1
|
Oliveira MM, Correia S, Peirone C, Magalhães M, Oliveira P, Peixoto F. Impact of ozone therapy on mouse liver mitochondrial function and antioxidant system. Biochimie 2024; 223:116-124. [PMID: 38548043 DOI: 10.1016/j.biochi.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 06/03/2024]
Abstract
Ozone therapy's efficacy might stem from the regulated and mild oxidative stress resulting from ozone's interactions with various biological elements. The present work aimed to characterize the hepatic mitochondrial response to ozone treatment and its relationship with the antioxidant system response. Two groups of mice were used: one control group and another injected intraperitoneally with an O3/O2 mixture (80 ml/kg) for 5 days. Mitochondrial respiration supported by different substrates was significantly inhibited, as well as complexes I and II/III, but not complex IV. The analysis of the electron transport chain complex activity showed significant inhibitions in complexes I and II/III but not in complex IV. These inhibitions can prevent mitochondrial reactive oxygen species (ROS) production. Additionally, there was a decline in glutathione content, unaccompanied by a rise in its oxidized form. The ozone-treated groups showed a significant increase in the activity of superoxide dismutase and glutathione peroxidase, while catalase and glutathione reductase experienced no significant alterations. Adenine nucleotides increased in the ozone group, but only the increase in adenosine diphosphate is significant, so the cell's energy charge is unaffected. This study shows that mitochondria may play a crucial role in ozone treatment. However, it also highlights the need for further studies to understand the molecular mechanism.
Collapse
Affiliation(s)
- Maria M Oliveira
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Sofia Correia
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Cecilia Peirone
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Serviços Farmacêuticos Do CHTMAD, Vila Real, Portugal.
| | - Marques Magalhães
- Critical Care Department, University Hospital of Braga, Braga, Portugal.
| | - Paula Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Francisco Peixoto
- Chemistry Center of Vila Real, University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| |
Collapse
|
2
|
Aguida B, Chabi MM, Baouz S, Mould R, Bell JD, Pooam M, André S, Archambault D, Ahmad M, Jourdan N. Near-Infrared Light Exposure Triggers ROS to Downregulate Inflammatory Cytokines Induced by SARS-CoV-2 Spike Protein in Human Cell Culture. Antioxidants (Basel) 2023; 12:1824. [PMID: 37891903 PMCID: PMC10604116 DOI: 10.3390/antiox12101824] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The leading cause of mortality from SARS-CoV-2 is an exaggerated host immune response, triggering cytokine storms, multiple organ failure and death. Current drug- and vaccine-based therapies are of limited efficacy against novel viral variants. Infrared therapy is a non-invasive and safe method that has proven effective against inflammatory conditions for over 100 years. However, its mechanism of action is poorly understood and has not received widespread acceptance. We herein investigate whether near-infrared (NIR) light exposure in human primary alveolar and macrophage cells could downregulate inflammatory cytokines triggered by the SARS-CoV-2 spike (S) protein or lipopolysaccharide (LPS), and via what underlying mechanism. Our results showed a dramatic reduction in pro-inflammatory cytokines within days of NIR light treatment, while anti-inflammatory cytokines were upregulated. Mechanistically, NIR light stimulated mitochondrial metabolism, induced transient bursts in reactive oxygen species (ROS) and activated antioxidant gene transcription. These, in turn, downregulated ROS and inflammatory cytokines. A causal relationship was shown between the induction of cellular ROS by NIR light exposure and the downregulation of inflammatory cytokines triggered by SARS-CoV-2 S. If confirmed by clinical trials, this method would provide an immediate defense against novel SARS-CoV-2 variants and other inflammatory infectious diseases.
Collapse
Affiliation(s)
- Blanche Aguida
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | | | - Soria Baouz
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| | - Rhys Mould
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Jimmy D. Bell
- Research Centre for Optimal Health, University of Westminster, London W1W 6UW, UK (J.D.B.)
| | - Marootpong Pooam
- Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Sebastien André
- Nutrition and Obesities: Systemic Approaches, NutriOmics, Research Unit, Sorbonne University, INSERM, 75013 Paris, France
| | - Dominique Archambault
- Laboratoire CHArt, University of Paris 8-Vincennes-Saint-Denis, 93526 Saint-Denis, France
| | - Margaret Ahmad
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
- Department of Biology, Xavier University, 3800 Victory Parkway, Cincinnati, OH 45207, USA
| | - Nathalie Jourdan
- UMR8256, CNRS, IBPS, Sorbonne University, 75005 Paris, France; (B.A.)
| |
Collapse
|
3
|
Cap 'n' Collar C and Aryl Hydrocarbon Receptor Nuclear Translocator Facilitate the Expression of Glutathione S-Transferases Conferring Adaptation to Tannic Acid and Quercetin in Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae). Int J Mol Sci 2023; 24:ijms24032190. [PMID: 36768514 PMCID: PMC9916665 DOI: 10.3390/ijms24032190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Micromelalopha troglodyta (Graeser) (Lepidoptera: Notodontidae) is a notorious pest of poplar. Coevolution with poplars rich in plant secondary metabolites prompts M. troglodyta to expand effective detoxification mechanisms against toxic plant secondary metabolites. Although glutathione S-transferases (GSTs) play an important role in xenobiotic detoxification in M. troglodyta, it is unclear how GSTs act in response to toxic secondary metabolites in poplar. In this study, five GST gene core promoters were accurately identified by a 5' loss luciferase reporter assay, and the core promoters were significantly induced by two plant secondary metabolites in vitro. Two transcription factors, cap 'n' collar C (CncC) and aryl hydrocarbon receptor nuclear translocator (ARNT), were cloned in M. troglodyta. MtCncC and MtARNT clustered well with other insect CncCs and ARNTs, respectively. In addition, MtCncC and MtARNT could bind the MtGSTt1 promoter and strongly improve transcriptional activity, respectively. However, MtCncC and MtARNT had no regulatory function on the MtGSTz1 promoter. Our findings revealed the molecular mechanisms of the transcription factors MtCncC and MtARNT in regulating the GST genes of M. troglodyta. These results provide useful information for the control of M. troglodyta.
Collapse
|
4
|
Agathokleous E, Barceló D, Iavicoli I, Tsatsakis A, Calabrese EJ. Disinfectant-induced hormesis: An unknown environmental threat of the application of disinfectants to prevent SARS-CoV-2 infection during the COVID-19 pandemic? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118429. [PMID: 34743965 PMCID: PMC8553406 DOI: 10.1016/j.envpol.2021.118429] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 05/02/2023]
Abstract
Massive additional quantities of disinfectants have been applied during the COVID-19 pandemic as infection preventive and control measures. While the application of disinfectants plays a key role in preventing the spread of SARS-CoV-2 infection, the effects of disinfectants applied during the ongoing pandemic on non-target organisms remain unknown. Here we collated evidence from multiple studies showing that chemicals used for major disinfectant products can induce hormesis in various organisms, such as plants, animal cells, and microorganisms, when applied singly or in mixtures, suggesting potential ecological risks at sub-threshold doses that are normally considered safe. Among other effects, sub-threshold doses of disinfectant chemicals can enhance the proliferation and pathogenicity of pathogenic microbes, enhancing the development and spread of drug resistance. We opine that hormesis should be considered when evaluating the effects and risks of such disinfectants, especially since the linear-no-threshold (LNT) and threshold dose-response models cannot identify or predict their effects.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Department of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology (NUIST), Ningliu Rd. 219, Nanjing, Jiangsu, 210044, China.
| | - Damià Barceló
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/ Jordi Girona 18-26, 08034, Barcelona, Spain; Catalan Institute for Water Research, ICRA-CERCA, Emili Grahit 101, 17003, Girona, Spain
| | - Ivo Iavicoli
- Department of Public Health, Section of Occupational Medicine, University of Naples Federico II, Naples, 80131, Italy
| | | | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
5
|
Less Can Be More: The Hormesis Theory of Stress Adaptation in the Global Biosphere and Its Implications. Biomedicines 2021; 9:biomedicines9030293. [PMID: 33805626 PMCID: PMC8000639 DOI: 10.3390/biomedicines9030293] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/07/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
A dose-response relationship to stressors, according to the hormesis theory, is characterized by low-dose stimulation and high-dose inhibition. It is non-linear with a low-dose optimum. Stress responses by cells lead to adapted vitality and fitness. Physical stress can be exerted through heat, radiation, or physical exercise. Chemical stressors include reactive species from oxygen (ROS), nitrogen (RNS), and carbon (RCS), carcinogens, elements, such as lithium (Li) and silicon (Si), and metals, such as silver (Ag), cadmium (Cd), and lead (Pb). Anthropogenic chemicals are agrochemicals (phytotoxins, herbicides), industrial chemicals, and pharmaceuticals. Biochemical stress can be exerted through toxins, medical drugs (e.g., cytostatics, psychopharmaceuticals, non-steroidal inhibitors of inflammation), and through fasting (dietary restriction). Key-lock interactions between enzymes and substrates, antigens and antibodies, antigen-presenting cells, and cognate T cells are the basics of biology, biochemistry, and immunology. Their rules do not obey linear dose-response relationships. The review provides examples of biologic stressors: oncolytic viruses (e.g., immuno-virotherapy of cancer) and hormones (e.g., melatonin, stress hormones). Molecular mechanisms of cellular stress adaptation involve the protein quality control system (PQS) and homeostasis of proteasome, endoplasmic reticulum, and mitochondria. Important components are transcription factors (e.g., Nrf2), micro-RNAs, heat shock proteins, ionic calcium, and enzymes (e.g., glutathion redox enzymes, DNA methyltransferases, and DNA repair enzymes). Cellular growth control, intercellular communication, and resistance to stress from microbial infections involve growth factors, cytokines, chemokines, interferons, and their respective receptors. The effects of hormesis during evolution are multifarious: cell protection and survival, evolutionary flexibility, and epigenetic memory. According to the hormesis theory, this is true for the entire biosphere, e.g., archaia, bacteria, fungi, plants, and the animal kingdoms.
Collapse
|
6
|
Yu R, Lin Z, Ouyang Z, Tao Z, Fan G. Blue light induces the nuclear translocation of neuropeptide receptor PAC1-R associated with the up-regulation of PAC1-R its own in reactive oxygen species associated way. Biochim Biophys Acta Gen Subj 2021; 1865:129884. [PMID: 33647387 DOI: 10.1016/j.bbagen.2021.129884] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
PAC1-R is neuropeptide PACAP (pituitary adenylate cyclase activating polypeptide) preferring receptor mediates the antioxidant and cytoprotective effects of PACAP. It was found in this research that in both PAC1R-CHO cells with high expression of PAC1R-eGFP and retinal ganglion cells (RGC-5) with natural expression of PAC1-R, blue light and hydrogen peroxide (H2O2) trigger the significant nuclear translocation of PAC1-R, and the nuclear translocation of PAC1-R was positive correlation with the up-regulation of expression level and promoter activity of PAC1-R its own, while red light worked much less efficiently than blue light. Reactive oxygen species (ROS) scavenger NAC (N-acetyl-L-cysteine) and palmitoylation inhibitor 2-bromopalmitate (2-BP) disturbed the nuclear shifting associated with the correlative up-regulation of PAC1 significantly, and PAC1-R mutant (M-PAC1-R) on Cys25/Ala25 displayed the significant decreased nuclear trafficking efficiency. Furthermore, the Western Blot results with the antibody raised against the C-terminal of PAC1-R showing PAC1-R in the nucleus was fragmentation hinting that C-terminal of PAC1-R with theoretical nuclear location signal (NLS) may be involved in activation of PAC1-R promoter in the nucleus. All above results indicated that PAC1-R makes the nuclear translocation to trigger the activation of PAC1-R itself promoter resulting into the up-regulation of of PAC1-R in response to the oxidative stress induced by blue light and ROS such as H2O2 .
Collapse
Affiliation(s)
- Rongjie Yu
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangdong, China; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Guangdong, China; National Engineering Research Center of Genetic Medicine, Guangdong, China.
| | - Zhuochao Lin
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zehua Ouyang
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Zhengxin Tao
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Guangchun Fan
- Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Berry R, López-Martínez G. A dose of experimental hormesis: When mild stress protects and improves animal performance. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110658. [PMID: 31954863 PMCID: PMC7066548 DOI: 10.1016/j.cbpa.2020.110658] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 01/22/2023]
Abstract
The adaptive response characterized by a biphasic curve is known as hormesis. In a hormesis framework, exposure to low doses leads to protective and beneficial responses while exposures to high doses are damaging and detrimental. Comparative physiologists have studied hormesis for over a century, but our understanding of hormesis is fragmented due to rifts in consensus and taxonomic-specific terminology. Hormesis has been and is currently known by multiple names; preconditioning, conditioning, pretreatment, cross tolerance, adaptive homeostasis, and rapid stress hardening (mostly low temperature: rapid cold hardening). These are the most common names used to describe adaptive stress responses in animals. These responses are mechanistically similar, while having stress-specific responses, but they all can fall under the umbrella of hormesis. Here we review how hormesis studies have revealed animal performance benefits in response to changes in oxygen, temperature, ionizing radiation, heavy metals, pesticides, dehydration, gravity, and crowding. And how almost universally, hormetic responses are characterized by increases in performance that include either increases in reproduction, longevity, or both. And while the field can benefit from additional mechanistic work, we know that many of these responses are rooted in increases of antioxidants and oxidative stress protective mechanisms; including heat shock proteins. There is a clear, yet not fully elucidated, overlap between hormesis and the preparation for oxidative stress theory; which predicts part of the responses associated with hormesis. We discuss this, and the need for additional work into animal hormetic effects particularly focusing on the cost of hormesis.
Collapse
Affiliation(s)
- Raymond Berry
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, United States of America
| | - Giancarlo López-Martínez
- Department of Biological Sciences, North Dakota State University, Fargo, ND 58102, United States of America.
| |
Collapse
|