dominated by dinucleotide repeats. Genetic markers results showed all three generations of offspring from thelytokous strain maintained the same genotype as their parents. Our results revealed that D. wani is the first eulophid parasitoid wasp in Hymenoptera whose thelytoky was not induced by bacteria to form an apomictic thelytoky. These findings provide a baseline for future inner molecular genetic studies of ameiotic thelytoky.
Collapse
Affiliation(s)
- Sujie Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fuyu Ye
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiyun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Yongxuan Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Fanghao Wan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianyang Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jianyang Guo, ; Wanxue Liu,
| | - Wanxue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jianyang Guo, ; Wanxue Liu,
| |
Collapse
|
10
|
Thrimawithana AH, Wu C, Christeller JT, Simpson RM, Hilario E, Tooman LK, Begum D, Jordan MD, Crowhurst R, Newcomb RD, Grapputo A. The Genomics and Population Genomics of the Light Brown Apple Moth, Epiphyas postvittana, an Invasive Tortricid Pest of Horticulture. INSECTS 2022; 13:insects13030264. [PMID: 35323562 PMCID: PMC8951345 DOI: 10.3390/insects13030264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/13/2022]
Abstract
Simple Summary In this study, we produced a genomic resource for the light brown apple moth, Epiphyas postvittana, to understand the biological basis of adaptation to a high number of hosts (polyphagy) and the invasive nature of this and other lepidopteran pests. The light brown apple moth is an invasive pest of horticultural plants, with over 500 recorded plant hosts. With origins in Australia, the pest has subsequently spread to New Zealand, Hawaii, California and Europe, causing significant economic losses for fruit producers. Comparative genomic analyses with other lepidopteran genomes indicate that a high proportion of the genome is made up of repetitive sequences, with the majority of the known elements being DNA transposable elements and retrotransposons. Twenty gene families show significant expansions, including some likely to have a role in its pest status. Finally, population genomics, investigated by a RAD-tag approach, indicated likely patterns of invasion and admixture, with Californian moths most probably being derived from Australia. Abstract The light brown apple moth, Epiphyas postvittana is an invasive, polyphagous pest of horticultural systems around the world. With origins in Australia, the pest has subsequently spread to New Zealand, Hawaii, California and Europe, where it has been found on over 500 plants, including many horticultural crops. We have produced a genomic resource, to understand the biological basis of the polyphagous and invasive nature of this and other lepidopteran pests. The assembled genome sequence encompassed 598 Mb and has an N50 of 301.17 kb, with a BUSCO completion rate of 97.9%. Epiphyas postvittana has 34% of its assembled genome represented as repetitive sequences, with the majority of the known elements made up of longer DNA transposable elements (14.07 Mb) and retrotransposons (LINE 17.83 Mb). Of the 31,389 predicted genes, 28,714 (91.5%) were assigned to 11,438 orthogroups across the Lepidoptera, of which 945 were specific to E. postvittana. Twenty gene families showed significant expansions in E. postvittana, including some likely to have a role in its pest status, such as cytochrome p450s, glutathione-S-transferases and UDP-glucuronosyltransferases. Finally, using a RAD-tag approach, we investigated the population genomics of this pest, looking at its likely patterns of invasion.
Collapse
Affiliation(s)
- Amali H. Thrimawithana
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - Chen Wu
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - John T. Christeller
- The New Zealand Institute of Plant and Food Research Limited, Palmerston North 4410, New Zealand; (J.T.C.); (R.M.S.)
| | - Robert M. Simpson
- The New Zealand Institute of Plant and Food Research Limited, Palmerston North 4410, New Zealand; (J.T.C.); (R.M.S.)
| | - Elena Hilario
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - Leah K. Tooman
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - Doreen Begum
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Melissa D. Jordan
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - Ross Crowhurst
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
| | - Richard D. Newcomb
- The New Zealand Institute of Plant and Food Research Limited, Auckland 1025, New Zealand; (A.H.T.); (C.W.); (E.H.); (L.K.T.); (D.B.); (M.D.J.); (R.C.)
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Correspondence:
| | - Alessandro Grapputo
- Dipartimento di Biologia, Università degli Studi di Padova, 35131 Padova, Italy;
| |
Collapse
|
11
|
Adams PE, Crist AB, Young EM, Willis JH, Phillips PC, Fierst JL. Slow Recovery from Inbreeding Depression Generated by the Complex Genetic Architecture of Segregating Deleterious Mutations. Mol Biol Evol 2022; 39:msab330. [PMID: 34791426 PMCID: PMC8789292 DOI: 10.1093/molbev/msab330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.
Collapse
Affiliation(s)
- Paula E Adams
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Anna B Crist
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Ellen M Young
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - John H Willis
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
| | - Janna L Fierst
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
12
|
Oldroyd BP, Yagound B, Allsopp MH, Holmes MJ, Buchmann G, Zayed A, Beekman M. Adaptive, caste-specific changes to recombination rates in a thelytokous honeybee population. Proc Biol Sci 2021; 288:20210729. [PMID: 34102886 PMCID: PMC8187994 DOI: 10.1098/rspb.2021.0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/13/2021] [Indexed: 11/12/2022] Open
Abstract
The ability to clone oneself has clear benefits-no need for mate hunting or dilution of one's genome in offspring. It is therefore unsurprising that some populations of haplo-diploid social insects have evolved thelytokous parthenogenesis-the virgin birth of a female. But thelytokous parthenogenesis has a downside: the loss of heterozygosity (LoH) as a consequence of genetic recombination. LoH in haplo-diploid insects can be highly deleterious because female sex determination often relies on heterozygosity at sex-determining loci. The two female castes of the Cape honeybee, Apis mellifera capensis, differ in their mode of reproduction. While workers always reproduce thelytokously, queens always mate and reproduce sexually. For workers, it is important to reduce the frequency of recombination so as to not produce offspring that are homozygous. Here, we ask whether recombination rates differ between Cape workers and Cape queens that we experimentally manipulated to reproduce thelytokously. We tested our hypothesis that Cape workers have evolved mechanisms that restrain genetic recombination, whereas queens have no need for such mechanisms because they reproduce sexually. Using a combination of microsatellite genotyping and whole-genome sequencing we find that a reduction in recombination is confined to workers only.
Collapse
Affiliation(s)
- Benjamin P. Oldroyd
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| | - Boris Yagound
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Michael H. Allsopp
- Michael H Allsopp, Honeybee Research Section, ARC-Plant Protection Research Institute, Stellenbosch 7600, South Africa
| | - Michael J. Holmes
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Gabrielle Buchmann
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
| | - Amro Zayed
- Department of Biology, Faculty of Science, York University, Toronto, Ontario M3J 1P3, Canada
| | - Madeleine Beekman
- Behaviour, Ecology and Evolution (BEE) Laboratory, University of Sydney, Macleay Building A12, NSW 2006, Australia
- Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193 Berlin, Germany
| |
Collapse
|
13
|
Du M, Wang T, Lian Q, Zhang X, Xin G, Pu Y, Bryan GJ, Qi J. Developing a new model system for potato genetics by androgenesis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:628-633. [PMID: 32965762 DOI: 10.1111/jipb.13018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
High heterozygosity and tetrasomic inheritance complicate studies of asexually propagated polyploids, such as potato. Reverse genetics approaches, especially mutant library construction, can be an ideal choice if a proper mutagenesis genotype is available. Here, we aimed to generate a model system for potato research using anther cultures of Solanum verrucosum, a self-compatible diploid potato with strong late blight resistance. Six of the 23 regenerants obtained (SVA4, SVA7, SVA22, SVA23, SVA32, and SVA33) were diploids, and their homozygosity was estimated to be >99.99% with 22 polymorphic InDel makers. Two lines-SVA4 and SVA32-had reduced stature (plant height ≤80 cm), high seed yield (>1,000 seeds/plant), and good tuber set (>30 tubers/plant). We further confirmed the full homozygosity of SVA4 and SVA32 using whole-genome resequencing. These two regenerants possess all the characteristics of a model plant: diploidy, 100% homozygosity, self-compatibility, and amenability to transgenesis. Thus, we have successfully generated two lines, SVA4 and SVA32, which can potentially be used for mutagenesis and as model plants to rejuvenate current methods of conducting potato research.
Collapse
Affiliation(s)
- Miru Du
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| | - Ting Wang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| | - Qun Lian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| | - Xiaojie Zhang
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| | - Guohui Xin
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| | - Yuanyuan Pu
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianjian Qi
- Inner Mongolia Potato Engineering and Technology Research Center, Inner Mongolia University, Hohhot, 010021, China
| |
Collapse
|
14
|
Jaron KS, Bast J, Nowell RW, Ranallo-Benavidez TR, Robinson-Rechavi M, Schwander T. Genomic Features of Parthenogenetic Animals. J Hered 2021; 112:19-33. [PMID: 32985658 PMCID: PMC7953838 DOI: 10.1093/jhered/esaa031] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/17/2020] [Indexed: 12/21/2022] Open
Abstract
Evolution without sex is predicted to impact genomes in numerous ways. Case studies of individual parthenogenetic animals have reported peculiar genomic features that were suggested to be caused by their mode of reproduction, including high heterozygosity, a high abundance of horizontally acquired genes, a low transposable element load, or the presence of palindromes. We systematically characterized these genomic features in published genomes of 26 parthenogenetic animals representing at least 18 independent transitions to asexuality. Surprisingly, not a single feature was systematically replicated across a majority of these transitions, suggesting that previously reported patterns were lineage-specific rather than illustrating the general consequences of parthenogenesis. We found that only parthenogens of hybrid origin were characterized by high heterozygosity levels. Parthenogens that were not of hybrid origin appeared to be largely homozygous, independent of the cellular mechanism underlying parthenogenesis. Overall, despite the importance of recombination rate variation for the evolution of sexual animal genomes, the genome-wide absence of recombination does not appear to have had the dramatic effects which are expected from classical theoretical models. The reasons for this are probably a combination of lineage-specific patterns, the impact of the origin of parthenogenesis, and a survivorship bias of parthenogenetic lineages.
Collapse
Affiliation(s)
- Kamil S Jaron
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Ascot, Berkshire, UK
- Reuben W. Nowell is now at the Department of Zoology, University of Oxford, Oxford, UK
| | | | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
15
|
Waller DM. Addressing Darwin's dilemma: Can pseudo-overdominance explain persistent inbreeding depression and load? Evolution 2021; 75:779-793. [PMID: 33598971 DOI: 10.1111/evo.14189] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 01/06/2021] [Accepted: 01/30/2021] [Indexed: 01/01/2023]
Abstract
Darwin spent years investigating the effects of self-fertilization, concluding that "nature abhors perpetual self-fertilization." Given that selection purges inbred populations of strongly deleterious mutations and drift fixes mild mutations, why does inbreeding depression (ID) persist in highly inbred taxa and why do no purely selfing taxa exist? Background selection, associations and interference among loci, and drift within small inbred populations all limit selection while often increasing fixation. These mechanisms help to explain why more inbred populations in most species consistently show more fixed load. This drift load is manifest in the considerable heterosis regularly observed in between-population crosses. Such heterosis results in subsequent high ID, suggesting a mechanism by which small populations could retain variation and inbreeding load. Multiple deleterious recessive mutations linked in repulsion generate pseudo-overdominance. Many tightly linked load loci could generate a balanced segregating load high enough to sustain ID over many generations. Such pseudo-overdominance blocks (or "PODs") are more likely to occur in regions of low recombination. They should also result in clear genetic signatures including genomic hotspots of heterozygosity; distinct haplotypes supporting alleles at intermediate frequency; and high linkage disequilibrium in and around POD regions. Simulation and empirical studies tend to support these predictions. Additional simulations and comparative genomic analyses should explore POD dynamics in greater detail to resolve whether PODs exist in sufficient strength and number to account for why ID and load persist within inbred lineages.
Collapse
Affiliation(s)
- Donald M Waller
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| |
Collapse
|
16
|
Spangenberg V, Arakelyan M, Galoyan E, Martirosyan I, Bogomazova A, Martynova E, de Bello Cioffi M, Liehr T, Al-Rikabi A, Osipov F, Petrosyan V, Kolomiets O. Meiotic synapsis of homeologous chromosomes and mismatch repair protein detection in the parthenogenetic rock lizard Darevskia unisexualis. Mol Reprod Dev 2021; 88:119-127. [PMID: 33438277 DOI: 10.1002/mrd.23450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 11/08/2022]
Abstract
Parthenogenetic species of Caucasian rock lizards of the genus Darevksia are important evidence for reticulate evolution and speciation by hybridization in vertebrates. Female-only lineages formed through interspecific hybridization have been discovered in many groups. Nevertheless, critical mechanisms of oogenesis and specifics of meiosis that provide long-term stability of parthenogenetic species are still unknown. Here we report cytogenetic characteristics of somatic karyotypes and meiotic prophase I nuclei in the diploid parthenogenetic species Darevskia unisexualis from the new population "Keti" in Armenia which contains an odd number of chromosomes 2n = 37, instead of the usual 2n = 38. We revealed 36 acrocentric chromosomes and a single metacentric autosomal chromosome, resulting from Robertsonian translocation. Comparative genomic hybridization revealed that chromosome fusion occurred between two chromosomes inherited from the maternal species, similar to another parthenogenetic species D. rostombekowi. To trace the chromosome behaviour in meiosis, we performed an immunocytochemical study of primary oocytes' spread nuclei and studied chromosome synapsis during meiotic prophase I in D. unisexualis based on analysis of synaptonemal complexes (SCs). We found meiotic SC-trivalent composed of one metacentric and two acrocentric chromosomes. We confirmed that the SC was assembled between homeologous chromosomes inherited from two parental species. Immunostaining of the pachytene and diplotene nuclei revealed a mismatch repair protein MLH1 loaded to all autosomal SC bivalents. Possible mechanisms of meiotic recombination between homeologous chromosomes are discussed.
Collapse
Affiliation(s)
| | - Marine Arakelyan
- Department of Zoology, Yerevan State University, Yerevan, Armenia
| | - Eduard Galoyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | | - Alexandra Bogomazova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Elena Martynova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Marcelo de Bello Cioffi
- Laboratório de Citogenética de Peixes, UniversidadeFederal de São Carlos, São Carlos, SP, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Fedor Osipov
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | - Varos Petrosyan
- Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| | | |
Collapse
|
17
|
Parejo M, Wragg D, Henriques D, Charrière JD, Estonba A. Digging into the Genomic Past of Swiss Honey Bees by Whole-Genome Sequencing Museum Specimens. Genome Biol Evol 2020; 12:2535-2551. [PMID: 32877519 PMCID: PMC7720081 DOI: 10.1093/gbe/evaa188] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Historical specimens in museum collections provide opportunities to gain insights into the genomic past. For the Western honey bee, Apis mellifera L., this is particularly important because its populations are currently under threat worldwide and have experienced many changes in management and environment over the last century. Using Swiss Apis mellifera mellifera as a case study, our research provides important insights into the genetic diversity of native honey bees prior to the industrial-scale introductions and trade of non-native stocks during the 20th century—the onset of intensive commercial breeding and the decline of wild honey bees following the arrival of Varroa destructor. We sequenced whole-genomes of 22 honey bees from the Natural History Museum in Bern collected in Switzerland, including the oldest A. mellifera sample ever sequenced. We identify both, a historic and a recent migrant, natural or human-mediated, which corroborates with the population history of honey bees in Switzerland. Contrary to what we expected, we find no evidence for a significant genetic bottleneck in Swiss honey bees, and find that genetic diversity is not only maintained, but even slightly increased, most probably due to modern apicultural practices. Finally, we identify signals of selection between historic and modern honey bee populations associated with genes enriched in functions linked to xenobiotics, suggesting a possible selective pressure from the increasing use and diversity of chemicals used in agriculture and apiculture over the last century.
Collapse
Affiliation(s)
- Melanie Parejo
- Agroscope, Swiss Bee Research Center, Bern, Switzerland.,Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - David Wragg
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Dora Henriques
- Instituto Politécnico de Bragança, Centro de Investigação de Montanha (CIMO), Bragança, Portugal
| | | | - Andone Estonba
- Lab. Genetics, Department of Genetics, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
18
|
A Single Gene Causes Thelytokous Parthenogenesis, the Defining Feature of the Cape Honeybee Apis mellifera capensis. Curr Biol 2020; 30:2248-2259.e6. [DOI: 10.1016/j.cub.2020.04.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/05/2020] [Accepted: 04/15/2020] [Indexed: 02/01/2023]
|
19
|
Matthey-Doret C, van der Kooi CJ, Jeffries DL, Bast J, Dennis AB, Vorburger C, Schwander T. Mapping of Multiple Complementary Sex Determination Loci in a Parasitoid Wasp. Genome Biol Evol 2020; 11:2954-2962. [PMID: 31596478 PMCID: PMC6821247 DOI: 10.1093/gbe/evz219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/22/2022] Open
Abstract
Sex determination has evolved in a variety of ways and can depend on environmental and genetic signals. A widespread form of genetic sex determination is haplodiploidy, where unfertilized, haploid eggs develop into males and fertilized diploid eggs into females. One of the molecular mechanisms underlying haplodiploidy in Hymenoptera, the large insect order comprising ants, bees, and wasps, is complementary sex determination (CSD). In species with CSD, heterozygosity at one or several loci induces female development. Here, we identify the genomic regions putatively underlying multilocus CSD in the parasitoid wasp Lysiphlebus fabarum using restriction-site associated DNA sequencing. By analyzing segregation patterns at polymorphic sites among 331 diploid males and females, we identify up to four CSD candidate regions, all on different chromosomes. None of the candidate regions feature evidence for homology with the csd gene from the honey bee, the only species in which CSD has been characterized, suggesting that CSD in L. fabarum is regulated via a novel molecular mechanism. Moreover, no homology is shared between the candidate loci, in contrast to the idea that multilocus CSD should emerge from duplications of an ancestral single-locus system. Taken together, our results suggest that the molecular mechanisms underlying CSD in Hymenoptera are not conserved between species, raising the question as to whether CSD may have evolved multiple times independently in the group.
Collapse
Affiliation(s)
- Cyril Matthey-Doret
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Casper J van der Kooi
- Department of Ecology and Evolution, University of Lausanne, Switzerland.,Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Daniel L Jeffries
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Jens Bast
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Alice B Dennis
- Institute of Integrative Biology, ETH Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.,Unit of Evolutionary Biology and Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Christoph Vorburger
- Institute of Integrative Biology, ETH Zürich, Switzerland.,Department of Aquatic Ecology, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Tanja Schwander
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| |
Collapse
|