1
|
Zheng D, Zou L, Zou J, Li Q, Lu S. Multi-omics analysis reveals potential mechanisms of diarrhetic shellfish toxin and fatty acid synthesis in marine harmful Prorocentrum. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137674. [PMID: 40007370 DOI: 10.1016/j.jhazmat.2025.137674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/31/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
This study integrates transcriptomic and proteomic approaches to investigate the synthesis pathways of diarrhetic shellfish toxins (DSTs) in Prorocentrum lima and Prorocentrum arenarium, three strains exhibiting distinct toxin profiles. By combining multi-omics data, we identified 45 type I polyketide synthases (PKSs) and 45 type II fatty acid synthases (FASs) as potential candidates involved in DST production. Sequence analysis of the selected PKS and FAS genes revealed a high level of consistency across different omics datasets. Our results highlight the differential expression of proteins associated with fatty acid biosynthesis, with P. arenarium (HN231) exhibiting a significantly higher proportion of saturated fatty acids (SFAs) compared to P. lima (3XS36 and XS336), consistent with the upregulation of proteins involved in fatty acid synthesis pathways. These findings offer new insights into the molecular mechanisms underlying DST production and fatty acid metabolism in dinoflagellates, providing a foundation for future research on environmental contamination by DSTs. This study underscores the importance of multi-omics approaches for understanding hazardous marine toxins and their environmental implications.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
2
|
Zheng D, Cen J, Chen P, Zou L, Zou J, Li Q, Lu S. Exploring potentially synthetic genes related to diarrhetic shellfish toxins production in Prorocentrum sp. via comparative transcriptomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117695. [PMID: 39808879 DOI: 10.1016/j.ecoenv.2025.117695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
Harmful algal blooms (HABs), exacerbated by climate change and environmental disturbances, pose global challenges due to marine toxin contamination, particularly diarrhetic shellfish toxins (DSTs). DSTs are prevalent marine toxins, and understanding their synthesis is vital for managing fisheries and mitigating environmental triggers. This study delves into the synthesis mechanisms of DSTs in Prorocentrum arenarium and Prorocentrum lima, which vary in toxin types and concentrations. We conducted a comprehensive comparative transcriptomic analysis to identify potential toxin-related genes, focusing on polyketide synthases (PKSs) and fatty acid synthases (FASs). Our research predicted 96 PKSs and 91 FASs genes, with a detailed examination of their sequences to elucidate dinophysistoxins (DTXs) synthesis. Additionally, we analyzed differential gene expression of PKSs in P. arenarium under nitrogen and phosphorus-limited conditions, revealing a correlation between specific PKSs gene expression patterns and okadaic acid (OA) content variations. These findings suggest a potential role of the fatty acid biosynthesis pathway in DSTs synthesis. While not completely uncovering the biosynthetic pathway of DSTs, our study offers crucial insights and genomic resources for future research on dinoflagellate toxin production mechanisms.
Collapse
Affiliation(s)
- Danlin Zheng
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jingyi Cen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Peiliang Chen
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Ligong Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Jian Zou
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Qun Li
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China
| | - Songhui Lu
- College of Life Science and Technology, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Jinan University, Guangzhou 510362, China.
| |
Collapse
|
3
|
El-Fakharany EM, Saleh AK, El-Maradny YA, El-Sayed MH, Alali I, Alsirhani AM, Alalawy AI, Alhawiti AS, Alatawi IS, Mazi W, El-Gendi H. Comprehensive insight into recent algal enzymes production and purification advances: Toward effective commercial applications: A review. Int J Biol Macromol 2024; 283:137783. [PMID: 39557238 DOI: 10.1016/j.ijbiomac.2024.137783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Algal enzymes are essential catalysts in numerous biological reactions and industrial processes owing to their adaptability and potency. The marketing of algal enzymes has recently risen due to various reasons, including the cost-efficient manner of their cultivation in photobioreactors, the eco-friendly production of high biomass contents, sources of novel enzymes that used in many sectors (biofuel and bioremediation applications), sustainability, and more renewability. Oxidoreductases and hydrolytic enzymes are among the important applied algal enzymes in industrial applications, with annually growing demand. These algal enzymes have opened up new avenues for significant health advantages in reducing and treating oxidative stress, cardiovascular illness, tumors, microbial infections, and viral outbreaks. Despite their promising uses, commercial applications of algal enzymes face many difficulties, such as stability, toxicity, and lower data availability on specific and adequate catalytic mechanisms. Therefore, this review focuses on the algal enzyme types, their uses and advantages over other microbial enzymes, downstream and upstream processing, their commercial and marketing, and their challenges. With the constant development of novel enzymes and their uses, enzyme technology provides exciting options for several industrial sectors.
Collapse
Affiliation(s)
- Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt; Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt; Pharos University in Alexandria, Canal El Mahmoudia Street, Beside Green Plaza Complex, 21648, Alexandria.
| | - Ahmed K Saleh
- Cellulose and Paper Department, National Research Centre, El-Tahrir St., Dokki 12622, Giza, Egypt
| | - Yousra A El-Maradny
- Pharmaceutical and Fermentation Industries Development Centre (PFIDC), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, Egypt
| | - Mohamed H El-Sayed
- Department of Biology, College of Sciences and Arts-Rafha, Northern Border University, Arar, Saudi Arabia
| | - Ibtisam Alali
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Alaa Muqbil Alsirhani
- Department of Chemistry, College of Science, Jouf University, P.O. BOX 2014, Sakaka, Saudi Arabia
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Ibrahim Saleem Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Wafa Mazi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Hamada El-Gendi
- Bioprocess Development Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria 21934, Egypt
| |
Collapse
|
4
|
Chinain M, Gatti Howell C, Roué M, Ung A, Henry K, Revel T, Cruchet P, Viallon J, Darius HT. Ciguatera poisoning in French Polynesia: A review of the distribution and toxicity of Gambierdiscus spp., and related impacts on food web components and human health. HARMFUL ALGAE 2023; 129:102525. [PMID: 37951623 DOI: 10.1016/j.hal.2023.102525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 11/14/2023]
Abstract
Ciguatera Poisoning (CP) is a seafood poisoning highly prevalent in French Polynesia. This illness results from the consumption of seafood contaminated with ciguatoxins (CTXs) produced by Gambierdiscus, a benthic dinoflagellate. Ciguatera significantly degrades the health and economic well-being of local communities largely dependent on reef fisheries for their subsistence. French Polynesia has been the site of rich and active CP research since the 1960's. The environmental, toxicological, and epidemiological data obtained in the frame of large-scale field surveys and a country-wide CP case reporting program conducted over the past three decades in the five island groups of French Polynesia are reviewed. Results show toxin production in Gambierdiscus in the natural environment may vary considerably at a temporal and spatial scale, and that several locales clearly represent Gambierdiscus spp. "biodiversity hotspots". Current data also suggest the "hot" species G. polynesiensis could be the primary source of CTXs in local ciguateric biotopes, pending formal confirmation. The prevalence of ciguatoxic fish and the CTX levels observed in several locales were remarkably high, with herbivores and omnivores often as toxic as carnivores. Results also confirm the strong local influence of Gambierdiscus spp. on the CTX toxin profiles characterized across multiple food web components including in CP-prone marine invertebrates. The statistics, obtained in the frame of a long-term epidemiological surveillance program established in 2007, point towards an apparent decline in the number of CP cases in French Polynesia as a whole; however, incidence rates remain dangerously high in some islands. Several of the challenges and opportunities, most notably those linked to the strong cultural ramifications of CP among local communities, that need to be considered to define effective risk management strategies are addressed.
Collapse
Affiliation(s)
- M Chinain
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia.
| | - C Gatti Howell
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - M Roué
- Institut de Recherche pour le Développement (IRD), UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 6570, Faa'a, Tahiti 98702, French Polynesia
| | - A Ung
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - K Henry
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - T Revel
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - P Cruchet
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - J Viallon
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| | - H T Darius
- Institut Louis Malardé (ILM), Laboratory of Marine Biotoxins, UMR 241-EIO (IFREMER, ILM, IRD, UPF), P.O. Box 30, Papeete, Tahiti 98713, French Polynesia
| |
Collapse
|
5
|
Wan X, Yao G, Wang K, Bao S, Han P, Wang F, Song T, Jiang H. Transcriptomic analysis of polyketide synthesis in dinoflagellate, Prorocentrum lima. HARMFUL ALGAE 2023; 123:102391. [PMID: 36894212 DOI: 10.1016/j.hal.2023.102391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/31/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
The benthic dinoflagellate Prorocentrum lima is among the most common toxic morphospecies with a cosmopolitan distribution. P. lima can produce polyketide compounds, such as okadaic acid (OA), dinophysistoxin (DTX) and their analogues, which are responsible for diarrhetic shellfish poisoning (DSP). Studying the molecular mechanism of DSP toxin biosynthesis is crucial for understanding the environmental driver influencing toxin biosynthesis as well as for better monitoring of marine ecosystems. Commonly, polyketides are produced by polyketide synthases (PKS). However, no gene has been confirmatively assigned to DSP toxin production. Here, we assembled a transcriptome from 94,730,858 Illumina RNAseq reads using Trinity, resulting in 147,527 unigenes with average sequence length of 1035 nt. Using bioinformatics analysis methods, we found 210 unigenes encoding single-domain PKS with sequence similarity to type I PKSs, as reported in other dinoflagellates. In addition, 15 transcripts encoding multi-domain PKS (forming typical type I PKSs modules) and 5 transcripts encoding hybrid nonribosomal peptide synthetase (NRPS)/PKS were found. Using comparative transcriptome and differential expression analysis, a total of 16 PKS genes were identified to be up-regulated in phosphorus-limited cultures, which was related to the up regulation of toxin expression. In concert with other recent transcriptome analyses, this study contributes to the building consensus that dinoflagellates may utilize a combination of Type I multi-domain and single-domain PKS proteins, in an as yet undefined manner, to synthesize polyketides. Our study provides valuable genomic resource for future research in order to understand the complex mechanism of toxin production in this dinoflagellate.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Kang Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shaoheng Bao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Fuli Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Tianyu Song
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
6
|
Williams E, Bachvaroff T, Place A. A Comparison of Dinoflagellate Thiolation Domain Binding Proteins Using In Vitro and Molecular Methods. Mar Drugs 2022; 20:581. [PMID: 36135770 PMCID: PMC9500876 DOI: 10.3390/md20090581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Dinoflagellates play important roles in ecosystems as primary producers and consumers making natural products that can benefit or harm environmental and human health but are also potential therapeutics with unique chemistries. Annotations of dinoflagellate genes have been hampered by large genomes with many gene copies that reduce the reliability of transcriptomics, quantitative PCR, and targeted knockouts. This study aimed to functionally characterize dinoflagellate proteins by testing their interactions through in vitro assays. Specifically, nine Amphidinium carterae thiolation domains that scaffold natural product synthesis were substituted into an indigoidine synthesizing gene from the bacterium Streptomyces lavendulae and exposed to three A. carterae phosphopantetheinyl transferases that activate synthesis. Unsurprisingly, several of the dinoflagellate versions inhibited the ability to synthesize indigoidine despite being successfully phosphopantetheinated. However, all the transferases were able to phosphopantetheinate all the thiolation domains nearly equally, defying the canon that transferases participate in segregated processes via binding specificity. Moreover, two of the transferases were expressed during growth in alternating patterns while the final transferase was only observed as a breakdown product common to all three. The broad substrate recognition and compensatory expression shown here help explain why phosphopantetheinyl transferases are lost throughout dinoflagellate evolution without a loss in a biochemical process.
Collapse
Affiliation(s)
| | | | - Allen Place
- Institute for Marine and Environmental Technologies, University of Maryland Center for Environmental Science, 701 East Pratt St., Baltimore, MD 21202, USA
| |
Collapse
|
7
|
Dinoflagellate Phosphopantetheinyl Transferase (PPTase) and Thiolation Domain Interactions Characterized Using a Modified Indigoidine Synthesizing Reporter. Microorganisms 2022; 10:microorganisms10040687. [PMID: 35456738 PMCID: PMC9027781 DOI: 10.3390/microorganisms10040687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 02/01/2023] Open
Abstract
Photosynthetic dinoflagellates synthesize many toxic but also potential therapeutic compounds therapeutics via polyketide/non-ribosomal peptide synthesis, a common means of producing natural products in bacteria and fungi. Although canonical genes are identifiable in dinoflagellate transcriptomes, the biosynthetic pathways are obfuscated by high copy numbers and fractured synteny. This study focuses on the carrier domains that scaffold natural product synthesis (thiolation domains) and the phosphopantetheinyl transferases (PPTases) that thiolate these carriers. We replaced the thiolation domain of the indigoidine producing BpsA gene from Streptomyces lavendulae with those of three multidomain dinoflagellate transcripts and coexpressed these constructs with each of three dinoflagellate PPTases looking for specific pairings that would identify distinct pathways. Surprisingly, all three PPTases were able to activate all the thiolation domains from one transcript, although with differing levels of indigoidine produced, demonstrating an unusual lack of specificity. Unfortunately, constructs with the remaining thiolation domains produced almost no indigoidine and the thiolation domain for lipid synthesis could not be expressed in E. coli. These results combined with inconsistent protein expression for different PPTase/thiolation domain pairings present technical hurdles for future work. Despite these challenges, expression of catalytically active dinoflagellate proteins in E. coli is a novel and useful tool going forward.
Collapse
|
8
|
Wang H, Kim H, Park H, Ki JS. Temperature influences the content and biosynthesis gene expression of saxitoxins (STXs) in the toxigenic dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149801. [PMID: 34454155 DOI: 10.1016/j.scitotenv.2021.149801] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Temperature may affect the production of saxitoxin (STX) and its derivatives (STXs); however, this is still controversial. Further, STX-biosynthesis gene regulation and the relation of its toxicity with temperature are not clearly understood. In the present study, we evaluated the effects of different temperatures (12 °C, 16 °C, and 20 °C) on the growth, toxin profiles, and expression of two core STX-biosynthesis genes, sxtA and sxtG, in the toxic dinoflagellate Alexandrium pacificum Alex05, isolated from Korean coasts. We found that temperature significantly affected cell growth, with maximum growth recorded at 16 °C, followed by 20 °C and 12 °C. HPLC analysis revealed mostly 12 of STXs from the tested cultures. Interestingly, the contents of STXs increased in the cells cultured at 16 °C and exposed to cold stress, compared to the 20 °C culture and heat stress; however, toxin components were much more diverse under heat stress. These toxin profiles generally matched with the sxtA and sxtG expression levels. Incubation at lower temperatures (12 °C and 16 °C) and exposure to cold stress increased sxtA and sxtG expressions in the cells, whereas heat stress showed little change or downregulated the transcription of both genes. Principal component analysis (PCA) showed low correlation between STXs eq and expressional levels of sxtA and sxtG in heat-stressed cells. These results suggest that temperature might be a crucial factor affecting the level and biosynthesis of STXs in marine toxic dinoflagellates.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Hyunjun Park
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
9
|
Anestis K, Kohli GS, Wohlrab S, Varga E, Larsen TO, Hansen PJ, John U. Polyketide synthase genes and molecular trade-offs in the ichthyotoxic species Prymnesium parvum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148878. [PMID: 34252778 DOI: 10.1016/j.scitotenv.2021.148878] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/18/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Prymnesium parvum is a bloom forming haptophyte that has been responsible for numerous fish kill events across the world. The toxicity of P. parvum has been attributed to the production of large polyketide compounds, collectively called prymnesins, which based on their structure can be divided into A-, B- and C-type. The polyketide chemical nature of prymnesins indicates the potential involvement of polyketide synthases (PKSs) in their biosynthesis. However, little is known about the presence of PKSs in P. parvum as well as the potential molecular trade-offs of toxin biosynthesis. In the current study, we generated and analyzed the transcriptomes of nine P. parvum strains that produce different toxin types and have various cellular toxin contents. Numerous type I PKSs, ranging from 37 to 109, were found among the strains. Larger modular type I PKSs were mainly retrieved from strains with high cellular toxin levels and eight consensus transcripts were present in all nine strains. Gene expression variance analysis revealed potential molecular trade-offs associated with cellular toxin quantity, showing that basic metabolic processes seem to correlate negatively with cellular toxin content. These findings point towards the presence of metabolic costs for maintaining high cellular toxin quantity. The detailed analysis of PKSs in P. parvum is the first step towards better understanding the molecular basis of the biosynthesis of prymnesins and contributes to the development of molecular tools for efficient monitoring of future blooms.
Collapse
Affiliation(s)
- Konstantinos Anestis
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Gurjeet Singh Kohli
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
| | - Sylke Wohlrab
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Straße 40, 1090 Vienna, Austria.
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800 Kongens Lyngby, Denmark.
| | - Per Juel Hansen
- Marine Biology Section, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Uwe John
- Ecological Chemistry, Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany; Helmholtz Institute for Functional Marine Biodiversity, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany.
| |
Collapse
|
10
|
Williams EP, Bachvaroff TR, Place AR. A Global Approach to Estimating the Abundance and Duplication of Polyketide Synthase Domains in Dinoflagellates. Evol Bioinform Online 2021; 17:11769343211031871. [PMID: 34345159 PMCID: PMC8283056 DOI: 10.1177/11769343211031871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Abstract
Many dinoflagellate species make toxins in a myriad of different molecular configurations but the underlying chemistry in all cases is presumably via modular synthases, primarily polyketide synthases. In many organisms modular synthases occur as discrete synthetic genes or domains within a gene that act in coordination thus forming a module that produces a particular fragment of a natural product. The modules usually occur in tandem as gene clusters with a syntenic arrangement that is often predictive of the resultant structure. Dinoflagellate genomes however are notoriously complex with individual genes present in many tandem repeats and very few synthetic modules occurring as gene clusters, unlike what has been seen in bacteria and fungi. However, modular synthesis in all organisms requires a free thiol group that acts as a carrier for sequential synthesis called a thiolation domain. We scanned 47 dinoflagellate transcriptomes for 23 modular synthase domain models and compared their abundance among 10 orders of dinoflagellates as well as their co-occurrence with thiolation domains. The total count of domain types was quite large with over thirty-thousand identified, 29 000 of which were in the core dinoflagellates. Although there were no specific trends in domain abundance associated with types of toxins, there were readily observable lineage specific differences. The Gymnodiniales, makers of long polyketide toxins such as brevetoxin and karlotoxin had a high relative abundance of thiolation domains as well as multiple thiolation domains within a single transcript. Orders such as the Gonyaulacales, makers of small polyketides such as spirolides, had fewer thiolation domains but a relative increase in the number of acyl transferases. Unique to the core dinoflagellates, however, were thiolation domains occurring alongside tetratricopeptide repeats that facilitate protein-protein interactions, especially hexa and hepta-repeats, that may explain the scaffolding required for synthetic complexes capable of making large toxins. Clustering analysis for each type of domain was also used to discern possible origins of duplication for the multitude of single domain transcripts. Single domain transcripts frequently clustered with synonymous domains from multi-domain transcripts such as the BurA and ZmaK like genes as well as the multi-ketosynthase genes, sometimes with a large degree of apparent gene duplication, while fatty acid synthesis genes formed distinct clusters. Surprisingly the acyl-transferases and ketoreductases involved in fatty acid synthesis (FabD and FabG, respectively) were found in very large clusters indicating an unprecedented degree of gene duplication for these genes. These results demonstrate a complex evolutionary history of core dinoflagellate modular synthases with domain specific duplications throughout the lineage as well as clues to how large protein complexes can be assembled to synthesize the largest natural products known.
Collapse
Affiliation(s)
- Ernest P Williams
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Tsvetan R Bachvaroff
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Allen R Place
- Institute of Marine and Environmental Technologies, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| |
Collapse
|
11
|
Cusick KD, Widder EA. Bioluminescence and toxicity as driving factors in harmful algal blooms: Ecological functions and genetic variability. HARMFUL ALGAE 2020; 98:101850. [PMID: 33129462 DOI: 10.1016/j.hal.2020.101850] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Dinoflagellates are an ecologically important group of marine microbial eukaryotes with a remarkable array of adaptive strategies. It is ironic that two of the traits for which dinoflagellates are best known, toxin production and bioluminescence, are rarely linked when considering the ecological significance of either. Although dinoflagellate species that form some of the most widespread and frequent harmful algal blooms (HABs) are bioluminescent, the molecular and eco-evolutionary associations between these two traits has received little attention. Here, the major themes of biochemistry and genetics, ecological functions, signaling mechanisms, and evolution are addressed, with parallels and connections drawn between the two. Of the 17 major classes of dinoflagellate toxins, only two are produced by bioluminescent species: saxitoxin (STX) and yessotoxin. Of these, STX has been extensively studied, including the identification of the STX biosynthetic genes. While numerous theories have been put forward as to the eco-evolutionary roles of both bioluminescence and toxicity, a general consensus is that both function as grazing deterrents. Thus, both bioluminescence and toxicity may aid in HAB initiation as they alleviate grazing pressure on the HAB species. A large gap in our understanding is the genetic variability among natural bloom populations, as both toxic and non-toxic strains have been isolated from the same geographic location. The same applies to bioluminescence, as there exist both bioluminescent and non-bioluminescent strains of the same species. Recent evidence demonstrating that blooms are not monoclonal events necessitates a greater level of understanding as to the genetic variability of these traits among sub-populations as well as the mechanisms by which cells acquire or lose the trait, as sequence analysis of STX+ and STX- species indicate the key gene required for toxicity is lost rather than gained. While the extent of genetic variability for both bioluminescence and toxicity among natural HAB sub-populations remains unknown, it is an area that needs to be explored in order to gain greater insights into the molecular mechanisms and environmental parameters driving HAB evolution.
Collapse
Affiliation(s)
- Kathleen D Cusick
- University of Maryland Baltimore County, Department of Biological Sciences, 1000 Hilltop Circle, Baltimore, MD 21250, United States.
| | - Edith A Widder
- Ocean Research and Conservation Association, 1420 Seaway Dr, Fort Pierce, FL 34949, United States.
| |
Collapse
|
12
|
De novo Transcriptome of the Non-saxitoxin Producing Alexandrium tamutum Reveals New Insights on Harmful Dinoflagellates. Mar Drugs 2020; 18:md18080386. [PMID: 32722301 PMCID: PMC7460133 DOI: 10.3390/md18080386] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
Many dinoflagellates species, especially of the Alexandrium genus, produce a series of toxins with tremendous impacts on human and environmental health, and tourism economies. Alexandrium tamutum was discovered for the first time in the Gulf of Naples, and it is not known to produce saxitoxins. However, a clone of A. tamutum from the same Gulf showed copepod reproduction impairment and antiproliferative activity. In this study, the full transcriptome of the dinoflagellate A. tamutum is presented in both control and phosphate starvation conditions. RNA-seq approach was used for in silico identification of transcripts that can be involved in the synthesis of toxic compounds. Phosphate starvation was selected because it is known to induce toxin production for other Alexandrium spp. Results showed the presence of three transcripts related to saxitoxin synthesis (sxtA, sxtG and sxtU), and others potentially related to the synthesis of additional toxic compounds (e.g., 44 transcripts annotated as "polyketide synthase"). These data suggest that even if this A. tamutum clone does not produce saxitoxins, it has the potential to produce toxic metabolites, in line with the previously observed activity. These data give new insights into toxic microalgae, toxin production and their potential applications for the treatment of human pathologies.
Collapse
|
13
|
Wang H, Kim H, Ki JS. Transcriptome survey and toxin measurements reveal evolutionary modification and loss of saxitoxin biosynthesis genes in the dinoflagellates Amphidinium carterae and Prorocentrum micans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 195:110474. [PMID: 32200147 DOI: 10.1016/j.ecoenv.2020.110474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
In the present study, we characterized the potential toxin genes for polyketide synthase (PKS) and saxitoxin (STX) biosynthesis using the transcriptomes of two non-STX producing dinoflagellates Amphidinium carterae and Prorocentrum micans. RNA sequencing revealed 94 and 166 PKS contigs in A. carterae and P. micans, respectively. We first detected type III PKS, which was closely related to bacteria. In addition, dozens of homologs of 20 STX biosynthesis genes were identified. Interestingly, the core STX-synthesizing genes sxtA and sxtB were only found in P. micans, whereas sxtD was detected in A. carterae alone. Bioinformatic analysis showed that the first two core genes (sxtA and sxtG) had a low sequence similarity (37.0-67.6%) and different domain organization compared to those of other toxigenic dinoflagellates, such as Alexandrium pacificum. These might result in the breakdown of the initial reactions in STX production and ultimately the loss of the ability to synthesize the toxins in both dinoflagellates. Our findings suggest that toxin-related PKS and sxt genes are commonly found in non-STX producing dinoflagellates. In addition to their involvement in the synthesis of toxins, our result indicates that genes may also have other molecular metabolic functions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Hansol Kim
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
14
|
Wu Z, Luo H, Yu L, Lee WH, Li L, Mak YL, Lin S, Lam PKS. Characterizing ciguatoxin (CTX)- and Non-CTX-producing strains of Gambierdiscus balechii using comparative transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137184. [PMID: 32084685 DOI: 10.1016/j.scitotenv.2020.137184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
Gambierdiscus spp. can produce the polyketide compound, ciguatoxin (CTX), and are hence responsible for ciguatera fish poisoning (CFP). Studying the molecular mechanism that regulates CTX production is crucial for understanding the environmental trigger of CTX as well as for better informing fishery management. Commonly, polyketide synthases are important for polyketide synthesis; however, no gene has been confirmatively assigned to CTX production. Here, suppression subtractive hybridization (SSH) and transcriptome sequencing (RNA-Seq) were used to compare a CTX-producing strain with a non-CTX-producing strain. Using both methods, a total of 52 polyketide synthase (PKS) genes were identified to be up-regulated in the CTX-producing G. balechii, including transcripts encoding single-domain PKSs as well as transcripts encoding multi-domain PKSs. Using reverse transcription quantitative PCR, the expression of these genes in the CTX-producing strain and in nitrogen-limited cultures of the strain was further documented. These data suggest that PKSs are likely involved in polyketide synthesis and potentially in CTX synthesis in this dinoflagellate species. Our study provides the candidate biomarkers for the detection of CTXs or CFP in waters or any other organisms as well as a valuable genomic resource for the research on Gambierdiscus and other dinoflagellates.
Collapse
Affiliation(s)
- Zhen Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Hao Luo
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Liying Yu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Wai Hin Lee
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Ling Li
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yim Ling Mak
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China; Department of Marine Sciences, University of Connecticut, Groton, CT, USA.
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Department of Chemistry, City University of Hong Kong, Hong Kong, China; Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
15
|
Van Dolah FM, Morey JS, Milne S, Ung A, Anderson PE, Chinain M. Transcriptomic analysis of polyketide synthases in a highly ciguatoxic dinoflagellate, Gambierdiscus polynesiensis and low toxicity Gambierdiscus pacificus, from French Polynesia. PLoS One 2020; 15:e0231400. [PMID: 32294110 PMCID: PMC7159223 DOI: 10.1371/journal.pone.0231400] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/23/2020] [Indexed: 11/18/2022] Open
Abstract
Marine dinoflagellates produce a diversity of polyketide toxins that are accumulated in marine food webs and are responsible for a variety of seafood poisonings. Reef-associated dinoflagellates of the genus Gambierdiscus produce toxins responsible for ciguatera poisoning (CP), which causes over 50,000 cases of illness annually worldwide. The biosynthetic machinery for dinoflagellate polyketides remains poorly understood. Recent transcriptomic and genomic sequencing projects have revealed the presence of Type I modular polyketide synthases in dinoflagellates, as well as a plethora of single domain transcripts with Type I sequence homology. The current transcriptome analysis compares polyketide synthase (PKS) gene transcripts expressed in two species of Gambierdiscus from French Polynesia: a highly toxic ciguatoxin producer, G. polynesiensis, versus a non-ciguatoxic species G. pacificus, each assembled from approximately 180 million Illumina 125 nt reads using Trinity, and compares their PKS content with previously published data from other Gambierdiscus species and more distantly related dinoflagellates. Both modular and single-domain PKS transcripts were present. Single domain β-ketoacyl synthase (KS) transcripts were highly amplified in both species (98 in G. polynesiensis, 99 in G. pacificus), with smaller numbers of standalone acyl transferase (AT), ketoacyl reductase (KR), dehydratase (DH), enoyl reductase (ER), and thioesterase (TE) domains. G. polynesiensis expressed both a larger number of multidomain PKSs, and larger numbers of modules per transcript, than the non-ciguatoxic G. pacificus. The largest PKS transcript in G. polynesiensis encoded a 10,516 aa, 7 module protein, predicted to synthesize part of the polyether backbone. Transcripts and gene models representing portions of this PKS are present in other species, suggesting that its function may be performed in those species by multiple interacting proteins. This study contributes to the building consensus that dinoflagellates utilize a combination of Type I modular and single domain PKS proteins, in an as yet undefined manner, to synthesize polyketides.
Collapse
Affiliation(s)
- Frances M. Van Dolah
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
- * E-mail:
| | - Jeanine S. Morey
- Marine Genomics Core, Hollings Marine Laboratory, Charleston, SC, United States of America
| | - Shard Milne
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - André Ung
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| | - Paul E. Anderson
- Charleston Computational Genomics Group, Department of Computer Science, College of Charleston, Charleston, SC, United States of America
| | - Mireille Chinain
- Laboratoire des Biotoxines Marines, Institut Louis Malardé—UMR 241 EIO, Papeete, Tahiti, French Polynesia
| |
Collapse
|
16
|
LC-HRMS and Chemical Derivatization Strategies for the Structure Elucidation of Caribbean Ciguatoxins: Identification of C-CTX-3 and -4. Mar Drugs 2020; 18:md18040182. [PMID: 32244322 PMCID: PMC7230550 DOI: 10.3390/md18040182] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 11/23/2022] Open
Abstract
Ciguatera poisoning is linked to the ingestion of seafood that is contaminated with ciguatoxins (CTXs). The structural variability of these polyether toxins in nature remains poorly understood due to the low concentrations present even in highly toxic fish, which makes isolation and chemical characterization difficult. We studied the mass spectrometric fragmentation of Caribbean CTXs, i.e., the epimers C-CTX-1 and -2 (1 and 2), using a sensitive UHPLC–HRMS/MS approach in order to identify product ions of diagnostic value. We found that the fragmentation of the ladder-frame backbone follows a characteristic pattern and propose a generalized nomenclature for the ions formed. These data were applied to the structural characterization of a pair of so far poorly characterized isomers, C-CTX-3 and -4 (3 and 4), which we found to be reduced at C-56 relative to 1 and 2. Furthermore, we tested and applied reduction and oxidation reactions, monitored by LC–HRMS, in order to confirm the structures of 3 and 4. Reduction of 1 and 2 with NaBH4 afforded 3 and 4, thereby unambiguously confirming the identities of 3 and 4. In summary, this work provides a foundation for mass spectrometry-based characterization of new C-CTXs, including a suite of simple chemical reactions to assist the examination of structural modifications.
Collapse
|
17
|
Wang H, Guo R, Lim WA, Allen AE, Ki JS. Comparative transcriptomics of toxin synthesis genes between the non-toxin producing dinoflagellate Cochlodinium polykrikoides and toxigenic Alexandrium pacificum. HARMFUL ALGAE 2020; 93:101777. [PMID: 32307068 DOI: 10.1016/j.hal.2020.101777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, we extensively characterized potential toxin-related genes, including polyketide synthase (PKS), saxitoxin (STX) and fatty acid synthase (FAS) from the non-toxin producing marine dinoflagellate Cochlodinium polykrikoides, comparing to those of a toxigenic dinoflagellate Alexandrium pacificum. RNA sequencing revealed 50 and 271 PKS contigs from C. polykrikoides and A. pacificum, respectively. According to domain constitute and amino acid alteration, we further classified the dinoflagellate type I PKS genes into 4 sub-groups. Type III PKS was first identified in C. polykrikoides. Interestingly, we detected a large number (242 and 288) of homologs of 18 sxt genes from two studied dinoflagellates. Most of the eight key genes (sxtA, sxtB, sxtD, sxtG, sxtH/T, sxtI, sxtS and sxtU) for STX synthesis were detected in both dinoflatellates, whereas a core STX biosynthesis gene sxtG was not detected in C. polykrikoides. This may partially explain the absence of saxitoxin production in C. polykrikoides. In addition, we identified several type I and type II FAS genes, including FabD, FabF, FabG, FabH, FabI, and FabZ, whereas FabB was not found in C. polykrikoides. Overall, the numbers of the toxin-related genes in C. polykrikoides were less than that of A. pacificum. Phylogenetic analyses showed that type I PKS/FASs of dinoflagellates had close relationships with apicomplexans and bacteria. These suggest that the toxin-related PKS and sxt genes are commonly present in toxigenic and non-toxin producing dinoflagellates, and may be involved not only in the toxin synthesis, but also in other related molecular metabolic functions.
Collapse
Affiliation(s)
- Hui Wang
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea
| | - Ruoyu Guo
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea; Key Laboratory of Marine Ecosystem and Biogeochemistry, State Oceanic Administration & Second Institute of Oceanography, Ministry of Natural Resources, PR China
| | - Weol-Ae Lim
- Ocean Climate and Ecology Research Division, National Institute of Fisheries Science (NIFS), Busan 46083, South Korea
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul 03016, South Korea.
| |
Collapse
|
18
|
Ciguatera Fish Poisoning: The Risk from an Aotearoa/New Zealand Perspective. Toxins (Basel) 2020; 12:toxins12010050. [PMID: 31952334 PMCID: PMC7020403 DOI: 10.3390/toxins12010050] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
Gambierdiscus and Fukuyoa species have been identified in Aotearoa/New Zealand's coastal waters and G. polynesiensis, a known producer of ciguatoxins, has been isolated from Rangitāhua/Kermadec Islands (a New Zealand territory). The warming of the Tasman Sea and the waters around New Zealand's northern subtropical coastline heighten the risk of Gambierdiscus proliferating in New Zealand. If this occurs, the risk of ciguatera fish poisoning due to consumption of locally caught fish will increase. Research, including the development and testing of sampling methods, molecular assays, and chemical and toxicity tests, will continue. Reliable monitoring strategies are important to manage and mitigate the risk posed by this emerging threat. The research approaches that have been made, many of which will continue, are summarised in this review.
Collapse
|
19
|
Rambo IM, Dombrowski N, Constant L, Erdner D, Baker BJ. Metabolic relationships of uncultured bacteria associated with the microalgae Gambierdiscus. Environ Microbiol 2019; 22:1764-1783. [PMID: 31775181 DOI: 10.1111/1462-2920.14878] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Microbial communities inhabit algae cell surfaces and produce a variety of compounds that can impact the fitness of the host. These interactions have been studied via culturing, single-gene diversity and metagenomic read survey methods that are limited by culturing biases and fragmented genetic characterizations. Higher-resolution frameworks are needed to resolve the physiological interactions within these algal-bacterial communities. Here, we infer the encoded metabolic capabilities of four uncultured bacterial genomes (reconstructed using metagenomic assembly and binning) associated with the marine dinoflagellates Gambierdiscus carolinianus and G. caribaeus. Phylogenetic analyses revealed that two of the genomes belong to the commonly algae-associated families Rhodobacteraceae and Flavobacteriaceae. The other two genomes belong to the Phycisphaeraceae and include the first algae-associated representative within the uncultured SM1A02 group. Analyses of all four genomes suggest these bacteria are facultative aerobes, with some capable of metabolizing phytoplanktonic organosulfur compounds including dimethylsulfoniopropionate and sulfated polysaccharides. These communities may biosynthesize compounds beneficial to both the algal host and other bacteria, including iron chelators, B vitamins, methionine, lycopene, squalene and polyketides. These findings have implications for marine carbon and nutrient cycling and provide a greater depth of understanding regarding the genetic potential for complex physiological interactions between microalgae and their associated bacteria.
Collapse
Affiliation(s)
- Ian M Rambo
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Nina Dombrowski
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA.,NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
| | - Lauren Constant
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Deana Erdner
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX, 78373, USA
| |
Collapse
|
20
|
Wan X, Yao G, Liu Y, Chen J, Jiang H. Research Progress in the Biosynthetic Mechanisms of Marine Polyether Toxins. Mar Drugs 2019; 17:E594. [PMID: 31652489 PMCID: PMC6835853 DOI: 10.3390/md17100594] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
Marine polyether toxins, mainly produced by marine dinoflagellates, are novel, complex, and diverse natural products with extensive toxicological and pharmacological effects. Owing to their harmful effects during outbreaks of marine red tides, as well as their potential value for the development of new drugs, marine polyether toxins have been extensively studied, in terms of toxicology, pharmacology, detection, and analysis, structural identification, as well as their biosynthetic mechanisms. Although the biosynthetic mechanisms of marine polyether toxins are still unclear, certain progress has been made. In this review, research progress and current knowledge on the biosynthetic mechanisms of polyether toxins are summarized, including the mechanisms of carbon skeleton deletion, pendant alkylation, and polyether ring formation, along with providing a summary of mined biosynthesis-related genes. Finally, future research directions and applications of marine polyether toxins are discussed.
Collapse
Affiliation(s)
- Xiukun Wan
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Yanli Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Jisheng Chen
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
21
|
Verma A, Kohli GS, Harwood DT, Ralph PJ, Murray SA. Transcriptomic investigation into polyketide toxin synthesis in Ostreopsis (Dinophyceae) species. Environ Microbiol 2019; 21:4196-4211. [PMID: 31415128 DOI: 10.1111/1462-2920.14780] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/01/2022]
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth. Their ecological success may be related to their production of complex toxic polyketide compounds. Ostreopsis species produce potent palytoxin-like compounds (PLTX), which are associated with human skin and eye irritations, and illnesses through the consumption of contaminated seafood. To investigate the genetic basis of PLTX-like compounds, we sequenced and annotated transcriptomes from two PLTX-producing Ostreopsis species; O. cf. ovata, O. cf. siamensis, one non-PLTX producing species, O. rhodesae and compared them to a close phylogenetic relative and non-PLTX producer, Coolia malayensis. We found no clear differences in the presence or diversity of ketosynthase and ketoreductase transcripts between PLTX producing and non-producing Ostreopsis and Coolia species, as both groups contained >90 and > 10 phylogenetically diverse ketosynthase and ketoreductase transcripts, respectively. We report for the first-time type I single-, multi-domain polyketide synthases (PKSs) and hybrid non-ribosomal peptide synthase/PKS transcripts from all species. The long multi-modular PKSs were insufficient by themselves to synthesize the large complex polyether backbone of PLTX-like compounds. This implies that numerous PKS domains, including both single and multi-, work together on the biosynthesis of PLTX-like and other related polyketide compounds.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Gurjeet S Kohli
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia.,Alfred-Wegener-Institute Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, 27515, Germany
| | - D Tim Harwood
- Cawthron Institute, 98, Halifax Street East, Nelson, 7010, New Zealand
| | - Peter J Ralph
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales, 2007, Australia
| |
Collapse
|
22
|
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal Enzymes with Biotechnological Applications. Mar Drugs 2019; 17:md17080459. [PMID: 31387272 PMCID: PMC6723882 DOI: 10.3390/md17080459] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy.
| |
Collapse
|
23
|
Verma A, Barua A, Ruvindy R, Savela H, Ajani PA, Murray SA. The Genetic Basis of Toxin Biosynthesis in Dinoflagellates. Microorganisms 2019; 7:E222. [PMID: 31362398 PMCID: PMC6722697 DOI: 10.3390/microorganisms7080222] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/23/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023] Open
Abstract
In marine ecosystems, dinoflagellates can become highly abundant and even dominant at times, despite their comparatively slow growth rates. One factor that may play a role in their ecological success is the production of complex secondary metabolite compounds that can have anti-predator, allelopathic, or other toxic effects on marine organisms, and also cause seafood poisoning in humans. Our knowledge about the genes involved in toxin biosynthesis in dinoflagellates is currently limited due to the complex genomic features of these organisms. Most recently, the sequencing of dinoflagellate transcriptomes has provided us with valuable insights into the biosynthesis of polyketide and alkaloid-based toxin molecules in dinoflagellate species. This review synthesizes the recent progress that has been made in understanding the evolution, biosynthetic pathways, and gene regulation in dinoflagellates with the aid of transcriptomic and other molecular genetic tools, and provides a pathway for future studies of dinoflagellates in this exciting omics era.
Collapse
Affiliation(s)
- Arjun Verma
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia.
| | - Abanti Barua
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
- Department of Microbiology, Noakhali Science and Technology University, Chittagong 3814, Bangladesh
| | - Rendy Ruvindy
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Henna Savela
- Finnish Environment Institute, Marine Research Centre, 00790 Helsinki, Finland
| | - Penelope A Ajani
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| | - Shauna A Murray
- Climate Change Cluster, University of Technology Sydney, Sydney 2007, Australia
| |
Collapse
|
24
|
Lukowski AL, Narayan ARH. Natural Voltage-Gated Sodium Channel Ligands: Biosynthesis and Biology. Chembiochem 2019; 20:1231-1241. [PMID: 30605564 PMCID: PMC6579537 DOI: 10.1002/cbic.201800754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 12/18/2022]
Abstract
Natural product biosynthetic pathways are composed of enzymes that use powerful chemistry to assemble complex molecules. Small molecule neurotoxins are examples of natural products with intricate scaffolds which often have high affinities for their biological targets. The focus of this Minireview is small molecule neurotoxins targeting voltage-gated sodium channels (VGSCs) and the state of knowledge on their associated biosynthetic pathways. There are three small molecule neurotoxin receptor sites on VGSCs associated with three different classes of molecules: guanidinium toxins, alkaloid toxins, and ladder polyethers. Each of these types of toxins have unique structural features which are assembled by biosynthetic enzymes and the extent of information known about these enzymes varies among each class. The biosynthetic enzymes involved in the formation of these toxins have the potential to become useful tools in the efficient synthesis of VGSC probes.
Collapse
Affiliation(s)
- April L Lukowski
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| | - Alison R H Narayan
- Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
- Department of Chemistry, University of Michigan, 930 N University Ave., Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
25
|
Beedessee G, Hisata K, Roy MC, Van Dolah FM, Satoh N, Shoguchi E. Diversified secondary metabolite biosynthesis gene repertoire revealed in symbiotic dinoflagellates. Sci Rep 2019; 9:1204. [PMID: 30718591 PMCID: PMC6361889 DOI: 10.1038/s41598-018-37792-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/13/2018] [Indexed: 11/09/2022] Open
Abstract
Symbiodiniaceae dinoflagellates possess smaller nuclear genomes than other dinoflagellates and produce structurally specialized, biologically active, secondary metabolites. Till date, little is known about the evolution of secondary metabolism in dinoflagellates as comparative genomic approaches have been hampered by their large genome sizes. Here, we overcome this challenge by combining genomic and metabolomics approaches to investigate how chemical diversity arises in three decoded Symbiodiniaceae genomes (clades A3, B1 and C). Our analyses identify extensive diversification of polyketide synthase and non-ribosomal peptide synthetase genes from two newly decoded genomes of Symbiodinium tridacnidorum (A3) and Cladocopium sp. (C). Phylogenetic analyses indicate that almost all the gene families are derived from lineage-specific gene duplications in all three clades, suggesting divergence for environmental adaptation. Few metabolic pathways are conserved among the three clades and we detect metabolic similarity only in the recently diverged clades, B1 and C. We establish that secondary metabolism protein architecture guides substrate specificity and that gene duplication and domain shuffling have resulted in diversification of secondary metabolism genes.
Collapse
Affiliation(s)
- Girish Beedessee
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| | - Kanako Hisata
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Michael C Roy
- Instrumental Analysis Section, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Frances M Van Dolah
- College of Charleston, School of Sciences and Mathematics, 66 George St., Charleston, South Carolina, 29424, USA
| | - Noriyuki Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 904-0495, Japan.
| |
Collapse
|
26
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
27
|
Binzer SB, Svenssen DK, Daugbjerg N, Alves-de-Souza C, Pinto E, Hansen PJ, Larsen TO, Varga E. A-, B- and C-type prymnesins are clade specific compounds and chemotaxonomic markers in Prymnesium parvum. HARMFUL ALGAE 2019; 81:10-17. [PMID: 30638493 DOI: 10.1016/j.hal.2018.11.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 05/11/2023]
Abstract
Harmful blooms formed by planktonic microalgae (HABs) in both freshwater and coastal waters regularly lead to severe mortalities of fish and invertebrates causing substantial economic losses of marine products worldwide. The mixotrophic haptophyte Prymnesium parvum is one of the most important microalgae associated with fish kills. Here 26 strains of P. parvum with a wide geographical distribution were screened for the production of prymnesins, the suspected causative allelochemical toxins. All investigated strains produced prymnesins, indicating that the toxins play an important role for the organism. The prymnesins can be classified into three types based on the length of the carbon backbone of the compound and each algal strain produced only one of these types. Biogeographical mapping of the prymnesin distribution indicated a global distribution of each type. In addition, phylogenetic analyses based on internal transcribed spacer (ITS) sequences revealed monophyletic origin of all prymnesin types and clades could therefore be defined based on the toxic compound. It might be that evolution of new species within the P. parvum species complex is driven by changes in toxin type or that they are a result of it. Such a correlation between chemotype and phylotype has never been documented before for a harmful microalga. Chemotaxonomy and ITS-type classification may thus be used to further delimit the P. parvum species complex.
Collapse
Affiliation(s)
- Sofie Bjørnholt Binzer
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark
| | - Daniel Killerup Svenssen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Niels Daugbjerg
- Marine Biological Section, Department of Biology, University of Copenhagen, Universitetsparken 4, 2200, Copenhagen K, Denmark.
| | - Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC at CREST Research Park, University of North Carolina Wilmington, 5600 Marvin K. Moss Ln, Wilmington, NC, 28409, USA; Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Ernani Pinto
- School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof Lineu Prestes 580, 05508-000, São Paulo, SP, Brazil
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000, Helsingør, Denmark.
| | - Thomas Ostenfeld Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark.
| | - Elisabeth Varga
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Van Dolah FM, Kohli GS, Morey JS, Murray SA. Both modular and single-domain Type I polyketide synthases are expressed in the brevetoxin-producing dinoflagellate, Karenia brevis (Dinophyceae). JOURNAL OF PHYCOLOGY 2017; 53:1325-1339. [PMID: 28949419 PMCID: PMC5725682 DOI: 10.1111/jpy.12586] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/14/2017] [Indexed: 05/09/2023]
Abstract
Dinoflagellates are prolific producers of polyketide compounds, many of which are potent toxins with adverse impacts on human and marine animal health. To identify polyketide synthase (PKS) genes in the brevetoxin-producing dinoflagellate, Karenia brevis, we assembled a transcriptome from 595 million Illumina reads, sampled under different growth conditions. The assembly included 125,687 transcripts greater than 300 nt in length, with over half having >100× coverage. We found 121 transcripts encoding Type I ketosynthase (KS) domains, of which 99 encoded single KS domains, while 22 contained multiple KS domains arranged in 1-3 protein modules. Phylogenetic analysis placed all single domain and a majority of multidomain KSs within a monophyletic clade of protist PKSs. In contrast with the highly amplified single-domain KSs, only eight single-domain ketoreductase transcripts were found in the assembly, suggesting that they are more evolutionarily conserved. The multidomain PKSs were dominated by trans-acyltransferase architectures, which were recently shown to be prevalent in other algal protists. Karenia brevis also expressed several hybrid nonribosomal peptide synthetase (NRPS)/PKS sequences, including a burA-like sequence previously reported in a wide variety of dinoflagellates. This contrasts with a similarly deep transcriptome of Gambierdiscus polynesiensis, which lacked NRPS/PKS other than the burA-like transcript, and may reflect the presence of amide-containing polyketides in K. brevis and their absence from G. polynesiensis. In concert with other recent transcriptome analyses, this study provides evidence for both single domain and multidomain PKSs in the synthesis of polyketide compounds in dinoflagellates.
Collapse
Affiliation(s)
- Frances M. Van Dolah
- College of CharlestonSchool of Sciences and Mathematics66 George St.CharlestonSouth Carolina29424USA
- Hollings Marine Laboratory331 Fort Johnson Rd.CharlestonSouth Carolina29412USA
| | - Gurjeet S. Kohli
- Climate Change ClusterUniversity of Technology Sydney15 Broadway, UltimoSydneyNew South Wales2007Australia
- Singapore Centre for Environmental Life Sciences EngineeringNanyang Technological UniversitySingapore689528
| | - Jeanine S. Morey
- Hollings Marine Laboratory331 Fort Johnson Rd.CharlestonSouth Carolina29412USA
- JHT Incorporated2710 Discovery Dr.OrlandoFlorida32826USA
| | - Shauna A. Murray
- Climate Change ClusterUniversity of Technology Sydney15 Broadway, UltimoSydneyNew South Wales2007Australia
| |
Collapse
|