1
|
Adams A, Danylchuk AJ, Cooke SJ. Conservation connections: incorporating connectivity into management and conservation of flats fishes and their habitats in a multi-stressor world. ENVIRONMENTAL BIOLOGY OF FISHES 2023; 106:117-130. [PMID: 36686288 PMCID: PMC9847458 DOI: 10.1007/s10641-023-01391-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Coastal marine fisheries and the habitats that support them are under extensive and increasing pressures from numerous anthropogenic stressors that occur at multiple spatial and temporal scales and often intersect in unexpected ways. Frequently, the scales at which these fisheries are managed do not match the scales of the stressors, much less the geographic scale of species biology. In general, fishery management is ill prepared to address these stressors, as underscored by the continuing lack of integration of fisheries and habitat management. However, research of these fisheries is increasingly being conducted at spatial and temporal scales that incorporate biology and ecological connectivity of target species, with growing attention to the foundational role of habitat. These efforts are also increasingly engaging stakeholders and rights holders in research, education, and conservation. This multi-method approach is essential for addressing pressing conservation challenges that are common to flats ecosystems. Flats fisheries occur in the shallow, coastal habitat mosaic that supports fish species that are accessible to and desirable to target by recreational fishers. Because these species rely upon coastal habitats, the anthropogenic stressors can be especially intense-habitat alteration (loss and degradation) and water quality declines are being exacerbated by climate change and increasing direct human impacts (e.g., fishing effort, boat traffic, depredation, pollution). The connections necessary for effective flats conservation are of many modes and include ontogenetic habitat connectivity; connections between stressors and impacts to fishes; connections between research and management, such as research informing spawning area protections; and engagement of stakeholders and rights holders in research, education, and management. The articles included in this Special Issue build upon a growing literature that is filling knowledge gaps for flats fishes and their habitats and increasingly providing the evidence to inform resource management. Indeed, numerous articles in this issue propose or summarize direct application of research findings to management with a focus on current and future conservation challenges. As with many other fisheries, a revised approach to management and conservation is needed in the Anthropocene.
Collapse
Affiliation(s)
- Aaron Adams
- Bonefish & Tarpon Trust, 2937 SW 27Th Avenue, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
2
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
3
|
Griffin LP, Casselberry GA, Lowerre-Barbieri SK, Acosta A, Adams AJ, Cooke SJ, Filous A, Friess C, Guttridge TL, Hammerschlag N, Heim V, Morley D, Rider MJ, Skomal GB, Smukall MJ, Danylchuk AJ, Brownscombe JW. Predator-prey landscapes of large sharks and game fishes in the Florida Keys. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2584. [PMID: 35333436 DOI: 10.1002/eap.2584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 06/24/2021] [Indexed: 06/14/2023]
Abstract
Interspecific interactions can play an essential role in shaping wildlife populations and communities. To date, assessments of interspecific interactions, and more specifically predator-prey dynamics, in aquatic systems over broad spatial and temporal scales (i.e., hundreds of kilometers and multiple years) are rare due to constraints on our abilities to measure effectively at those scales. We applied new methods to identify space-use overlap and potential predation risk to Atlantic tarpon (Megalops atlanticus) and permit (Trachinotus falcatus) from two known predators, great hammerhead (Sphyrna mokarran) and bull (Carcharhinus leucas) sharks, over a 3-year period using acoustic telemetry in the coastal region of the Florida Keys (USA). By examining spatiotemporal overlap, as well as the timing and order of arrival at specific locations compared to random chance, we show that potential predation risk from great hammerhead and bull sharks to Atlantic tarpon and permit are heterogeneous across the Florida Keys. Additionally, we find that predator encounter rates with these game fishes are elevated at specific locations and times, including a prespawning aggregation site in the case of Atlantic tarpon. Further, using machine learning algorithms, we identify environmental variability in overlap between predators and their potential prey, including location, habitat, time of year, lunar cycle, depth, and water temperature. These predator-prey landscapes provide insights into fundamental ecosystem function and biological conservation, especially in the context of emerging fishery-related depredation issues in coastal marine ecosystems.
Collapse
Affiliation(s)
- Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Susan K Lowerre-Barbieri
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | - Alejandro Acosta
- South Florida Regional Lab, Florida Fish and Wildlife Conservation Commission, Marathon, Florida, USA
| | - Aaron J Adams
- Bonefish & Tarpon Trust, Miami, Florida, USA
- Florida Atlantic University, Harbor Branch Oceanographic Institute, Fort Pierce, Florida, USA
| | - Steven J Cooke
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | - Claudia Friess
- Florida Fish and Wildlife Conservation Commission, Florida Fish and Wildlife Research Institute, St. Petersburg, Florida, USA
| | | | - Neil Hammerschlag
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Vital Heim
- Bimini Biological Field Station Foundation, Bimini, The Bahamas
- Department of Environmental Sciences, Zoology, University of Basel, Basel, Switzerland
| | - Danielle Morley
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- South Florida Regional Lab, Florida Fish and Wildlife Conservation Commission, Marathon, Florida, USA
| | - Mitchell J Rider
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
| | - Gregory B Skomal
- Massachusetts Division of Marine Fisheries, New Bedford, Massachusetts, USA
| | | | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | |
Collapse
|
4
|
Brownscombe JW, Shipley ON, Griffin LP, Morley D, Acosta A, Adams AJ, Boucek R, Danylchuk AJ, Cooke SJ, Power M. Application of telemetry and stable isotope analyses to inform the resource ecology and management of a marine fish. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Oliver N. Shipley
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Lucas P. Griffin
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
| | - Danielle Morley
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
- Florida Fish and Wildlife Conservation Commission Florida USA
| | | | - Aaron J. Adams
- Bonefish and Tarpon Trust SW Florida USA
- Florida Atlantic University Harbor Branch Oceanographic Institute Fort Pierce FL USA
| | | | - Andy J. Danylchuk
- Department of Environmental Conservation University of Massachusetts Amherst Amherst MA USA
| | - Steven J. Cooke
- Department of Biology University of New Mexico Albuquerque New Mexico USA
| | - Michael Power
- Department of Biology University of Waterloo Waterloo Ontario Canada
| |
Collapse
|
5
|
Application of machine learning algorithms to identify cryptic reproductive habitats using diverse information sources. Oecologia 2020; 194:283-298. [PMID: 33006076 DOI: 10.1007/s00442-020-04753-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/08/2020] [Indexed: 10/23/2022]
Abstract
Information on ecological systems often comes from diverse sources with varied levels of complexity, bias, and uncertainty. Accordingly, analytical techniques continue to evolve that address these challenges to reveal the characteristics of ecological systems and inform conservation actions. We applied multiple statistical learning algorithms (i.e., machine learning) with a range of information sources including fish tracking data, environmental data, and visual surveys to identify potential spawning aggregation sites for a marine fish species, permit (Trachinotus falcatus), in the Florida Keys. Recognizing the potential complementarity and some level of uncertainty in each information source, we applied supervised (classic and conditional random forests; RF) and unsupervised (fuzzy k-means; FKM) algorithms. The two RF models had similar predictive performance, but generated different predictor variable importance structures and spawning site predictions. Unsupervised clustering using FKM identified unique site groupings that were similar to the likely spawning sites identified with RF. The conservation of aggregate spawning fish species depends heavily on the protection of key spawning sites; many of these potential sites were identified here for permit in the Florida Keys, which consisted of relatively deep-water natural and artificial reefs with high mean permit residency periods. The application of multiple machine learning algorithms enabled the integration of diverse information sources to develop models of an ecological system. Faced with increasingly complex and diverse data sources, ecologists, and conservation practitioners should find increasing value in machine learning algorithms, which we discuss here and provide resources to increase accessibility.
Collapse
|