1
|
Lee CY, Acuña S, Hammock BG, Smith AG, Hassrick JL, Teh S. Influence of an impacted estuary on the reproduction of an endangered endemic fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178123. [PMID: 39806728 DOI: 10.1016/j.scitotenv.2024.178123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/19/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025]
Abstract
Health and nutrition of individuals are tied to reproductive success, which determines population viability. Environmental variability and anthropogenic effects can affect the health and nutrition of a species leading to reproductive repercussions which can hinder recovery of endangered populations. Indices of health and nutrition were examined for an imperiled species, delta smelt, Hypomesus transpacificus, in relation to their reproductive status to evaluate the effects of hydrologic conditions in the San Francisco Estuary and Sacramento-San Joaquin Delta. Adult delta smelt were collected by the Fall Midwater Trawl and Spring Kodiak Trawl during monthly monitoring surveys run by the California Department of Fish and Wildlife from 2011 to 2018 spanning from the head of the Carquinez strait to the Sacramento Deep Water Ship Channel. The hydrologic conditions during this period ranged from high precipitation (2011 and 2017) to drought (2012-2016). Drought, via indirect effects from contaminant concentrations and food availability, is hypothesized to influence the health and reproductive success of delta smelt. Each individual was examined for size (length, weight, and condition factor), health (gill and liver pathology/indices), nutritional (RNA/DNA and liver glycogen depletion estimated histologically), and reproductive indicators (gonadosomatic indices [GSI], oocyte developmental stage, clutch size, oocyte size, and oocyte weight). Fork length and condition factor both had strong, positive correlations with reproduction. Glycogen depletion was correlated with higher oocyte mass, oocyte area and GSI, indicating females low in liver glycogen had higher reproductive metrics. Gill and liver lesion severity, which often increases with contaminant exposure, were negatively associated with oocyte area and GSI. Delta smelt in Suisun Marsh and Cache Slough had the longest fork length and highest condition factor measures. Delta smelt in Cache Slough had the highest reproductive metrics and proportion of post-spawned females and late-stage oocytes. Drought did not appear to influence reproduction but reduced population size.
Collapse
Affiliation(s)
- Calvin Y Lee
- ICF, 980 9th Street, Suite 1200, Sacramento, CA 95814, USA.
| | - Shawn Acuña
- Metropolitan Water District of Southern California, 1121 L St, Sacramento, CA 95814, USA
| | - Bruce G Hammock
- Aquatic Health Program, UC Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - April G Smith
- ICF, 980 9th Street, Suite 1200, Sacramento, CA 95814, USA
| | | | - Swee Teh
- Aquatic Health Program, UC Davis, 1 Shields Ave, Davis, CA 95616, USA
| |
Collapse
|
2
|
Heimbrand Y, Limburg K, Hüssy K, Næraa T, Casini M. Cod otoliths document accelerating climate impacts in the Baltic Sea. Sci Rep 2024; 14:16750. [PMID: 39033179 PMCID: PMC11271452 DOI: 10.1038/s41598-024-67471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024] Open
Abstract
Anthropogenic deoxygenation of the Baltic Sea caused major declines in demersal and benthic habitat quality with consequent impacts on biodiversity and ecosystem services. Using Baltic cod otolith chemical proxies of hypoxia, salinity, and fish metabolic status and growth, we tracked changes from baseline conditions in the late Neolithic (4500 BP) and early twentieth century to the present, in order to understand how recent, accelerating climate change has affected this key species. Otolith hypoxia proxies (Mn:Mg) increased with expanding anoxic water volumes, but decreased with increasing salinity indexed by otolith Sr:Ca. Metabolic status proxied by otolith Mg:Ca and reconstructed growth were positively related to dissolved oxygen percent saturation, with particularly severe declines since 2010. This long-term record of otolith indicators provides further evidence of a profound state change in oxygen for the worse, in one of the world's largest inland seas. Spreading hypoxia due to climate warming will likely impair fish populations globally and evidence can be tracked with otolith chemical biomarkers.
Collapse
Affiliation(s)
- Yvette Heimbrand
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden.
| | - Karin Limburg
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden
- SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Karin Hüssy
- National Institute of Aquatic Resources, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Tomas Næraa
- Department of Geology, Lund University, Sölvegatan 12, 223 62, Lund, Sweden
| | - Michele Casini
- Department of Aquatic Resources, Swedish University of Agricultural Science, Almas Allé 5, Box 7018, 750 07, Uppsala, Sweden
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126, Bologna, Italy
| |
Collapse
|
3
|
Burbank J, McDermid JL, Turcotte F, Sylvain FÉ, Rolland N. Temporal declines in fecundity: A study of southern Gulf of St. Lawrence Atlantic herring (Clupea harengus) and implications for potential reproductive output. JOURNAL OF FISH BIOLOGY 2024; 105:279-287. [PMID: 38733293 DOI: 10.1111/jfb.15784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Individuals must reproduce to survive and thrive from generation to generation. In fish, the fecundity of individuals and estimates of total reproductive output are critical for evaluating reproductive success and understanding population dynamics. Estimating fecundity is an onerous task; therefore, many populations lack contemporary estimates of fecundity and size-fecundity relationships. However, reproductive dynamics are not static in time; therefore, it is important to develop contemporary fecundity estimates to better inform conservation and management action. To highlight the importance of contemporary fecundity estimates, we examined the fecundity of southern Gulf of St. Lawrence (sGSL) spring and fall spawning Atlantic herring in 2022, developed size-fecundity models, and compared these to historical fecundity estimates and models. Our results suggest that the average fecundity of sGSL spring and fall herring has undergone a substantial temporal decline of approximately 47% and 58%, respectively, since the 1970s and 1980s. The size-fecundity relationships for fall spawning herring have shifted, with fish of a given size exhibiting lower fecundity in 2022 compared to the 1970s. Alternatively, the size-fecundity relationships for spring spawning herring have remained relatively static. Furthermore, simulations highlighted a substantial reduction in potential reproductive output in 2022 compared to 1970 of approximately 32% and 68% for spring and fall spawners, respectively, based on a fixed number of mature females, which may have negative implications for stock rebuilding. Overall, our study provides support for periodic estimates of fecundity in fish populations to better understand temporal changes in reproductive and population dynamics.
Collapse
Affiliation(s)
- Jacob Burbank
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - Jenni L McDermid
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | - François Turcotte
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| | | | - Nicolas Rolland
- Fisheries and Oceans Canada, Gulf Fisheries Centre, Moncton, New Brunswick, Canada
| |
Collapse
|
4
|
Shaner JT, Harrell RM, Jacobs JM, Yonkos LT, Townsend H. Modeling the importance of fish condition, overall health, and disease on the fecundity of White Perch in the Choptank River. JOURNAL OF AQUATIC ANIMAL HEALTH 2023; 35:154-168. [PMID: 37596800 DOI: 10.1002/aah.10186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 08/20/2023]
Abstract
OBJECTIVE Modeling of fecundity with allometric, nutritional, and environmental covariates has increased sensitivity of reproductive metrics in many fish species. In estuaries with heavy anthropogenic influence, resident species often experience sublethal health impacts because of increased stress, which can include increases in gonadal pathology, intersex, or potential reproductive failure. This study models the fecundity of the estuarine species White Perch Morone americana in response to health parameters identified as signals of habitat stress, including gross pathology presentation, nutritional condition, and disease presence. METHODS Subpopulation fecundity in the Choptank River (Maryland) of the Chesapeake Bay was estimated using stereological fecundity sampling methods and modeled using information-theoretic approaches of model selection. Nutritional and health parameters identified through health assessment techniques, specific somatic indices, and disease presence were selected as covariates. RESULT Nutrition demonstrated limited influence on model fit as compared to models with only conventional allometric variables such as weight and length. Of the health variables, gross pathology and somatic indices showed minimal influence on selection, but mycobacterial infection, a chronic condition in the Chesapeake Bay among temperate basses, showed measurable influence. Models with mycobacteriosis included were 40 times more likely the best fit when compared to models with only allometric parameters. CONCLUSION Whether this has a region-wide influence on all subpopulations will require further research and sampling of the magnitude of mycobacteriosis infection.
Collapse
Affiliation(s)
- Jacob T Shaner
- Maryland Department of Natural Resources, Cooperative Oxford Laboratory, Oxford, Maryland, USA
| | - Reginal M Harrell
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - John M Jacobs
- National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Cooperative Oxford Laboratory, Oxford, Maryland, USA
| | - Lance T Yonkos
- Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Howard Townsend
- National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Office of Science and Technology, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Ryberg MP, Christensen A, Jørgensen C, Neuenfeldt S, Skov PV, Behrens JW. Bioenergetics modelling of growth processes in parasitized Eastern Baltic cod ( Gadus morhua L.). CONSERVATION PHYSIOLOGY 2023; 11:coad007. [PMID: 36911046 PMCID: PMC9999110 DOI: 10.1093/conphys/coad007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Changes in physiological processes can reveal how individuals respond to environmental stressors. It can be difficult to link physiological responses to changes in vital rates such as growth, reproduction and survival. Here, bioenergetics modelling can aid in understanding non-intuitive outcomes from stressor combinations. Building on an established bioenergetics model, we examine the potential effects of parasite infection on growth rate and body condition. Parasites represent an overlooked biotic factor, despite their known effects on the physiology of the host organism. As a case study, we use the host-parasite system of Eastern Baltic cod (Gadus morhua) infected with the parasitic nematode Contraceacum osculatum. Eastern Baltic cod have during the past decade experienced increasing infection loads with C. osculatum that have been shown to lead to physiological changes. We hypothesized that infection with parasites affects cod growth negatively as previous studies reveal that the infections lead to reduced energy turnover, severe liver disease and reduced nutritional condition. To test this, we implemented new variables into the bioenergetics model representing the physiological changes in infected fish and parameterized these based on previous experimental data. We found that growth rate and body condition decreased with increased infection load. Highly infected cod reach a point of no return where their energy intake cannot maintain a surplus energy balance, which may eventually lead to induced mortality. In conclusion, parasite infections cannot be ignored when assessing drivers of fish stock dynamics.
Collapse
Affiliation(s)
- Marie Plambech Ryberg
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Asbjørn Christensen
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Christian Jørgensen
- Department of Biological Sciences, University of Bergen, Thormøhlens Gate 53 A/B, 5006 Bergen, Norway
| | - Stefan Neuenfeldt
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| | - Peter V Skov
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Willemoesvej 2, Hirtshals 9850, Denmark
| | - Jane W Behrens
- National Institute of Aquatic Resources, Technical University of Denmark (DTU Aqua), Kemitorvet, Building 202,
Kgs. Lyngby 2800, Denmark
| |
Collapse
|
6
|
Lindmark M, Audzijonyte A, Blanchard JL, Gårdmark A. Temperature impacts on fish physiology and resource abundance lead to faster growth but smaller fish sizes and yields under warming. GLOBAL CHANGE BIOLOGY 2022; 28:6239-6253. [PMID: 35822557 PMCID: PMC9804230 DOI: 10.1111/gcb.16341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 05/29/2023]
Abstract
Resolving the combined effect of climate warming and exploitation in a food web context is key for predicting future biomass production, size-structure and potential yields of marine fishes. Previous studies based on mechanistic size-based food web models have found that bottom-up processes are important drivers of size-structure and fisheries yield in changing climates. However, we know less about the joint effects of 'bottom-up' and physiological effects of temperature; how do temperature effects propagate from individual-level physiology through food webs and alter the size-structure of exploited species in a community? Here, we assess how a species-resolved size-based food web is affected by warming through both these pathways and by exploitation. We parameterize a dynamic size spectrum food web model inspired by the offshore Baltic Sea food web, and investigate how individual growth rates, size-structure, and relative abundances of species and yields are affected by warming. The magnitude of warming is based on projections by the regional coupled model system RCA4-NEMO and the RCP 8.5 emission scenario, and we evaluate different scenarios of temperature dependence on fish physiology and resource productivity. When accounting for temperature-effects on physiology in addition to on basal productivity, projected size-at-age in 2050 increases on average for all fish species, mainly for young fish, compared to scenarios without warming. In contrast, size-at-age decreases when temperature affects resource dynamics only, and the decline is largest for young fish. Faster growth rates due to warming, however, do not always translate to larger yields, as lower resource carrying capacities with increasing temperature tend to result in decline in the abundance of larger fish and hence spawning stock biomass. These results suggest that to understand how global warming affects the size structure of fish communities, both direct metabolic effects and indirect effects of temperature via basal resources must be accounted for.
Collapse
Affiliation(s)
- Max Lindmark
- Department of Aquatic Resources, Institute of Coastal ResearchSwedish University of Agricultural SciencesÖregrundSweden
| | - Asta Audzijonyte
- Nature Research CentreVilniusLithuania
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Julia L. Blanchard
- Institute for Marine and Antarctic Studies and Centre for Marine SocioecologyUniversity of TasmaniaHobartTasmaniaAustralia
| | - Anna Gårdmark
- Department of Aquatic ResourcesSwedish University of Agricultural SciencesUppsalaSweden
| |
Collapse
|
7
|
Orio A, Heimbrand Y, Limburg K. Deoxygenation impacts on Baltic Sea cod: Dramatic declines in ecosystem services of an iconic keystone predator. AMBIO 2022; 51:626-637. [PMID: 34075555 PMCID: PMC8800964 DOI: 10.1007/s13280-021-01572-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/07/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The intensified expansion of the Baltic Sea's hypoxic zone has been proposed as one reason for the current poor status of cod (Gadus morhua) in the Baltic Sea, with repercussions throughout the food web and on ecosystem services. We examined the links between increased hypoxic areas and the decline in maximum length of Baltic cod, a demographic proxy for services generation. We analysed the effect of different predictors on maximum length of Baltic cod during 1978-2014 using a generalized additive model. The extent of minimally suitable areas for cod (oxygen concentration ≥ 1 ml l-1) is the most important predictor of decreased cod maximum length. We also show, with simulations, the potential for Baltic cod to increase its maximum length if hypoxic areal extent is reduced to levels comparable to the beginning of the 1990s. We discuss our findings in relation to ecosystem services affected by the decrease of cod maximum length.
Collapse
Affiliation(s)
- Alessandro Orio
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
| | - Yvette Heimbrand
- Department of Aquatic Resources, Institute of Coastal Research, Swedish University of Agricultural Sciences, Skolgatan 6, 742 42 Öregrund, Sweden
| | - Karin Limburg
- Department of Aquatic Resources, Institute of Marine Research, Swedish University of Agricultural Sciences, Turistgatan 5, 453 30 Lysekil, Sweden
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY USA
| |
Collapse
|
8
|
Corriero A, Zupa R, Mylonas CC, Passantino L. Atresia of ovarian follicles in fishes, and implications and uses in aquaculture and fisheries. JOURNAL OF FISH DISEASES 2021; 44:1271-1291. [PMID: 34132409 PMCID: PMC8453499 DOI: 10.1111/jfd.13469] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 05/04/2023]
Abstract
Atresia of ovarian follicles, that is the degenerative process of germ cells and their associated somatic cells, is a complex process involving apoptosis, autophagy and heterophagy. Follicular atresia is a normal component of fish oogenesis and it is observed throughout the ovarian cycle, although it is more frequent in regressing ovaries during the postspawning period. An increased occurrence of follicular atresia above physiological rates reduces fish fecundity and even causes reproductive failure in both wild and captive-reared fish stocks, and hence, this phenomenon has a wide range of implications in applied sciences such as fisheries and aquaculture. The present article reviews the available literature on both basic and applied traits of oocyte loss by atresia, including its morpho-physiological aspects and factors that cause a supraphysiological increase of follicular atresia. Finally, the review presents the use of early follicular atresia identification in the selection process of induced spawning in aquaculture and the implications of follicular atresia in fisheries management.
Collapse
Affiliation(s)
- Aldo Corriero
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Rosa Zupa
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| | - Constantinos C. Mylonas
- Institute of Marine Biology, Biotechnology and AquacultureHellenic Center for Marine ResearchCreteGreece
| | - Letizia Passantino
- Department of Emergency and Organ TransplantationSection of Veterinary Clinics and Animal ProductionUniversity of Bari Aldo MoroValenzano (BA)Italy
| |
Collapse
|
9
|
Chenet T, Mancia A, Bono G, Falsone F, Scannella D, Vaccaro C, Baldi A, Catani M, Cavazzini A, Pasti L. Plastic ingestion by Atlantic horse mackerel (Trachurus trachurus) from central Mediterranean Sea: A potential cause for endocrine disruption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117449. [PMID: 34098369 DOI: 10.1016/j.envpol.2021.117449] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/20/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Plastics in the oceans can break up into smaller size and shape resembling prey or particles selected for ingestion by marine organisms. Plastic polymers may contain chemical additives and contaminants, including known endocrine disruptors that may be harmful for the marine organisms, in turn posing potential risks to marine ecosystems, biodiversity and food availability. This study assesses the presence of plastics in the contents of the gastrointestinal tract (GIT) of a commercial fish species, the Atlantic horse mackerel, Trachurus trachurus, sampled from two different fishing areas of central Mediterranean Sea. Adverse effect of plastics occurrence on T. Trachurus health were also assessed quantifying the liver expression of vitellogenin (VTG), a biomarker for endocrine disruption. A total of 92 specimens were collected and morphometric indices were analysed. A subgroup was examined for microplastics (MP < 1 mm) and macroplastics (MaP >1 cm) accumulation in the GIT and for VTG expression. Results indicated that specimens from the two locations are different in size and maturity but the ingestion of plastic is widespread, with microplastics (fragments and filaments) abundantly present in nearly all samples while macroplastics were found in the larger specimens, collected in one of the two locations. Spectroscopic analysis revealed that the most abundant polymers in MP fragments were polystyrene, polyethylene and polypropylene, whereas MP filaments were identified mainly as nylon 6, acrylic and polyester. MaP were composed mainly of weathered polyethylene or polypropylene. The expression of VTG was observed in the liver of 60% of all male specimens from both locations. The results of this study represent a first evidence that the ingestion of plastic pollution may alter endocrine system function in adult fish T. Trachurus and warrants further research.
Collapse
Affiliation(s)
- Tatiana Chenet
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Annalaura Mancia
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy.
| | - Gioacchino Bono
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Fabio Falsone
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Danilo Scannella
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via Vaccara 61, 91026, Mazara del Vallo, TP, Italy
| | - Carmela Vaccaro
- Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122, Ferrara, Italy
| | - Andrea Baldi
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Martina Catani
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Alberto Cavazzini
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Luisa Pasti
- Department of Chemistry and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| |
Collapse
|
10
|
Makarenko A, Mushtruk M, Rudyk-Leuska N, Kononenko I, Shevchenko P, Khyzhniak M, Martseniuk N, Glebova J, Bazaeva A, Khalturin M. The study of the variability of morphobiological indicators of different size and weight groups of hybrid silver carp (Hypophthalmichthys spp.) as a promising direction of development of the fish processing industry. POTRAVINARSTVO 2021. [DOI: 10.5219/1537] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In water reservoirs, the size and characteristics of fish, in the first place, affect – the composition and clarity of food objects, the number of food competitors and predators, their numbers, industry, and others. Besides, the rate of linear and weight growth are the arteries that determine the value of the species as an object of commercial fishing. The hybrid of silver and bighead carp easily adapts to different growing conditions (from the point of view of the formation of fish-biological indicators), protein in different years depending on feeding conditions, in one reservoir indicators of length and body weight of ribs are inadequate. Evaluating the influence of feeding conditions on the linear growth of the rib, the method of generalized evaluation was used. An indicator equal to the sum of potential fish productivity for phyto-zooplankton was used to characterize the foraging status of a particular condition in a certain period. In terms of the quality of growth indicators, the indicator of the absolute weight of nature with differentiation of farms, age groups, and years was used. The results of the research revealed significant variability in the size and weight characteristics of different groups of silver and bighead carp, which were isolated from ponds and reservoirs. According to the results of experimental studies established for the cultivation of hybrid silver and bighead carp in reservoirs, relatively high rates of linear and weight growth are expected, higher than for similar species, which is provided in the conditions of fish ponds.
Collapse
|
11
|
Anderson KC, Alix M, Charitonidou K, Thorsen A, Thorsheim G, Ganias K, Schmidt TCDS, Kjesbu OS. Development of a new 'ultrametric' method for assessing spawning progression in female teleost serial spawners. Sci Rep 2020; 10:9677. [PMID: 32541862 PMCID: PMC7295772 DOI: 10.1038/s41598-020-66601-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/20/2020] [Indexed: 11/27/2022] Open
Abstract
The collection and presentation of accurate reproductive data from wild fish has historically been somewhat problematic, especially for serially spawning species. Therefore, the aim of the current study was to develop a novel method of assessing female spawning status that is robust to variation in oocyte dynamics between specimens. Atlantic cod (Barents Sea stock) were used to develop the new ‘ultrametric’ method, that is based on the progressive depletion of the vitellogenic oocyte pool relative to the rather constant previtellogenic oocyte (PVO) pool. Fish were subsequently partitioned into one of four categories that accurately reflected changes in their oocyte size frequency distribution characteristics and gonadosomatic index throughout spawning. The ultrametric method overcomes difficulties associated with presence of bimodal oocyte distributions, oocyte tails, lack of clear hiatus region, and presence of free ova, and can be implemented at a single sampling point. Much of the workflow is fully automated, and the technique may circumvent the need for histological analysis depending on the desired outcome. The ultrametric method differs from the traditional autodiametric method in that PVOs can be separated by ultrasonication and then enumerated, and ovarian homogeneity is not a mandatory requirement per se. The method is designed for determinate spawners but might be extended to include indeterminate spawners.
Collapse
Affiliation(s)
- Kelli C Anderson
- Institute of Marine Research, PO Box 1870 Nordnes, NO-5817, Bergen, Norway. .,Institute for Marine and Antarctic Studies, University of Tasmania Newnham Campus, Private Bag 1370, Newnham, Tas, 7248, Australia.
| | - Maud Alix
- Institute of Marine Research, PO Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Katerina Charitonidou
- Department of Biology, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | - Anders Thorsen
- Institute of Marine Research, PO Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Grethe Thorsheim
- Institute of Marine Research, PO Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Kostas Ganias
- Department of Biology, Aristotle University of Thessaloniki, 54636, Thessaloniki, Greece
| | | | - Olav Sigurd Kjesbu
- Institute of Marine Research, PO Box 1870 Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
12
|
Limburg KE, Casini M. Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure. Biol Lett 2019; 15:20190352. [PMID: 31822246 DOI: 10.1098/rsbl.2019.0352] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deoxygenation worldwide is increasing in aquatic systems with implications for organisms' biology, communities and ecosystems. Eastern Baltic cod has experienced a strong decline in mean body condition (i.e. weight at a specific length) over the past 20 years with effects on the fishery relying on this resource. The decrease in cod condition has been tentatively linked in the literature to increased hypoxic areas potentially affecting habitat range, but also to benthic prey and/or cod physiology directly. To date, no studies have been performed to test these mechanisms. Using otolith trace element microchemistry and hypoxia-responding metrics based on manganese (Mn) and magnesium (Mg), we investigated the relationship between fish body condition at capture and exposure to hypoxia. Cod individuals collected after 2000 with low body condition had a higher level of Mn/Mg in the last year of life, indicating higher exposure to hypoxic waters than cod with high body condition. Moreover, lifetime exposure to hypoxia was even more strongly correlated to body condition, suggesting that condition may reflect long-term hypoxia status. These results were irrespective of fish age or sex. This implies that as Baltic cod visit poor-oxygen waters, perhaps searching for benthic food, they compromise their own performance. This study specifically sheds light on the mechanisms leading to the low condition of cod and generally points to the impact of deoxygenation on ecosystems and fisheries.
Collapse
Affiliation(s)
- Karin E Limburg
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210, USA.,Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
| | - Michele Casini
- Department of Aquatic Resources, Swedish University of Agricultural Sciences, Lysekil, Sweden
| |
Collapse
|
13
|
Utility of Condition Indices as Predictors of Lipid Content in Slimy Sculpin (Cottus cognatus). DIVERSITY-BASEL 2019. [DOI: 10.3390/d11050071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Slimy sculpin (Cottus cognatus) are increasingly being used as indicator species. This has primarily entailed measuring their condition, the assumption being that condition can be used as a surrogate for lipid content. While there is evidence to suggest this assumption is applicable to some fish, it has yet to be validated for C. cognatus. Further, there are several means by which one may calculate condition, the most commonly employed of which are indirect measurements of lipid content (namely, Fulton's K, somatic K (Ks), and Le Cren's relative condition factor (Kn)). We compared the ability of each of these morphometric indices to predict whole-body lipid content in C. cognatus. There was a moderate degree of evidence that Fulton's K, Ks, and Kn are reliable predictors (Ks and Kn in particular). Of the latter we recommend Kn be used because, unlike Ks, it does not require that fish be killed. And while Fulton's K did not perform quite as well, we consider it a sufficient substitute if the data necessary to calculate Kn are unavailable.
Collapse
|