1
|
Axelrod CJ, Urquhart EM, Mahabir PN, Carlson BA, Gordon SP. Diversity of Intraspecific Patterns of Brain Region Size Covariation in Fish. Integr Comp Biol 2024; 64:506-519. [PMID: 38886128 DOI: 10.1093/icb/icae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Traits often do not evolve in isolation or vary independently of other traits. Instead, they can be affected by covariation, both within and across species. However, the importance of within-species trait covariation and, critically, the degree to which it varies between species has yet to be thoroughly studied. Brain morphology is a trait of great ecological and behavioral importance, with regions that are hypothesized to vary in size based on behavioral and cognitive demands. Sizes of brain regions have also been shown to covary with each other across various taxa. Here, we test the degree to which covariation in brain region sizes within species has been conserved across 10 teleost fish species. These 10 species span five orders, allowing us to examine how phylogenetic proximity influences similarities in intraspecific trait covariation. Our results showed a trend that similar patterns of brain region size covariation occur in more closely related species. Interestingly, there were certain brain region pairs that showed similar levels of covariation across all species regardless of phylogenetic distance, such as the telencephalon and optic tectum, while others, such as the olfactory bulb and the hypothalamus, varied more independently. Ultimately, the patterns of brain region covariation shown here suggest that evolutionary mechanisms or constraints can act on specific brain regions independently, and that these constraints can change over evolutionary time.
Collapse
Affiliation(s)
- Caleb J Axelrod
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Pria N Mahabir
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63105, USA
| | - Swanne P Gordon
- Department of Ecology and Evolution, Cornell University, E145, 215 Tower Rd Dale R. Corson Hall, Ithaca, NY 14853, USA
| |
Collapse
|
2
|
Mazzei R, Gebhardt IC, Soares MC, Hofmann MH, Bshary R. Comparative Brain Morphology of Cleaning and Sponge-Dwelling Elacatinus Gobies. BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:199-211. [PMID: 38865991 DOI: 10.1159/000539799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
INTRODUCTION Comparative studies of brain anatomy between closely related species have been very useful in demonstrating selective changes in brain structure. Within-species comparisons can be particularly useful for identifying changes in brain structure caused by contrasting environmental selection pressures. Here, we aimed to understand whether differences within and between species in habitat use and foraging behaviour influence brain morphology, on both ecological and evolutionary time scales. METHODS We used as a study model three species of the Elacatinus genus that differ in their habitat-foraging mode. The obligatory cleaning goby Elacatinus evelynae inhabits mainly corals and feeds mostly on ectoparasites removed from larger fish during cleaning interactions. In contrast, the obligatory sponge-dwelling goby Elacatinus chancei inhabits tubular sponges and feeds on microinvertebrates buried in the sponges' tissues. Finally, in the facultatively cleaning goby Elacatinus prochilos, individuals can adopt either phenotype, the cleaning or the sponge-dwelling habitat-foraging mode. By comparing the brains of the facultative goby phenotypes to the brains of the obligatory species we can test whether brain morphology is better predicted by phylogenetic relatedness or the habitat-foraging modes (cleaning × sponge dwelling). RESULTS We found that E. prochilos brains from both types (cleaning and sponge dwelling) were highly similar to each other. Their brains were in general more similar to the brains of the most closely related species, E. evelynae (obligatory cleaning species), than to the brains of E. chancei (sponge-dwelling species). In contrast, we found significant brain structure differences between the cleaning species (E. evelynae and E. prochilos) and the sponge-dwelling species (E. chancei). These differences revealed independent changes in functionally correlated brain areas that might be ecologically adaptive. E. evelynae and E. prochilos had a relatively larger visual input processing brain axis and a relatively smaller lateral line input processing brain axis than E. chancei. CONCLUSION The similar brain morphology of the two types of E. prochilos corroborates other studies showing that individuals of both types can be highly plastic in their social and foraging behaviours. Our results in the Elacatinus species suggest that morphological adaptations of the brain are likely to be found in specialists whereas species that are more flexible in their habitat may only show behavioural plasticity without showing anatomical differences.
Collapse
Affiliation(s)
- Renata Mazzei
- Eco-Ethology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Isabelle C Gebhardt
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| | - Marta C Soares
- CIBIO/InBIO, Research Center in Biodiversity and Genetic Resources, University of Porto, Porto, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus Agrário de Vairão, Vairão, Portugal
- MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Institute for Research and Advanced Training (IIFA), University of Évora, Évora, Portugal
| | - Michael H Hofmann
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany,
| | - Redouan Bshary
- Eco-Ethology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
3
|
Yang Y, Axelrod CJ, Grant E, Earl SR, Urquhart EM, Talbert K, Johnson LE, Walker Z, Hsiao K, Stone I, Carlson BA, López-Sepulcre A, Gordon SP. Evolutionary divergence of developmental plasticity and learning of mating tactics in Trinidadian guppies. J Anim Ecol 2023. [PMID: 38156548 DOI: 10.1111/1365-2656.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023]
Abstract
Behavioural plasticity is a major driver in the early stages of adaptation, but its effects in mediating evolution remain elusive because behavioural plasticity itself can evolve. In this study, we investigated how male Trinidadian guppies (Poecilia reticulata) adapted to different predation regimes diverged in behavioural plasticity of their mating tactic. We reared F2 juveniles of high- or low-predation population origins with different combinations of social and predator cues and assayed their mating behaviour upon sexual maturity. High-predation males learned their mating tactic from conspecific adults as juveniles, while low-predation males did not. High-predation males increased courtship when exposed to chemical predator cues during development; low-predation males decreased courtship in response to immediate chemical predator cues, but only when they were not exposed to such cues during development. Behavioural changes induced by predator cues were associated with developmental plasticity in brain morphology, but changes acquired through social learning were not. We thus show that guppy populations diverged in their response to social and ecological cues during development, and correlational evidence suggests that different cues can shape the same behaviour via different neural mechanisms. Our study demonstrates that behavioural plasticity, both environmentally induced and socially learnt, evolves rapidly and shapes adaptation when organisms colonize ecologically divergent habitats.
Collapse
Affiliation(s)
- Yusan Yang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Integrative Biology, University of South Florida, Tampa, Florida, USA
| | - Caleb J Axelrod
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Elly Grant
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shayna R Earl
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biology, University of Louisville, Louisville, Kentucky, USA
| | - Ellen M Urquhart
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Katie Talbert
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Lauren E Johnson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Zakiya Walker
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kyle Hsiao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Isabel Stone
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Bruce A Carlson
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Andrés López-Sepulcre
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| | - Swanne P Gordon
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Ecology and Evolution, Cornell University, Ithaca, New York, USA
| |
Collapse
|