1
|
Mohan PJ, Anil MK, Gopalakrishnan A, Joseph S, Pillai D, Mariyam Fazula A, Praveen Prasannan P. Unraveling the spawning and reproductive patterns of tomato hind grouper, Cephalopholis sonnerati (Valenciennes, 1828) from south Kerala waters. JOURNAL OF FISH BIOLOGY 2024; 105:186-200. [PMID: 38684177 DOI: 10.1111/jfb.15775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
The objective of this study is to provide information on the reproductive biology of tomato hind grouper, Cephalopholis sonnerati (Valenciennes, 1828) for conservation and management purposes. Fish caught by artisanal fishermen from September 2019 to August 2021 were analysed. A total of 280 females, 31 males, and 4 transitional and 178 sex-undetermined fish were analysed. The female to male sex proportion was 9:1, and the fish reached a maximum total body length of 38.5 and 54.5 cm for females and males, respectively. The following microscopic stages were identified: immature, developing, ripe, running ripe/releasing, and spent in both males and females. Several asynchronous development patterns were observed in the studied gonads, including multiple oocyte stages and early and advanced stages of sexual transition. High gonadosomatic index (GSI) for both males and females was recorded in March, May, and November. Running ripe and releasing stages in females were identified in the months from March to June, which indicates the spawning season. The absolute and relative fecundity of the species ranged from 162,723 ± 207,267 and 239 ± 285, respectively. An exponential relationship was found between fecundity and total body length (TL), fecundity and total body weight (TW), and fecundity and gonad weight (GW).
Collapse
Affiliation(s)
- Ponni J Mohan
- School of Ocean Science and Technology, Kerala University of Fisheries and Ocean Studies, Kochi, India
- ICAR-Vizhinjam Regional Centre of Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | - M K Anil
- ICAR-Vizhinjam Regional Centre of Central Marine Fisheries Research Institute, Thiruvananthapuram, India
| | | | - Shoji Joseph
- ICAR-Central Marine Fisheries Research Institute, Kochi, India
| | - Devika Pillai
- Department of Aquatic Animal Health Management, Kerala University of Fisheries and Ocean Studies, Kochi, India
| | - A Mariyam Fazula
- ICAR-Vizhinjam Regional Centre of Central Marine Fisheries Research Institute, Thiruvananthapuram, India
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, India
| | - P Praveen Prasannan
- ICAR-Vizhinjam Regional Centre of Central Marine Fisheries Research Institute, Thiruvananthapuram, India
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram, India
| |
Collapse
|
2
|
Kundu S, Kang HE, Kim AR, Lee SR, Kim EB, Amin MHF, Andriyono S, Kim HW, Kang K. Mitogenomic Characterization and Phylogenetic Placement of African Hind, Cephalopholis taeniops: Shedding Light on the Evolution of Groupers (Serranidae: Epinephelinae). Int J Mol Sci 2024; 25:1822. [PMID: 38339100 PMCID: PMC10855530 DOI: 10.3390/ijms25031822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The global exploration of evolutionary trends in groupers, based on mitogenomes, is currently underway. This research extensively investigates the structure of and variations in Cephalopholis species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopholis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and exhibits a gene order analogous to that of the ancestral teleost's, featuring 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species. The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were <1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C. taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs, distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our understanding of evolutionary relationships among serranid groupers, emphasizing the significance of structural considerations in mitogenomic analyses.
Collapse
Affiliation(s)
- Shantanu Kundu
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Eun-Bi Kim
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea;
| | - Muhammad Hilman Fu’adil Amin
- Advance Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia;
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoungmi Kang
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
Bucol AA, Abesamis RA, Stockwell BL, Lowe JR, Russ GR. Development of reproductive potential in protogynous coral reef fishes within Philippine no-take marine reserves. JOURNAL OF FISH BIOLOGY 2021; 99:1561-1575. [PMID: 34312862 DOI: 10.1111/jfb.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 06/13/2023]
Abstract
Empirical evidence for increases in the reproductive potential (egg output per unit area) of coral reef fish in no-take marine reserves (NTMRs) is sparse. Here, we inferred the development of reproductive potential in two species of protogynous reef fishes, Chlorurus bleekeri (Labridae: Scarinae) and Cephalopholis argus (Epinephelidae), inside and outside of Philippine NTMRs. We estimated key reproductive parameters and applied these to species-specific density and length data from 17 NTMRs (durations of protection 0-11 years) and paired fished sites (controls) in a space-for-time substitution approach. For C. argus, we also used density and length data collected almost annually over 29 years from a NTMR and an adjacent control at Apo Island. The results suggest that C. bleekeri can develop 6.0 times greater reproductive potential in NTMRs than controls after 11 years of protection, equivalent to approximately 582,000 more eggs produced 500 m-2 inside NTMRs. Enhancement of reproductive potential in C. argus was not evident after 11 years in the space-for-time substitution. At Apo Island NTMR, reproductive potential of C. argus increased approximately 6-fold over 29 years but NTMR/control ratios in reproductive potential decreased through time (from 3.2 to 2.4), probably due to spillover of C. argus from the NTMR to the control. C. argus was estimated to produce approximately 113,000 more eggs 500 m-2 inside Apo Island NTMR at the 29th year of protection. Ratios of reproductive potential between NTMR and controls in C. bleekeri and C. argus were often greater than corresponding ratios in density or biomass. The study underscores the importance of species-specific reproductive life history traits that drive variation in the development of larval fish subsidies that originate from NTMRs.
Collapse
Affiliation(s)
- Abner A Bucol
- Silliman University-Angelo King Center for Research and Environmental Management, Dumaguete City, Philippines
| | - Rene A Abesamis
- Silliman University-Angelo King Center for Research and Environmental Management, Dumaguete City, Philippines
| | - Brian L Stockwell
- School of Agriculture, Geography, Ocean, and Natural Sciences, The University of South Pacific, Suva, Fiji
| | - Jake R Lowe
- College of Science and Engineering and Australian Research Council Centre of Excellence and ARC Centre of Coral Reef Studies, James Cook University, Townsville, Australia
| | - Garry R Russ
- College of Science and Engineering and Australian Research Council Centre of Excellence and ARC Centre of Coral Reef Studies, James Cook University, Townsville, Australia
| |
Collapse
|
4
|
Assessing Assemblage Composition of Reproductively Mature Resource Fishes at a Community Based Subsistence Fishing Area (CBSFA). DIVERSITY 2021. [DOI: 10.3390/d13030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nearshore fisheries in Hawai‘i have been steadily decreasing for over a century. Marine protected areas (MPAs) have been utilized as a method to both conserve biodiversity and enhance fisheries. The composition of resource fishes within and directly outside of the recently established Hā‘ena Community Based Subsistence Fishing Area (CBSFA) on the island of Kaua‘i were assessed to determine temporal and spatial patterns in assemblage structure. In situ visual surveys of fishes, invertebrates, and benthos were conducted using a stratified random sampling design to evaluate the efficacy of the MPA between 2016 and 2020. L50 values—defined as the size at which half of the individuals in a population have reached reproductive maturity—were used as proxies for identifying reproductively mature resource fishes both inside and outside the CBSFA. Surveys between 2016 and 2020 did not indicate strong temporal or spatial changes in overall resource fish assemblage structure; however, some species-specific changes were evident. Although overall resource species diversity and richness were significantly higher by 2020 inside the MPA boundaries, there is currently no strong evidence for a reserve effect.
Collapse
|
5
|
Affiliation(s)
- Ujjwal Chakraborty
- Life Science Division, Moulasole R.B. High School, Moulasole, Bankura, West Bengal, India
| |
Collapse
|