1
|
Gendron RL, Kwabiah RR, Paradis H, Tucker D, Boyce D, Santander J. Novel Application of Non-Invasive Methodological Approaches in Biomedical Sciences Towards Better Understanding of Marine Teleost Ocular Health and Disease. JOURNAL OF FISH DISEASES 2025; 48:e14072. [PMID: 39679642 DOI: 10.1111/jfd.14072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
Seafood is an important resource for global nutrition and food security, with both land and marine aquaculture playing pivotal roles. High visual acuity is key for health and survival of farmed, cultured, and wild fish. Cleaner fish technology to control parasite infestation has become important in marine aquaculture and highlights the importance of visual acuity in the efficacy of cleaner fish species. New clinical diagnostic approaches towards understanding and optimising fish visual health could benefit both aquacultured and wild fish populations. Opportunities for developing and using advanced non-invasive clinical assessment and diagnosis of ocular health in wild, cultured, and experimental fish are key to more rapidly realising how threats to eye health in these animals might be better understood and mitigated. Ophthalmoscopy can rapidly and non-invasively image anatomical aspects of retinal and anterior ocular tissues and has been used in mammalian biomedicine since the turn of the 20th century. More now than ever, labour-intensive post-mortem approaches for ocular analysis such as histology are increasingly being replaced or supplemented by application of various forms of optical coherence tomography (OCT) imaging of ocular tissues in mammalian biomedicine. Advances and availability of other methodological approaches such as three-dimensional printing and computer science make instrument customisation affordable and adaptable. This review article will outline how ophthalmoscopy, OCT, and other methodologies are being applied towards understanding ocular health in teleost fish species and will describe some of the future opportunities that technological advances might afford in advancing ocular imaging in fish health and disease in general.
Collapse
Affiliation(s)
- Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Rebecca R Kwabiah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- Marine Microbial Pathogenesis and Vaccinology Lab, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Denise Tucker
- The Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Danny Boyce
- The Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
2
|
Murphy L, Kwabiah R, Rouah A, Wade R, Osmond T, Tucker D, Boyce D, Vance J, Cao T, Machimbirike VI, Gnanagobal H, Vasquez I, Santander J, Gendron RL. Systematic analysis of ocular features and responses of cultured spotted wolffish (Anarhichas minor). JOURNAL OF FISH DISEASES 2024; 47:e13959. [PMID: 38706441 DOI: 10.1111/jfd.13959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
A better understanding of unique anatomical and functional features of the visual systems of teleost fish could provide key knowledge on how these systems influence the health and survival of these animals in both wild and culture environments. We took a systematic approach to assess some of the visual systems of spotted wolffish (Anarhichas minor), a species of increasing importance in North Atlantic aquaculture initiatives. The lumpfish (Cyclopterus lumpus) was included in these studies in a comparative manner to provide reference. Histology, light and electron microscopy were used to study the spatial distribution and occurrence of cone photoreceptor cells and the nature of the retinal tissues, while immunohistochemistry was used to explore the expression patterns of two photoreceptor markers, XAP-1 and XAP-2, in both species. A marine bacterial infection paradigm in lumpfish was used to assess how host-pathogen responses might impact the expression of these photoreceptor markers in these animals. We define a basic photoreceptor mosaic and present an ultrastructural to macroscopic geographical configuration of the retinal pigment tissues in both animals. Photoreceptor markers XAP-1 and XAP-2 have novel distribution patterns in spotted wolffish and lumpfish retinas, and exogenous pathogenic influences can affect the normal expression pattern of XAP-1 in lumpfish. Live tank-side ophthalmoscopy and spectral domain optical coherence tomography (SD-OCT) revealed that normal cultured spotted wolffish display novel variations in the shape of the retinal tissue. These two complementary imaging findings suggest that spotted wolffish harbour unique ocular features not yet described in marine teleosts and that visual function might involve specific retinal tissue shape dynamics in these animals. Finally, extensive endogenous biofluorescence is present in the retinal tissues of both animals, which raises questions about how these animals might use retinal tissue in novel ways for visual perception and/or communication. This work advances fundamental knowledge on the visual systems of two economically important but now threatened North Atlantic teleosts and provides a basic foundation for further research on the visual systems of these animals in health versus disease settings. This work could also be useful for understanding and optimizing the health and welfare of lumpfish and spotted wolffish in aquaculture towards a one health or integrative perspective.
Collapse
Affiliation(s)
- Lauren Murphy
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Rebecca Kwabiah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Ayla Rouah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Ryan Wade
- Dalhousie Department of Family Medicine, St. John, New Brunswick, Canada
| | - Thomas Osmond
- MUN MED 3D, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Denise Tucker
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | | | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Vimbai I Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Kwabiah RR, Weiland E, Henderson S, Vasquez I, Paradis H, Tucker D, Dimitrov I, Gardiner D, Tucker S, Newhook N, Boyce D, Scapigliati G, Kirby S, Santander J, Gendron RL. Increased water temperature contributes to a chondrogenesis response in the eyes of spotted wolffish. Sci Rep 2024; 14:12508. [PMID: 38822021 PMCID: PMC11143355 DOI: 10.1038/s41598-024-63370-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
Adult vertebrate cartilage is usually quiescent. Some vertebrates possess ocular scleral skeletons composed of cartilage or bone. The morphological characteristics of the spotted wolffish (Anarhichas minor) scleral skeleton have not been described. Here we assessed the scleral skeletons of cultured spotted wolffish, a globally threatened marine species. The healthy spotted wolffish we assessed had scleral skeletons with a low percentage of cells staining for the chondrogenesis marker sex-determining region Y-box (Sox) 9, but harboured a population of intraocular cells that co-express immunoglobulin M (IgM) and Sox9. Scleral skeletons of spotted wolffish with grossly observable eye abnormalities displayed a high degree of perochondrial activation as evidenced by cellular morphology and expression of proliferating cell nuclear antigen (PCNA) and phosphotyrosine. Cells staining for cluster of differentiation (CD) 45 and IgM accumulated around sites of active chondrogenesis, which contained cells that strongly expressed Sox9. The level of scleral chondrogenesis and the numbers of scleral cartilage PCNA positive cells increased with the temperature of the water in which spotted wolffish were cultured. Our results provide new knowledge of differing Sox9 spatial tissue expression patterns during chondrogenesis in normal control and ocular insult paradigms. Our work also provides evidence that spotted wolffish possess an inherent scleral chondrogenesis response that may be sensitive to temperature. This work also advances the fundamental knowledge of teleost ocular skeletal systems.
Collapse
Affiliation(s)
- Rebecca R Kwabiah
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Eva Weiland
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
- Faculty of Biotechnology, Mannheim University of Applied Sciences, Paul-Wittsack-Straße 10, 68163, Mannheim, Germany
| | - Sarah Henderson
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Denise Tucker
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Iliana Dimitrov
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Danielle Gardiner
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Stephanie Tucker
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Nicholas Newhook
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | | | - Simon Kirby
- Discipline of Laboratory Medicine, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, NL, A1C 5S7, Canada
| | - Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
4
|
Deering MJ, Paradis H, Ahmad R, Al-Mehiawi AS, Gendron RL. The role of dietary vitamin A in mechanisms of cataract development in the teleost lumpfish (Cyclopterus lumpus L). JOURNAL OF FISH DISEASES 2024; 47:e13899. [PMID: 38041393 DOI: 10.1111/jfd.13899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
Lumpfish (Cyclopterus lumpus L) are highly prone to cataract development in the wild and in culture. There is evidence that cataract in farmed fish is related to nutrition. However, both the nutrients and the mechanisms involved in cataract development in lumpfish are not clear. Here we investigated the mechanisms involved and the role of dietary vitamin A in cataract development in a cultured lumpfish population. Cultured lumpfish were fed three diets differing only in vitamin A supplementation level (5000, 15,000 and 120,000 IU/kg) over an 18-month period, and fish weight, cataract frequencies and severities were determined. Western blotting and immunohistochemistry were performed on lens tissue to measure the levels of oxidative stress, and apoptosis. The lowest levels of vitamin A significantly reduced cataract frequencies in adult lumpfish and resulted in less severe cataract and increased weight in males. Oxidative stress levels in the lens were positively correlated with vitamin A intake. Apoptosis was observed at high levels in lenses with severe cataract. Oxidative stress and apoptosis levels were the highest in regions of the lens with severe, advanced cataract pathology when compared to regions with no visible pathology. These results suggest that higher vitamin A intake contributes to cataract development through an oxidative stress pathway, and that both oxidative stress and apoptosis are involved in advanced stages of cataract in lumpfish.
Collapse
Affiliation(s)
- Margret J Deering
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Hélène Paradis
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Raahyma Ahmad
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Adil S Al-Mehiawi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Robert L Gendron
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
5
|
Gendron RL, Hyde T, Paradis H, Cao T, Machimbirike VI, Segovia C, Vasquez I, Ghasemieshkaftaki M, Scapigliati G, Boyce D, Santander J. CD45 in ocular tissues during larval and juvenile stages and early stages of V. anguillarum infection in young lumpfish (Cyclopterus lumpus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:523-535. [PMID: 35998868 DOI: 10.1016/j.fsi.2022.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Immune responses to infectious diseases impacting lumpfish (Cyclopterus lumpus) eye tissue are only starting to be studied at a molecular and histopathological level. In this study, we extend our understanding of lumpfish sensory organ anatomy, of components of the lumpfish nasal and ocular immune system and the nature of the intraocular response to Vibrio anguillarum infection. We have evaluated the expression of cluster of differentiation (CD) 45 protein, a tyrosine phosphatase, in larval and juvenile lumpfish tissues in order to spatially survey ocular and related head structures that may participate in early stages of intraocular immune responses. We provide here a histological mapping of the larval lumpfish nasal chamber system since its connectively with the eye though mucosal epithelia have not been explored. These results build upon our growing understanding of the lumpfish intraocular immune response to pathogens, exemplified herein by experimental nasally delivered V. anguillarum infection. CD45 is developmentally regulated in lumpfish eyes and periocular anatomy with early expression appearing in larvae in corneal epithelium and in nasal structures adjacent to the eye. Normal juvenile and adult lumpfish eyes express CD45 in the corneal epithelium, in leukocyte cells within blood vessel lumens of the rete mirabile, choroid body and choriocapillaris vasculatures. Experimental nasally delivered V. anguillarum infection led to qualitative and quantitative changes in CD45 expression in head kidney renal tubule tissues by 7 days post infection (dpi). The same animals showed redistribution and upregulation of corneal epithelial CD45 expression, corneal epithelial dysplasia and an increased frequency of CD45+ cells in ocular vasculature. Interestingly, while CD45 upregulation and/or CD45+ cell infiltration into inner ocular and retinal tissues was not observed under this experimental scenario, subtle neural retinal changes were observed in infected fish. This work provides new fundamental knowledge on North Atlantic teleost visual systems and vision biology in general.
Collapse
Affiliation(s)
- Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, A1B 3V6, NL, Canada.
| | - Tatiana Hyde
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, A1B 3V6, NL, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John's, A1B 3V6, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Vimbai I Machimbirike
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Cristopher Segovia
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Maryam Ghasemieshkaftaki
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | | | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building (JBARB), Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John's, A1C 5S7, NL, Canada
| |
Collapse
|
6
|
Onuk B, Pehlivan OY, Yardimci B. The fine structure of the turbot eye (Scophtalmus maximus): A macro-anatomical, light and scanning electron microscopical study. Microsc Res Tech 2020; 84:1163-1171. [PMID: 33316113 DOI: 10.1002/jemt.23674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 11/09/2022]
Abstract
In fish species, the morphological structure of the eye varies depending on environmental conditions. Morphometric data about the sensory organs of fish is lacking. Therefore, this study aims to describe the morphological structure of the turbot eye using gross, light and scanning electron microscope examinations. The turbot eyeball was found to comprise three layers: the tunica fibrosa bulbi (cornea, sclera), the tunica vasculosa bulbi (choroidea, iris) and the tunica nervea bulbi (retina). The thickness of the centre of the cornea measured approximately 153.14 μm, and the peripheral thickness measured 410.81 μm. The sclera consisted of a two-part cartilage structure that was connected with elastic fibres. The choroideal rete was found in the tunica vasculosa bulbi, and its thickness measured 1.6 ± 0.1 mm. Moreover, no pigment was found in the choroidea. The lens was determined to be a very hard and transparent structure extending towards the cornea. In addition, we detected five ligaments in the equatorial plane of the eye, in which the tendon of the retractor lentis muscle attaches to the lens. Also, there were six extraocular muscles in the turbot. This study is the first to present detailed descriptions of morphological structures and morphometric data for all the layers of the turbot eye. Since the anatomical structure of the eye in fish is variable, it is thought that the data on the turbot eye will contribute to the anatomy literature.
Collapse
Affiliation(s)
- Burcu Onuk
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Ozgür Y Pehlivan
- Graduate School of Health Sciences, Ondokuz Mayis University, Samsun, Turkey
| | - Banu Yardimci
- Department of Aquatic Animal Diseases, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
7
|
Gendron RL, Paradis H, Ahmad R, Kao K, Boyce D, Good WV, Kumar S, Vasquez I, Cao T, Hossain A, Chakraborty S, Valderrama K, Santander J. CD10 + Cells and IgM in Pathogen Response in Lumpfish ( Cyclopterus lumpus) Eye Tissues. Front Immunol 2020; 11:576897. [PMID: 33329544 PMCID: PMC7714965 DOI: 10.3389/fimmu.2020.576897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lumpfish (Cyclopterus lumpus), a North Atlantic "cleaner" fish, is utilized to biocontrol salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar) farms. Lumpfish require excellent vision to scan for and eat louse on salmon skin. The lumpfish eye immune response to infectious diseases has not been explored. We examined the ocular response to a natural parasite infection in wild lumpfish and to an experimental bacterial infection in cultured lumpfish. Cysts associated with natural myxozoan infection in the ocular scleral cartilage of wild adult lumpfish harbored cells expressing cluster of differentiation 10 (CD10) and immunoglobulin M (IgM). Experimental Vibrio anguillarum infection, which led to exophthalmos and disorganization of the retinal tissues was associated with disruption of normal CD10 expression, CD10+ cellular infiltration and IgM expression. We further describe the lumpfish CD10 orthologue and characterize the lumpfish scleral skeleton in the context of myxozoan scleral cysts. We propose that lumpfish develop an intraocular response to pathogens, exemplified herein by myxozoan and V. anguillarum infection involving novel CD10+ cells and IgM+ cells to contain and mitigate damage to eye structures. This work is the first demonstration of CD10 and IgM expressing cells in a novel ocular immune system component in response to disease in a teleost.
Collapse
Affiliation(s)
- Robert L. Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Danny Boyce
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - William V. Good
- Smith Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
8
|
Toffan A, De Salvador M, Scholz F, Pretto T, Buratin A, Rodger HD, Toson M, Cuenca A, Vendramin N. Lumpfish (Cyclopterus lumpus, Linnaeus) is susceptible to viral nervous necrosis: Result of an experimental infection with different genotypes of Betanodavirus. JOURNAL OF FISH DISEASES 2019; 42:1667-1676. [PMID: 31612537 DOI: 10.1111/jfd.13088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In recent years, the use of cleaner fish for biological control of sea lice has increased considerably. Along with this, a number of infectious diseases have emerged. The aim of this study was to investigate the susceptibility of lumpfish (Cyclopterus lumpus) to Betanodavirus since it was detected in asymptomatic wild wrasses in Norway and Sweden. Three betanodaviruses were used to challenge lumpfish: one RGNNV genotype and two BFNNV genotypes. Fish were injected and monitored for 4 weeks. Brain samples from clinically affected specimens, from weekly randomly selected fish and survivors were subjected to molecular testing, viral isolation, histopathology and immunohistochemistry. Reduced survival was observed but was attributed to tail-biting behaviour, since no nervous signs were observed throughout the study. Betanodavirus RNA was detected in all samples, additionally suggesting an active replication of the virus in the brain. Viral isolation confirmed molecular biology results and revealed a high viral titre in BFNNV-infected groups associated with typical lesions in brains and eyes of survivor fish. We concluded that lumpfish are susceptible to Betanodavirus, as proven by the high viral titre and brain lesions detected, but further studies are necessary to understand if Betanodavirus can cause clinical disease in this species.
Collapse
Affiliation(s)
- Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Padua, Italy
| | | | - Felix Scholz
- FishVet Group Ireland, Oranmore, Galway, Ireland
| | - Tobia Pretto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Padua, Italy
| | - Alessandra Buratin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Padua, Italy
| | | | - Marica Toson
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Padua, Italy
| | - Argelia Cuenca
- National Institute of Aquatic Resources, EURL for fish and crustacean diseases, Technical University of Denmark, Lyngby, Denmark
| | - Niccolò Vendramin
- National Institute of Aquatic Resources, EURL for fish and crustacean diseases, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
9
|
Erkinharju T, Strandskog G, Vågnes Ø, Hordvik I, Dalmo RA, Seternes T. Intramuscular vaccination of Atlantic lumpfish (Cyclopterus lumpus L.) induces inflammatory reactions and local immunoglobulin M production at the vaccine administration site. JOURNAL OF FISH DISEASES 2019; 42:1731-1743. [PMID: 31631353 DOI: 10.1111/jfd.13101] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Atlantic lumpfish were vaccinated by intramuscular (im) or intraperitoneal (ip) injection with a multivalent oil-based vaccine, while control fish were injected with phosphate-buffered saline. Four lumpfish per group were sampled for skin/muscle and head kidney tissue at 0, 2, 7, 21 and 42 days post-immunization (dpi) for histopathology and immunohistochemistry (IHC). Gene expressions of secretory IgM, membrane-bound IgM, IgD, TCRα, CD3ε and MHC class IIβ were studied in tissues by using qPCR. Im. vaccinated fish showed vaccine-induced inflammation with formation of granulomas and increasing number of eosinophilic granulocyte-like cells over time. On IHC sections, we observed diffuse intercellular staining of secretory IgM at the injection site at 2 dpi, while IgM + cells appeared in small numbers at 21 and 42 dpi. Skin/muscle samples from im. vaccinated fish demonstrated an increase in gene expression of IgM mRNA (secretory and membrane-bound) at 21 and 42 dpi and small changes for other genes. Our results indicated that im. vaccination of lumpfish induced local IgM production at the vaccine injection site, with no apparent proliferation of IgM + cells. Eosinophilic granulocyte-like cells appeared shortly after im. injection and increased in numbers as the inflammation progressed.
Collapse
Affiliation(s)
- Toni Erkinharju
- Norwegian Veterinary Institute, Harstad, Norway
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Guro Strandskog
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | - Ivar Hordvik
- Department of Biology, University of Bergen, Bergen, Norway
| | - Roy A Dalmo
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Tore Seternes
- Norwegian College of Fishery Science, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Paradis H, Ahmad R, McDonald J, Boyce D, Gendron RL. Ocular tissue changes associated with anterior segment opacity in lumpfish (Cyclopterus lumpus L) eye. JOURNAL OF FISH DISEASES 2019; 42:1401-1408. [PMID: 31393016 DOI: 10.1111/jfd.13065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Lumpfish use their vision to hunt prey or, in the case of aquaculture, to see and eat pelleted diets. A common anterior ocular opacity abnormality designated in the literature as "cataract" described in both farmed and wild lumpfish has not yet been characterized in detail at the pathobiological level. We describe here lens tissue changes associated with cataract in cultured and domesticated lumpfish. Methodology included gross observations, ophthalmoscopy and histology. Young adult cultured animals approaching 400 days post-hatch presented a range of anterior segment opacities associated with lenticular abnormalities observable at a histological level. Wild aged domesticated animals also displayed cataracts characterized mainly by abnormalities of the lens observed by both ophthalmoscopy and histology. Dysplastic lesions of the lens in one aged domesticated lumpfish were accompanied with both retinal and optic nerve degeneration. These novel naturally occurring anatomical changes in lumpfish present both commonalities and unique features associated with cataract in young adult cultured animals versus aged domesticated broodstock animals.
Collapse
Affiliation(s)
- Helene Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - James McDonald
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| | - Danny Boyce
- Department of Ocean Sciences, Memorial University, St. John's, NL, Canada
| | - Robert L Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, NL, St. John's, Canada
| |
Collapse
|