1
|
Greenway R, De-Kayne R, Brown AP, Camarillo H, Delich C, McGowan KL, Nelson J, Arias-Rodriguez L, Kelley JL, Tobler M. Integrative analyses of convergent adaptation in sympatric extremophile fishes. Curr Biol 2024; 34:4968-4982.e7. [PMID: 39395416 DOI: 10.1016/j.cub.2024.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/18/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
The evolution of independent lineages along replicated environmental transitions frequently results in convergent adaptation, yet the degree to which convergence is present across multiple levels of biological organization is often unclear. Additionally, inherent biases associated with shared ancestry and variation in selective regimes across geographic replicates often pose challenges for confidently identifying patterns of convergence. We investigated a system in which three species of poeciliid fishes sympatrically occur in a toxic spring rich in hydrogen sulfide (H2S) and an adjacent nonsulfidic stream to examine patterns of adaptive evolution across levels of biological organization. We found convergence in morphological and physiological traits and genome-wide patterns of gene expression among all three species. In addition, there were shared signatures of selection on genes encoding H2S toxicity targets in the mitochondrial genomes of each species. However, analyses of nuclear genomes revealed neither evidence for substantial genomic islands of divergence around genes involved in H2S toxicity and detoxification nor substantial congruence of strongly differentiated regions across population pairs. These non-convergent, heterogeneous patterns of genomic divergence may indicate that sulfide tolerance is highly polygenic, with shared allele frequency shifts present at many loci with small effects along the genome. Alternatively, H2S tolerance may involve substantial genetic redundancy, with non-convergent, lineage-specific variation at multiple loci along the genome underpinning similar changes in phenotypes and gene expression. Overall, we demonstrate variability in the extent of convergence across organizational levels and highlight the challenges of linking patterns of convergence across scales.
Collapse
Affiliation(s)
- Ryan Greenway
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Rishi De-Kayne
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anthony P Brown
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Henry Camarillo
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Cassandra Delich
- Kansas State University, Division of Biology, 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Kerry L McGowan
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Joel Nelson
- Washington State University, School of Biological Sciences, 301 Abelson Hall, Pullman, WA 644236, USA
| | - Lenin Arias-Rodriguez
- Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Biológicas, Carretera Villahermosa-Cárdenas Km. 0.5 S/N, Entronque a Bosques de Saloya, 86150 Villahermosa, Tabasco, Mexico
| | - Joanna L Kelley
- University of California Santa Cruz, Department of Ecology and Evolutionary Biology, 1156 High Street, Santa Cruz, CA 95064, USA.
| | - Michael Tobler
- University of Missouri, St. Louis, Department of Biology, 1 University Boulevard, St. Louis, MO 63121, USA; University of Missouri, St. Louis, Whitney R. Harris World Ecology Center, 1 University Boulevard, St. Louis, MO 63121, USA; Saint Louis Zoo, WildCare Institute, 1 Government Drive, St. Louis, MO 63110, USA.
| |
Collapse
|
2
|
Pacher K, Hernández-Román N, Juarez-Lopez A, Jiménez-Jiménez JE, Lukas J, Sevinchan Y, Krause J, Arias-Rodríguez L, Bierbach D. Thermal tolerance in an extremophile fish from Mexico is not affected by environmental hypoxia. Biol Open 2024; 13:bio060223. [PMID: 38314873 PMCID: PMC10868586 DOI: 10.1242/bio.060223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 02/07/2024] Open
Abstract
The thermal ecology of ectotherm animals has gained considerable attention in the face of human-induced climate change. Particularly in aquatic species, the experimental assessment of critical thermal limits (CTmin and CTmax) may help to predict possible effects of global warming on habitat suitability and ultimately species survival. Here we present data on the thermal limits of two endemic and endangered extremophile fish species, inhabiting a geothermally heated and sulfur-rich spring system in southern Mexico: The sulfur molly (Poecilia sulphuraria) and the widemouth gambusia (Gambusia eurystoma). Besides physiological challenges induced by toxic hydrogen sulfide and related severe hypoxia during the day, water temperatures have been previously reported to exceed those of nearby clearwater streams. We now present temperature data for various locations and years in the sulfur spring complex and conducted laboratory thermal tolerance tests (CTmin and CTmax) both under normoxic and severe hypoxic conditions in both species. Average CTmax limits did not differ between species when dissolved oxygen was present. However, critical temperature (CTmax=43.2°C) in P. sulphuraria did not change when tested under hypoxic conditions, while G. eurystoma on average had a lower CTmax when oxygen was absent. Based on this data we calculated both species' thermal safety margins and used a TDT (thermal death time) model framework to relate our experimental data to observed temperatures in the natural habitat. Our findings suggest that both species live near their thermal limits during the annual dry season and are locally already exposed to temperatures above their critical thermal limits. We discuss these findings in the light of possible physiological adaptions of the sulfur-adapted fish species and the anthropogenic threats for this unique system.
Collapse
Affiliation(s)
- Korbinian Pacher
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Natalia Hernández-Román
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - Alejandro Juarez-Lopez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | | | - Juliane Lukas
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
| | - Yunus Sevinchan
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| | - Lenin Arias-Rodríguez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma Tabasco, 86150 Villahermosa, Mexico
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, 12487 Berlin, Germany
- Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, 10115 Berlin, Germany
- Science of intelligence cluster has the state of a department at TU Berlin, Excellence Cluster Science of Intelligence, Technische Universität Berlin, 10587 Berlin, Germany
| |
Collapse
|
3
|
Lukas J, Auer F, Goldhammer T, Krause J, Romanczuk P, Klamser P, Arias-Rodriguez L, Bierbach D. Diurnal Changes in Hypoxia Shape Predator-Prey Interaction in a Bird-Fish System. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.619193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Animals often face changing environments, and behavioral flexibility allows them to rapidly and adaptively respond to abiotic factors that vary more or less regularly. However, abiotic factors that affect prey species do not necessarily affect their predators. Still, the prey’s response might affect the predator indirectly, yet evidence from the wild for such a classical bottom-up effect of abiotic factors shaping several trophic levels remains sparse. In many aquatic environments, daily changes in oxygen concentrations occur frequently. When oxygen levels drop to hypoxic levels, many fishes respond with aquatic surface respiration (ASR), during which they obtain oxygen by skimming the upper, oxygenated surface layer. By increasing time at the surface, fish become more vulnerable to fish-eating birds. We explored these cascading effects in a sulfidic spring system that harbors the endemic sulphur molly (Poecilia sulphuraria) as prey species and several fish-eating bird species. Sulfide-rich springs pose harsh conditions as hydrogen sulfide (H2S) is lethal to most metazoans and reduces dissolved oxygen (DO). Field sampling during three daytimes indicated that water temperatures rose from morning to (after)noon, resulting in the already low DO levels to decrease further, while H2S levels showed no diurnal changes. The drop in DO levels was associated with a decrease in time spent diving in sulphur mollies, which corresponded with an increase in ASR. Interestingly, the laboratory-estimated threshold at which the majority of sulphur mollies initiate ASR (ASR50: <1.7 mg/L DO) was independent of temperature and this value was exceeded daily when hypoxic stress became more severe toward noon. As fish performed ASR, large aggregations built up at the water surface over the course of the day. As a possible consequence of fish spending more time at the surface, we found high activity levels of fish-eating birds at noon and in the afternoon. Our study reveals that daily fluctuations in water’s oxygen levels have the potential to alter predator-prey interactions profoundly and thus highlights the joined actions of abiotic and biotic factors shaping the evolution of a prey species.
Collapse
|
4
|
Camarillo H, Muñoz MM. Weak Relationships Between Swimming Morphology and Water Depth in Wrasses and Parrotfish Belie Multiple Selective Demands on Form-Function Evolution. Integr Comp Biol 2020; 60:1309-1319. [PMID: 32449771 DOI: 10.1093/icb/icaa041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Mechanical tradeoffs in performance are predicted to sculpt macroevolutionary patterns of morphological diversity across environmental gradients. Water depth shapes the amount of wave energy organisms' experience, which should result in evolutionary tradeoffs between speed and maneuverability in fish swimming morphology. Here, we tested whether morphological evolution would reflect functional tradeoffs in swimming performance in 131 species of wrasses and parrotfish (Family: Labridae) across a water depth gradient. We found that maximum water depth predicts variation in pectoral fin aspect ratio (AR) in wrasses, but not in parrotfish. Shallow-water wrasses exhibit wing-like pectoral fins that help with "flapping," which allows more efficient swimming at faster speeds. Deeper water species, in contrast, exhibit more paddle-like pectoral fins associated with enhanced maneuverability at slower speeds. Functional morphology responds to a number of different, potentially contrasting selective pressures. Furthermore, many-to-one mapping may release some traits from selection on performance at the expense of others. As such, deciphering the signatures of mechanical tradeoffs on phenotypic evolution will require integrating multiple aspects of ecological and morphological variation. As the field of evolutionary biomechanics moves into the era of big data, we will be uniquely poised to disentangle the intrinsic and extrinsic predictors of functional diversity.
Collapse
Affiliation(s)
- Henry Camarillo
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06510, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06510, USA
| |
Collapse
|