1
|
Díaz PA, Reguera B. North American Dinophysis, late-comers to the harmful algae world. JOURNAL OF PHYCOLOGY 2023; 59:653-657. [PMID: 37561020 DOI: 10.1111/jpy.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Affiliation(s)
- Patricio A Díaz
- Centro i~mar & CeBiB, Universidad de Los Lagos, Puerto Montt, Casilla 557, Chile
| | - Beatriz Reguera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO-CSIC), Vigo, Spain
| |
Collapse
|
2
|
Maselli M, Anestis K, Klemm K, Hansen PJ, John U. Retention of Prey Genetic Material by the Kleptoplastidic Ciliate Strombidium cf. basimorphum. Front Microbiol 2021; 12:694508. [PMID: 34394035 PMCID: PMC8355899 DOI: 10.3389/fmicb.2021.694508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Many marine ciliate species retain functional chloroplasts from their photosynthetic prey. In some species, the functionality of the acquired plastids is connected to the simultaneous retention of prey nuclei. To date, this has never been documented in plastidic Strombidium species. The functionality of the sequestered chloroplasts in Strombidium species is thought to be independent from any nuclear control and only maintained via frequent replacement of chloroplasts from newly ingested prey. Chloroplasts sequestered from the cryptophyte prey Teleaulax amphioxeia have been shown to keep their functionality for several days in the ciliate Strombidium cf. basimorphum. To investigate the potential retention of prey genetic material in this ciliate, we applied a molecular marker specific for this cryptophyte prey. Here, we demonstrate that the genetic material from prey nuclei, nucleomorphs, and ribosomes is detectable inside the ciliate for at least 5 days after prey ingestion. Moreover, single-cell transcriptomics revealed the presence of transcripts of prey nuclear origin in the ciliate after 4 days of prey starvation. These new findings might lead to the reconsideration of the mechanisms regulating chloroplasts retention in Strombidium ciliates. The development and application of molecular tools appear promising to improve our understanding on chloroplasts retention in planktonic protists.
Collapse
Affiliation(s)
- Maira Maselli
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Konstantinos Anestis
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Kerstin Klemm
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany
| | - Per Juel Hansen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Uwe John
- Alfred-Wegener-Institute, Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany.,Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
| |
Collapse
|
3
|
Drumm K, Norlin A, Kim M, Altenburger A, Juel Hansen P. Physiological Responses of Mesodinium major to Irradiance, Prey Concentration and Prey Starvation. J Eukaryot Microbiol 2021; 68:e12854. [PMID: 33866638 DOI: 10.1111/jeu.12854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/31/2021] [Indexed: 11/30/2022]
Abstract
Ciliates within the Mesodinium rubrum/Mesodinium major species complex harbor chloroplasts and other cell organelles from specific cryptophyte species. Mesodinium major was recently described, and new studies indicate that blooms of M. major are just as common as blooms of M. rubrum. Despite this, the physiology of M. major has never been studied and compared to M. rubrum. In this study, growth, food uptake, chlorophyll a and photosynthesis were measured at six different irradiances, when fed the cryptophyte, Teleaulax amphioxeia. The results show that the light compensation point for growth of M. major was significantly higher than for M. rubrum. Inorganic carbon uptake via photosynthesis contributed by far most of total carbon uptake at most irradiances, similar to M. rubrum. Mesodinium major cells contain ~four times as many chloroplast as M. rubrum leading to up to ~four times higher rates of photosynthesis. The responses of M. major to prey starvation and refeeding were also studied. Mesodinium major was well adapted to prey starvation, and 51 d without prey did not lead to mortality. Mesodinium major quickly recovered from prey starvation when refed, due to high ingestion rates of > 150 prey/predator/d.
Collapse
Affiliation(s)
- Kirstine Drumm
- Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
- Department of Bioscience, University of Aarhus, Roskilde, 4000, Denmark
| | - Andreas Norlin
- Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Miran Kim
- Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
- Honam National Institute of Biological Resources, Gohadoan-gil, Mokpo-si, Jeollanam-do, 58762, Korea
| | - Andreas Altenburger
- The Arctic University Museum of Norway, UiT - the Arctic University of Norway, Tromsø, 9037, Norway
| | - Per Juel Hansen
- Department of Biology, University of Copenhagen, Helsingør, 3000, Denmark
| |
Collapse
|
4
|
Díaz PA, Fernández-Pena C, Pérez-Santos I, Baldrich Á, Díaz M, Rodríguez F. Dinophysis Ehrenberg (Dinophyceae) in Southern Chile harbours red cryptophyte plastids from Rhodomonas/Storeatula clade. HARMFUL ALGAE 2020; 99:101907. [PMID: 33218433 DOI: 10.1016/j.hal.2020.101907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Photosynthetic species of the dinoflagellate genus Dinophysis are known to retain temporary cryptophyte plastids of the Teleaulax/Plagioselmis/Geminigera clade after feeding the ciliate Mesodinium rubrum. In the present study, partial plastid 23S rDNA sequences were retrieved in Southern Chilean waters from oceanic (Los Lagos region), and fjord systems (Aysén region), in single cells of Dinophysis and accompanying organisms (the heliozoan Actinophrys cf. sol and tintinnid ciliates), identified by means of morphological discrimination under the light microscope. All plastid 23S rDNA sequences (n = 23) from Dinophysis spp. (Dinophysis acuta, D. caudata, D. tripos and D. subcircularis) belonged to cryptophytes from clade V (Rhinomonas, Rhodomonas and Storeatula), although they could not be identified at genus level. Moreover, five plastid sequences obtained from heliozoans (Actinophryida, tentatively identified as Actinophrys cf. sol), and tintinnid ciliates, grouped together with those cryptophyte sequences. In contrast, two additional sequences from tintinnids belonged to other taxa (chlorophytes and cyanobacteria). Overall, the present study represents the first time that red cryptophyte plastids outside of the Teleaulax/Plagioselmis/Geminigera clade dominate in wild photosynthetic Dinophysis spp. These findings suggest that either Dinophysis spp. are able to feed on other ciliate prey than Mesodinium and/or that cryptophyte plastids from clade V prevail in members of the M. rubrum species complex in the studied area.
Collapse
Affiliation(s)
- Patricio A Díaz
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; CeBiB, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile.
| | - Concepción Fernández-Pena
- Centro Oceanográfico de A Coruña, (IEO), Paseo Marítimo Alcalde Francisco Vázquez, 10, Coruña 15001, Spain
| | - Iván Pérez-Santos
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Centro de Investigación Oceanográfica COPAS Sur-Austral, Campus Concepción, Universidad de Concepción, Concepción 4030000, Chile
| | - Ángela Baldrich
- Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile; Programa de Doctorado en Ciencias, mención Manejo y Conservación de Recursos Naturales, Universidad de Los Lagos, Puerto Montt, Chile
| | - Manuel Díaz
- Programa de Investigación Pesquera & Instituto de Acuicultura, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Francisco Rodríguez
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía (IEO), Subida a Radio Faro 50, Vigo 36390, Spain
| |
Collapse
|
5
|
Fiorendino JM, Smith JL, Campbell L. Growth response of Dinophysis, Mesodinium, and Teleaulax cultures to temperature, irradiance, and salinity. HARMFUL ALGAE 2020; 98:101896. [PMID: 33129454 DOI: 10.1016/j.hal.2020.101896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Mixotrophic Dinophysis species threaten human health and coastal economies through the production of toxins which cause diarrhetic shellfish poisoning (DSP) in humans. Novel blooms of Dinophysis acuminata and Dinophysis ovum have occurred in North American waters in recent decades, resulting in the closure of shellfish harvesting. Understanding the ecology of Dinophysis species and their prey is essential to predicting and mitigating the impact of blooms of these dinoflagellates. The growth response of two new isolates of Dinophysis species, one isolate of Mesodinium rubrum, and two strains of Teleaulax amphioxeia were evaluated at a range of temperature, salinity, and irradiance treatments to identify possible environmental drivers of Dinophysis blooms in the Gulf of Mexico. Results showed optimal growth of T. amphioxeia and M. rubrum at 24 °C, salinity 30 - 34, and irradiances between 300 and 400 µmol quanta m - 2s - 1. Optimal Dinophysis growth was observed at salinity 22 and temperatures between 18 and 24 °C. Mesodinium and both Dinophysis responded differently to experimental treatments, which may be due to the suitability of prey and different handling of kleptochloroplasts. Dinophysis bloom onset may be initiated by warming surface waters between winter and spring in the Gulf of Mexico. Toxin profiles for these two North American isolates were distinct; Dinophysis acuminata produced okadaic acid, dinophysistoxin-1, and pectenotoxin-2 while D. ovum produced only okadaic acid. Toxin per cell for D. ovum was two orders of magnitude greater than D. acuminata. Phylogenies based on the cox1 and cob genes did not distinguish these two Dinophysis species within the D. acuminata complex.
Collapse
Affiliation(s)
- James M Fiorendino
- Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
| | - Juliette L Smith
- Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, 23062, USA
| | - Lisa Campbell
- Department of Oceanography, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
6
|
Kim M, Park MG. Unveiling the hidden genetic diversity and chloroplast type of marine benthic ciliate Mesodinium species. Sci Rep 2019; 9:14081. [PMID: 31575940 PMCID: PMC6773952 DOI: 10.1038/s41598-019-50659-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Ciliate Mesodinium species are commonly distributed in diverse aquatic systems worldwide. Among Mesodinium species, M. rubrum is closely associated with microbial food webs and red tide formation and is known to acquire chloroplasts from its cryptophyte prey for use in photosynthesis. For these reasons, Mesodinium has long received much attention in terms of ecophysiology and chloroplast evolution. Mesodinium cells are easily identifiable from other organisms owing to their unique morphology comprising two hemispheres, but a clear distinction among species is difficult under a microscope. Recent taxonomic studies of Mesodinium have been conducted largely in parallel with molecular sequence analysis, and the results have shown that the best-known planktonic M. rubrum in fact comprises eight genetic clades of a M. rubrum/M. major complex. However, unlike the planktonic Mesodinium species, little is known of the genetic diversity of benthic Mesodinium species, and to our knowledge, the present study is the first to explore this. A total of ten genetic clades, including two clades composed of M. chamaeleon and M. coatsi, were found in marine sandy sediments, eight of which were clades newly discovered through this study. We report the updated phylogenetic relationship within the genus Mesodinium comprising heterotrophic/mixotrophic as well as planktonic/benthic species. Furthermore, we unveiled the wide variety of chloroplasts of benthic Mesodinium, which were related to the green cryptophyte Chroomonas/Hemiselmis and the red cryptophyte Rhodomonas/Storeatula/Teleaulax groups.
Collapse
Affiliation(s)
- Miran Kim
- Research Institute for Basic Science, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
7
|
Nishitani G, Yamaguchi M. Seasonal succession of ciliate Mesodinium spp. with red, green, or mixed plastids and their association with cryptophyte prey. Sci Rep 2018; 8:17189. [PMID: 30464297 PMCID: PMC6249236 DOI: 10.1038/s41598-018-35629-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/07/2018] [Indexed: 11/09/2022] Open
Abstract
Mesodinium spp. are commonly found in marine and brackish waters, and several species are known to contain red, green, or both plastids that originate from cryptophyte prey. We observed the seasonal succession of Mesodinium spp. in a Japanese brackish lake, and we analysed the origin and diversity of the various coloured plastids within the cells of Mesodinium spp. using a newly developed primer set that specifically targets the cryptophyte nuclear 18S rRNA gene. Mesodinium rubrum isolated from the lake contained only red plastids originating from cryptophyte Teleaulax amphioxeia. We identified novel Mesodinium sp. that contained only green plastids or both red and green plastids originating from cryptophytes Hemiselmis sp. and Teleaulax acuta. Although the morphology of the newly identified Mesodinium sp. was indistinguishable from that of M. rubrum under normal light microscopy, phylogenetic analysis placed this species between the M. rubrum/major species complex and a well-supported lineage of M. chamaeleon and M. coatsi. Close associations were observed in cryptophyte species composition within cells of Mesodinium spp. and in ambient water samples. The appearance of suitable cryptophyte prey is probably a trigger for succession of Mesodinium spp., and the subsequent abundance of Mesodinium spp. appears to be influenced by water temperature and dissolved inorganic nutrients.
Collapse
Affiliation(s)
- Goh Nishitani
- Graduate School of Agricultural Science, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, 980-0845, Japan.
| | - Mineo Yamaguchi
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
8
|
García-Portela M, Reguera B, Sibat M, Altenburger A, Rodríguez F, Hess P. Metabolomic Profiles of Dinophysis acuminata and Dinophysis acuta Using Non-Targeted High-Resolution Mass Spectrometry: Effect of Nutritional Status and Prey. Mar Drugs 2018; 16:E143. [PMID: 29701702 PMCID: PMC5982093 DOI: 10.3390/md16050143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/11/2018] [Accepted: 04/20/2018] [Indexed: 11/24/2022] Open
Abstract
Photosynthetic species of the genus Dinophysis are obligate mixotrophs with temporary plastids (kleptoplastids) that are acquired from the ciliate Mesodinium rubrum, which feeds on cryptophytes of the Teleaulax-Plagioselmis-Geminigera clade. A metabolomic study of the three-species food chain Dinophysis-Mesodinium-Teleaulax was carried out using mass spectrometric analysis of extracts of batch-cultured cells of each level of that food chain. The main goal was to compare the metabolomic expression of Galician strains of Dinophysis acuminata and D. acuta that were subjected to different feeding regimes (well-fed and prey-limited) and feeding on two Mesodinium (Spanish and Danish) strains. Both Dinophysis species were able to grow while feeding on both Mesodinium strains, although differences in growth rates were observed. Toxin and metabolomic profiles of the two Dinophysis species were significantly different, and also varied between different feeding regimes and different prey organisms. Furthermore, significantly different metabolomes were expressed by a strain of D. acuminata that was feeding on different strains of the ciliate Mesodinium rubrum. Both species-specific metabolites and those common to D. acuminata and D. acuta were tentatively identified by screening of METLIN and Marine Natural Products Dictionary databases. This first metabolomic study applied to Dinophysis acuminata and D.acuta in culture establishes a basis for the chemical inventory of these species.
Collapse
Affiliation(s)
| | - Beatriz Reguera
- IEO, Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Manoella Sibat
- IFREMER, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| | - Andreas Altenburger
- Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark.
| | - Francisco Rodríguez
- IEO, Oceanographic Centre of Vigo, Subida a Radio Faro 50, Vigo 36390, Spain.
| | - Philipp Hess
- IFREMER, Phycotoxins Laboratory, rue de l'Ile d'Yeu, BP 21105, F-44311 Nantes, France.
| |
Collapse
|