1
|
Austin TT, Thomas CL, Warren B. Sex differences in auditory function of the desert locust. Hear Res 2025; 460:109228. [PMID: 40056785 DOI: 10.1016/j.heares.2025.109228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/10/2025]
Abstract
Age-related auditory decline manifests across the animal kingdom, from humans and mice to zebrafish and insects. Sex differences in auditory decline are established for humans, but there is now evidence in mice and even zebrafish. Here, we found sex differences in auditory decline in an insect, the Desert Locust and investigated its biological basis. We profiled gene expression in a dedicated auditory organ, Müller's organ to understand the genetic underpinning of sex differences and measured sound-evoked transduction currents and electrophysiological properties of auditory neurons to quantify auditory decline. We analysed gene expression in Müller's organ of young locusts where sex differences in auditory function were absent and in older, noise-exposed locusts where sex differences in auditory function were maximal. The auditory organs of both male and females changed expression of 1200 and 931 genes, respectively, as they aged and were exposed to repeated bouts of noise exposure. Only 39 genes were differentially expressed between the sexes for young locusts and 9 for aged and noise exposed auditory organs. In young locusts we found sex-differences in genes for juvenile hormone and proteins involved in egg production and catalysis of steroid hormones. The majority of sex differences in Müller's organ manifested as a function of stress with females upregulating more and downregulating less genes compared to males. We hypothesise that sex differences in auditory decline are due to differences in immune responses and metabolic processes.
Collapse
Affiliation(s)
- Tom T Austin
- Neurogenetics Group, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Christian L Thomas
- Neurogenetics Group, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ben Warren
- School of Life Sciences, University of Keele, Newcastle, ST5 5BG, United Kingdom.
| |
Collapse
|
2
|
Erkosar B, Dupuis C, Savary L, Kawecki TJ. Shared genetic architecture links energy metabolism, behavior and starvation resistance along a power-endurance axis. Evol Lett 2025; 9:150-162. [PMID: 39906580 PMCID: PMC11790217 DOI: 10.1093/evlett/qrae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/16/2024] [Accepted: 10/25/2024] [Indexed: 02/06/2025] Open
Abstract
Shared developmental, physiological, and molecular mechanisms can generate strong genetic covariances across suites of traits, constraining genetic variability, and evolvability to certain axes in multivariate trait space ("variational modules" or "syndromes"). Such trait suites will not only respond jointly to selection; they will also covary across populations that diverged from one another by genetic drift. We report evidence for such a genetically correlated trait suite that links traits related to energy metabolism along a "power-endurance" axis in Drosophila melanogaster. The "power" pole of the axis is characterized by high potential for energy generation and expenditure-high expression of glycolysis and TCA cycle genes, high abundance of mitochondria, and high spontaneous locomotor activity. The opposite "endurance" pole is characterized by high triglyceride (fat) reserves, locomotor endurance, and starvation resistance (and low values of traits associated with the "power" pole). This trait suite also aligns with the first principal component of metabolome; the "power" direction is characterized by low levels of trehalose (blood sugar) and high levels of some amino acids and their derivatives, including creatine, a compound known to facilitate energy production in muscles. Our evidence comes from six replicate "Selected" populations adapted to a nutrient-poor larval diet regime during 250 generations of experimental evolution and six "Control" populations evolved in parallel on a standard diet regime. We found that, within each of these experimental evolutionary regimes, the above traits strongly covaried along this "power-endurance" axis across replicate populations which diversified by drift, indicating a shared genetic architecture. The two evolutionary regimes also drove divergence along this axis, with Selected populations on average displaced towards the "power" direction compared to Controls. Aspects of this "power-endurance" axis resemble the "pace of life" syndrome and the "thrifty phenotype"; it may have evolved as part of a coordinated organismal response to nutritional conditions.
Collapse
Affiliation(s)
- Berra Erkosar
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Loriane Savary
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tadeusz J Kawecki
- Department of Ecology and Evolution, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Richard CMC, Renault D, Wallart V, Denis B, Tarapacki P, Marion-Poll F, Colinet H. Effects of nonionic surfactants on life history traits of Drosophila melanogaster. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3809-3821. [PMID: 39838213 DOI: 10.1007/s11356-025-35932-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/23/2025]
Abstract
Surfactants are used for a variety of applications such as emulsifiers, solubilizers, or foaming agents. Their intensive production and use in pharmaceutical, cosmetic and agricultural products have resulted in their continuous discharge in the environment, especially via wastewaters. Surfactants have become a threat to living organisms as they interact with, and disrupt, cell membranes and macromolecules. Their effects have mainly been studied in aquatic species; however, terrestrial organisms are also threatened by these emerging contaminants. This study investigates the effects of two widely used nonionic surfactants, Tween-20 and Triton X-100, on key traits of larvae and adults of the fruit fly Drosophila melanogaster. We assessed the toxicity of the two surfactants on viability, development time, body size and food intake of the flies. The results revealed that both surfactants induced toxic effects on the drosophila flies leading to decreased viability, delayed development and lowered food consumption at the highest tested concentrations. Both surfactants proved to be toxic to flies, and, for all tested traits, Triton X-100 appeared more toxic than Tween-20. Our results might extend to other invertebrates. The widespread use of these substances, which then end up in the environment, should be regulated to mitigate their impacts on biodiversity and ecosystems.
Collapse
Affiliation(s)
- Chloé M C Richard
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France.
| | - David Renault
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France
| | - Violette Wallart
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Béatrice Denis
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Pénélope Tarapacki
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
| | - Frédéric Marion-Poll
- Université Paris-Saclay, CNRS, IRD, UMR Evolution, Génomes, Comportement et Ecologie, 91198, Gif-sur-Yvette, France
- Université Paris-Saclay, AgroParisTech, 91123, Palaiseau Cedex, France
| | - Hervé Colinet
- University of Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)] - UMR 6553, 263 Avenue du Gal Leclerc, CS 74205, 35042, Rennes Cedex, France
| |
Collapse
|
4
|
Bak NK, Mackay TFC, Morgante F, Nielsen KL, Nielsen JL, Kristensen TN, Rohde PD. The Role of Genetic Variation in Shaping Phenotypic Responses to Diet in Aging Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632132. [PMID: 39868103 PMCID: PMC11761520 DOI: 10.1101/2025.01.09.632132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Nutrition plays a central role in healthy living, however, extensive variability in individual responses to dietary interventions complicates our understanding of its effects. Here we present a comprehensive study utilizing the Drosophila Genetic Reference Panel (DGRP), investigating how genetic variation influences responses to diet and aging. Quantitative genetic analyses of the impact of dietary restriction on lifespan, locomotor activity, dry weight, and heat knockdown time were performed. Locomotor activity, dry weight and heat knockdown time were measured on the same individual flies. We found significant genotype-by-diet interaction (GDI) and genotype-by-age interaction (GAI) for all traits. Therefore, environmental factors play a crucial role in shaping trait variation at different ages and diets, and/or distinct genetic variation influences these traits at different ages and diets. Our genome wide association study also identified a quantitative trait locus for age-dependent dietary response. The observed GDI and GAI indicates that susceptibility to environmental influences changes as organisms age, which could have significant implications for dietary recommendations and interventions aimed at promoting healthy aging in humans. The identification of associations between DNA sequence variation and age-dependent dietary responses opens new avenues for research into the genetic mechanisms underlying these interactions.
Collapse
Affiliation(s)
| | - Trudy F. C. Mackay
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina, United States of America
| | - Fabio Morgante
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, South Carolina, United States of America
| | | | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | - Palle Duun Rohde
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
5
|
Brand JA, Aich U, Yee WKW, Wong BBM, Dowling DK. Sexual Selection Increases Male Behavioral Consistency in Drosophila melanogaster. Am Nat 2024; 203:713-725. [PMID: 38781526 DOI: 10.1086/729600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractSexual selection has been suggested to influence the expression of male behavioral consistency. However, despite predictions, direct experimental support for this hypothesis has been lacking. Here, we investigated whether sexual selection altered male behavioral consistency in Drosophila melanogaster-a species with both pre- and postcopulatory sexual selection. We took 1,144 measures of locomotor activity (a fitness-related trait in D. melanogaster) from 286 flies derived from replicated populations that have experimentally evolved under either high or low levels of sexual selection for >320 generations. We found that high sexual selection males were more consistent (decreased within-individual variance) in their locomotor activity than male conspecifics from low sexual selection populations. There were no differences in behavioral consistency between females from the high and low sexual selection populations. Furthermore, while females were more behaviorally consistent than males in the low sexual selection populations, there were no sex differences in behavioral consistency in high sexual selection populations. Our results demonstrate that behavioral plasticity is reduced in males from populations exposed to high levels of sexual selection. Disentangling whether these effects represent an evolved response to changes in the intensity of selection or are manifested through nongenetic parental effects represents a challenge for future research.
Collapse
|
6
|
Pettersen AK, Metcalfe NB. Consequences of the cost of living: is variation in metabolic rate evolutionarily significant? Philos Trans R Soc Lond B Biol Sci 2024; 379:20220498. [PMID: 38186277 PMCID: PMC10772612 DOI: 10.1098/rstb.2022.0498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Amanda K. Pettersen
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| | - Neil B. Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
7
|
Husain M, Rundle HD, Careau V. Among- and Within-Individual Variance in Metabolic Thermal Reaction Norms. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:64-70. [PMID: 38717371 DOI: 10.1086/729925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractIn ectotherms, temperature has a strong effect on metabolic rate (MR), yet the extent to which the thermal sensitivity of MR varies among versus within individuals is largely unknown. This is of interest because significant among-individual variation is a prerequisite for the evolution of metabolic thermal sensitivity. Here, we estimated the repeatability (R) of the thermal sensitivity of MR in individual virgin, adult male Drosophila melanogaster (N = 316 ) by taking repeated overnight measures of their MRs at two temperatures (~24°C and ~27°C). At the population level, thermal sensitivity decreased with locomotor activity, and older individuals showed a higher thermal sensitivity of MR than younger individuals. Taking these effects (and body mass) into account, we detected significant repeatability in both the centered intercept (R int = 0.52 ± 0.04 ) and the slope (R slp = 0.21 ± 0.07 ) of the metabolic thermal reaction norms, which respectively represent average MR and thermal sensitivity of MR. Furthermore, individuals with a higher overall MR also displayed greater increases in MR as temperature increased from ~24°C to ~27°C (r ind = 0.32 ± 0.14 ). Average MR and thermal sensitivity of MR were also positively correlated within individuals (r e = 0.15 ± 0.07 ). Our study represents a point of departure for future larger studies, in which more complex protocols (e.g., wider temperature range, breeding design) can be applied to quantify the causal components of variation in thermal sensitivity that are needed to make accurate predictions of adaptive responses to global warming.
Collapse
|
8
|
Plasman M, Burciaga LM, Alcaraz G. Sex Differences in Aggression: Female Hermit Crabs Initiate Few Fights against Males and Lose Most of Those. THE BIOLOGICAL BULLETIN 2023; 245:139-151. [PMID: 39316743 DOI: 10.1086/732257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
AbstractIndividuals with similar biological requirements frequently compete for resources. Males and females have evolved different reproductive strategies in which females invest more in fecundity and males in intrasexual competition for mates. Although less common than within-sex competition, intersexual contests may occur to obtain resources. Interindividual differences in fighting ability bias the benefits and costs between opponents, and those differences are expected to be greater in intersexual contests. We compared the chela size, muscular strength, metabolic rate, and relative boldness of males and females of Calcinus californiensis Bouvier, 1898. We further investigated how these traits influence intra- and intersexual contests for shells, with both sexes assuming roles as attackers and defenders. Males and females do not differ in chela size, muscular strength, or boldness. While males exhibited higher metabolic rates, this did not explain contest initiation or outcomes. Surprisingly, females initiated fewer contests against males than against females, and those that did often lost. However, this outcome was not attributed to sexually dimorphic traits. Instead, fighting success correlated with individual boldness and rapping frequency. Interestingly, rapping performance did not correlate with boldness, metabolic rate, or muscular strength, contrary to expectations. Our result reaffirms the common disadvantage of females as attackers in intersexual contests. However, they proved adept at defending their shells in both intra- and intersexual scenarios. This result, in addition to their typically efficient exploratory ability, raises questions about resource acquisition and distribution pathways in each sex.
Collapse
|
9
|
Strijker BN, Iwińska K, van der Zalm B, Zub K, Boratyński JS. Is personality and its association with energetics sex-specific in yellow-necked mice Apodemus flavicollis? Ecol Evol 2023; 13:e10233. [PMID: 37408630 PMCID: PMC10318423 DOI: 10.1002/ece3.10233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 07/07/2023] Open
Abstract
For the last two decades, behavioral physiologists aimed to explain a plausible covariation between energetics and personality, predicted by the "pace-of-life syndrome" (POLS) hypothesis. However, the results of these attempts are mixed with no definitive answer as to which of the two most acknowledged models "performance" or "allocation" predicts covariation between consistent among-individual variation in metabolism and repeatable behavior (animal personality). The general conclusion is that the association between personality and energetics is rather context-dependent. Life-history, behavior, and physiology as well as its plausible covariation can be considered a part of sexual dimorphism. However, up to now, only a few studies demonstrated a sex-specific correlation between metabolism and personality. Therefore, we tested the relationships between physiological and personality traits in a single population of yellow-necked mice Apodemus flavicollis in the context of a plausible between-sexes difference in this covariation. We hypothesized that the performance model will explain proactive behavior in males and the allocation model will apply to females. Behavioral traits were determined using the latency of risk-taking and the open field tests, whereas the basal metabolic rates (BMR) was measured using indirect calorimetry. We have found a positive correlation between body mass-adjusted BMR and repeatable proactive behavior in male mice, which can support the performance model. However, the females were rather consistent mainly in avoidance of risk-taking that did not correlate with BMR, suggesting essential differences in personality between sexes. Most likely, the lack of convincing association between energetics and personality traits at the population level is caused by a different selection acting on the life histories of males and females. This may only result in weak support for the predictions of the POLS hypothesis when assuming that only a single model explaining the link between physiology and behavior operates in males and females. Thus, there is a need to consider the differences between sexes in behavioral studies to evaluate this hypothesis.
Collapse
Affiliation(s)
- Beau N. Strijker
- Van Hall LarensteinUniversity of Applied SciencesLeeuwardenThe Netherlands
| | - Karolina Iwińska
- University of Białystok Doctoral School in Exact and Natural SciencesBiałystokPoland
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | - Bram van der Zalm
- Van Hall LarensteinUniversity of Applied SciencesLeeuwardenThe Netherlands
| | - Karol Zub
- Mammal Research InstitutePolish Academy of SciencesBiałowieżaPoland
| | | |
Collapse
|
10
|
Garlovsky MD, Holman L, Brooks AL, Novicic ZK, Snook RR. Experimental sexual selection affects the evolution of physiological and life-history traits. J Evol Biol 2022; 35:742-751. [PMID: 35384100 PMCID: PMC9322299 DOI: 10.1111/jeb.14003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/04/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Sexual selection and sexual conflict are expected to affect all aspects of the phenotype, not only traits that are directly involved in reproduction. Here, we show coordinated evolution of multiple physiological and life-history traits in response to long-term experimental manipulation of the mating system in populations of Drosophila pseudoobscura. Development time was extended under polyandry relative to monogamy in both sexes, potentially due to higher investment in traits linked to sexual selection and sexual conflict. Individuals (especially males) evolving under polyandry had higher metabolic rates and locomotor activity than those evolving under monogamy. Polyandry individuals also invested more in metabolites associated with increased endurance capacity and efficient energy metabolism and regulation, namely lipids and glycogen. Finally, polyandry males were less desiccation- and starvation resistant than monogamy males, suggesting trade-offs between resistance and sexually selected traits. Our results provide experimental evidence that mating systems can impose selection that influences the evolution of non-sexual phenotypes such as development, activity, metabolism and nutrient homeostasis.
Collapse
Affiliation(s)
- Martin D Garlovsky
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Luke Holman
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, UK
| | - Andrew L Brooks
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Zorana K Novicic
- Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Uppsala University, Uppsala, Sweden
| | - Rhonda R Snook
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Glazier DS. Complications with body-size correction in comparative biology: possible solutions and an appeal for new approaches. J Exp Biol 2022; 225:274353. [PMID: 35258614 DOI: 10.1242/jeb.243313] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The magnitude of many kinds of biological traits relates strongly to body size. Therefore, a first step in comparative studies frequently involves correcting for effects of body size on the variation of a phenotypic trait, so that the effects of other biological and ecological factors can be clearly distinguished. However, commonly used traditional methods for making these body-size adjustments ignore or do not completely separate the causal interactive effects of body size and other factors on trait variation. Various intrinsic and extrinsic factors may affect not only the variation of a trait, but also its covariation with body size, thus making it difficult to remove completely the effect of body size in comparative studies. These complications are illustrated by several examples of how body size interacts with diverse developmental, physiological, behavioral and ecological factors to affect variation in metabolic rate both within and across species. Such causal interactions are revealed by significant effects of these factors on the body-mass scaling slope of metabolic rate. I discuss five possible major kinds of methods for removing body-size effects that attempt to overcome these complications, at least in part, but I hope that my Review will encourage the development of other, hopefully better methods for doing so.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|
12
|
Careau V, Glazier DS. A quantitative genetics perspective on the body-mass scaling of metabolic rate. J Exp Biol 2022; 225:274354. [PMID: 35258615 DOI: 10.1242/jeb.243393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/13/2022] [Indexed: 12/20/2022]
Abstract
Widely observed allometric scaling (log-log slope<1) of metabolic rate (MR) with body mass (BM) in animals has been frequently explained using functional mechanisms, but rarely studied from the perspective of multivariate quantitative genetics. This is unfortunate, given that the additive genetic slope (bA) of the MR-BM relationship represents the orientation of the 'line of least genetic resistance' along which MR and BM may most likely evolve. Here, we calculated bA in eight species. Although most bA values were within the range of metabolic scaling exponents reported in the literature, uncertainty of each bA estimate was large (only one bA was significantly lower than 3/4 and none were significantly different from 2/3). Overall, the weighted average for bA (0.667±0.098 95% CI) is consistent with the frequent observation that metabolic scaling exponents are negatively allometric in animals (b<1). Although bA was significantly positively correlated with the phenotypic scaling exponent (bP) across the sampled species, bP was usually lower than bA, as reflected in a (non-significantly) lower weighted average for bP (0.596±0.100). This apparent discrepancy between bA and bP resulted from relatively shallow MR-BM scaling of the residuals [weighted average residual scaling exponent (be)=0.503±0.128], suggesting regression dilution (owing to measurement error and within-individual variance) causing a downward bias in bP. Our study shows how the quantification of the genetic scaling exponent informs us about potential constraints on the correlated evolution of MR and BM, and by doing so has the potential to bridge the gap between micro- and macro-evolutionary studies of scaling allometry.
Collapse
Affiliation(s)
- Vincent Careau
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada, K1N 6N5
| | - Douglas S Glazier
- Department of Biology, Juniata College, 1700 Moore Street, Huntingdon, PA 16652, USA
| |
Collapse
|