1
|
Nesari A, Mardani E, Goudarzi M, Sabbagh S, Nooshabadi MR, Bakhtiari N, Malayeri AR. The antioxidant and anticonvulsant effects of ellagic acid in kainic acid-induced temporal lobe epilepsy in mice. Tissue Cell 2025; 95:102889. [PMID: 40215753 DOI: 10.1016/j.tice.2025.102889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/21/2025] [Accepted: 03/22/2025] [Indexed: 05/15/2025]
Abstract
Oxidative stress (OS) resulting from high levels of free radicals contributes to the initiation and progression of epilepsy. Temporal lobe epilepsy (TLE) is associated with alteration in the structure and function of the hippocampus and is modeled in mice using kainic acid (KA). In this study, the neuroprotective effect of ellagic acid (EA) on KA-induced epilepsy in mice was evaluated. Sixty male Swiss albino mice were assigned to six groups: I received normal saline (NS; 10 ml/kg, intraperitoneally (i.p.)); II, received KA (15 mg/kg, i.p.); III, received diazepam (20 mg/kg, i.p.) and KA (15 mg/kg, i.p.); IV-VI, received EA (10, 20 and 40 mg/kg, i.p.), and KA (15 mg/kg, i.p.). Treatments were done 30 min before KA injection. Seizure (latency, duration, activity) and mortality were monitored for 2 h post-injection. OS was evaluated by measuring MDA, NO, and GSH levels and CAT, SOD, and GPx activities. Levels of TNF-α in the brain tissue were measured. Furthermore, a histological examination of the hippocampus was carried out. RESULTS: showed that EA pretreatment caused a decline in seizure activity score and duration compared to the KA-treated group. EA pretreatment reduced mortality in KA-treated mice. EA suppressed the generation of MDA and NO; whereas it preserved GSH and the activity of GPx, SOD, and CAT. Additionally, EA exerted anti-inflammatory effects by reducing TNF-α level. Histopathologically, EA reduced KA-induced neuronal damage. EA demonstrated protective effects against KA-related epilepsy and brain damage. Due to its anti-inflammatory and radical scavenging properties, EA may be considered a potential therapeutic option in epilepsy.
Collapse
Affiliation(s)
- Ali Nesari
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Erfan Mardani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Susan Sabbagh
- Department of Anatomical Science, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Nima Bakhtiari
- Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Reza Malayeri
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
2
|
Mighani S, Samimi R, Nooshabadi MR, Farzam SA, Haghighian HK, Javadi M. A randomized double-blind clinical trial investigating the effects of ellagic acid on glycemic status, liver enzymes, and oxidative stress in patients with non-alcoholic fatty liver disease. BMC Complement Med Ther 2025; 25:33. [PMID: 39885430 PMCID: PMC11780998 DOI: 10.1186/s12906-025-04759-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/14/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND It seems that oxidative stress is involved in the occurrence and progression of non-alcoholic fatty liver disease (NAFLD). Considering the antioxidant features of Ellagic acid (EA), this study was designed to assess the effect of EA on some biochemical factors in patients with NAFLD. METHODS In this clinical trial, 44 patients were selected based on including criteria and randomly received 180 mg of EA per day (n = 22) or placebo (n = 22) for 8 weeks. At the beginning and end of the study, glycemic indices, lipid profiles, liver enzymes, oxidative stress markers, and inflammatory factors were measured. RESULTS At the end of the study, the mean of insulin, insulin resistance (IR), triglycerides (TG), low-density lipoprotein (LDL), aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), malondialdehyde (MDA), and C-reactive protein (CRP) were significantly decreased in the intervention group (P < 0.05). Also, a significant increase in the mean of total antioxidant capacity (TAC) was observed in the EA group (P < 0.05). However, changes in high-density lipoprotein (HDL), total cholesterol (TC), and fasting blood sugar (FBS) were not significant in any of the groups (P > 0.05). CONCLUSIONS Based on the results, the present study provided evidence that EA can be used as a supplemental therapy alongside current treatment plans to reduce the complications of NAFLD due to its antioxidant and anti-inflammatory properties. TRIAL REGISTRATION This study was prospectively registered at the Iranian Registry of Clinical Trials on the 23th of January 2022 (ID: IRCT20141025019669N21).
Collapse
Affiliation(s)
- Sara Mighani
- Department of Nutrition, School of Health, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Rasoul Samimi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Seyed Amir Farzam
- Non-communicable Diseases Research Center Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Khadem Haghighian
- Non-communicable Diseases Research Center Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Maryam Javadi
- Department of Nutrition, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
3
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
4
|
Mohammadkhanizadeh A, Hosseini Y, Nikbakht F, Parvizi M, Khodabandehloo F. Evaluating the potential effects of apigenin on memory, anxiety, and social interaction amelioration after social isolation stress. Int J Dev Neurosci 2024. [PMID: 39367711 DOI: 10.1002/jdn.10380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Vigorous research confirmed the anti-inflammatory, antioxidant, and antidementia effects of apigenin (Api). The present study evaluated the beneficial impacts of Api administration on behaviour, brain-derived neurotrophic factor (BDNF), Interleukin 6 (IL-6), oxidative stress, and inflammation induced by social isolation (SI) stress in rats. For this purpose, rats underwent a 28-day SI period followed by a 4-week oral Api treatment (50 mg/kg/day, PO). On Day 56, behaviour tests were performed, including an elevated plus maze (EPM), Morris water maze (MWM), and three-chamber social tests. The oxidative stress markers, IL-6, and BDNF levels were measured in the hippocampus. Our results showed that SI stress caused an increase in anxiety and a decrease in spatial memory, sociability, and social preference index. In addition, SI stress increased hippocampal levels of IL-6 and malondialdehyde (MDA) content, whereas it reduced the hippocampal BDNF level and superoxide dismutase (SOD) activities. Our study indicated that Api attenuates anxiety and causes improvements in spatial memory and social interaction. These desirable effects of Api might be related to amelioration in the BDNF level, IL-6, and oxidative stress biomarkers in the hippocampus.
Collapse
Affiliation(s)
- Ali Mohammadkhanizadeh
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yasaman Hosseini
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Parvizi
- Behavioural and Cognitive Science Research Centre, AJA University of Medical Sciences, Tehran, Iran
- Department of Physiology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khodabandehloo
- Department of Genetic and Advanced Medicine Technology, faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Khumalo GP, Nguyen T, Van Wyk BE, Feng Y, Cock IE. Inhibition of pro-inflammatory cytokines by selected southern African medicinal plants in LPS-stimulated RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117268. [PMID: 37797874 DOI: 10.1016/j.jep.2023.117268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bark is frequently used in southern African traditional medicine to treat inflammation, yet it remains to be rigorously examined for its immunological and anti-inflammatory activity. AIM OF THE STUDY Barks obtained from ten important and popular southern Africa plants were evaluated for their anti-inflammatory and immunomodulatory properties against the secretion of some pro-inflammatory cytokines (interleukin (IL)-1β, IL-6, tumour necrosis factor-α (TNF-α), and interferon-gamma (IFN-γ) as well as chemokines (monocyte chemoattractant protein 1 (MCP-1) and macrophage inflammatory protein (MIP)-2) in murine RAW 264.7 macrophages. MATERIALS AND METHODS The inhibitory effects of aqueous and ethanol extracts were determined using cytokine multiplex-bead assays in lipopolysaccharide (LPS)-stimulated and unstimulated RAW 264.7 cells. RESULTS Overall, the ethanol extracts were more potent cytokine inhibitors compared to the aqueous extracts. The LPS-stimulated cells treated with the ethanol extracts of Erythrina lysistemon Hutch., Pterocelastrus rostratus Walp. Syzygium cordatum Hochst. ex Krauss and Warburgia salutaris (G. Bertol.) Chiov., demonstrated significant (p < 0.005) inhibition up to 85% of IL-1β, IL-6, and TNF-α secretion compared to the LPS control. Additionally, P. rostratus and S. cordatum aqueous bark extracts substantially decreased the secretion of all the tested cytokines and chemokines. Chemical investigation of the S. cordatum extract resulted in the identification of four ellagic acid derivatives: ellagic acid 4-O-α-rhamnopyranoside (1), ellagic acid 4-O-α-4″-acetylrhamnopyranoside (2), 3-O-methylellagic acid 4'-O-α-3″-O-acetylrhamnopyranoside (3) and 3-O-methylellagic acid 4'-O-α-4″-O-acetylrhamnopyranoside (4), along with mixtures of ellagic acid 4-O-α-2″-acetylrhamnopyranoside (5), ellagic acid 4-O-α-3″-acetylrhamnopyranoside (6) and ellagic acid (7). Their structures were confirmed by mass spectrometry, NMR spectroscopy, and comparison with data from literature. CONCLUSION The cytokine inhibition properties of most of the medicinal plants screened herein are reported for the first time. Our results provide insights into the mechanism of action by which the selected southern African medicinal plants regulate inflammation.
Collapse
Affiliation(s)
- Gugulethu P Khumalo
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia
| | - Thanh Nguyen
- Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ben-Erik Van Wyk
- Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Yunjiang Feng
- School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; Griffith Institute for Drug Discovery, Griffith University, 46 Don Young Rd, Nathan, Queensland, 4111, Australia
| | - Ian E Cock
- Centre for Planetary Health and Food Security, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia; School of Environment and Science, Nathan Campus, Griffith University, 170 Kessels Rd, Nathan, Queensland, 4111, Australia.
| |
Collapse
|
6
|
Mannino F, Imbesi C, Bitto A, Minutoli L, Squadrito F, D'Angelo T, Booz C, Pallio G, Irrera N. Anti-oxidant and anti-inflammatory effects of ellagic and punicic acid in an in vitro model of cardiac fibrosis. Biomed Pharmacother 2023; 162:114666. [PMID: 37030134 DOI: 10.1016/j.biopha.2023.114666] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/10/2023] Open
Abstract
Cardiac fibrosis is a pathological process characterized by an excessive deposition of extracellular matrix (ECM) and an increased production of fibrillar collagen in the cardiac interstitium, mainly caused by the activation of cardiac fibroblasts and their transition into myofibroblasts. Oxidative stress is deeply implicated in the pathogenesis of cardiac fibrosis both directly and via its involvement in the tumor growth factor β1 (TGF-β1) signaling. Ellagic acid (EA) and punicic acid (PA) are the main components of the Punica granatum L (pomegranate) fruit and seed oil respectively, whose antioxidant, anti-inflammatory and anti-fibrotic effects have been previously described. Therefore, the aim of this study was to investigate the effects of EA or PA or EA+PA in an in vitro model of cardiac fibrosis. Immortalized Human Cardiac Fibroblasts (IM-HCF) were stimulated with 10 ng/ml of TGF-β1 for 24 h to induce a fibrotic damage. Cells were then treated with EA (1 µM), PA (1 µM) or EA+PA for additional 24 h. Both EA and PA reduced the pro-fibrotic proteins expressions and the intracellular reactive oxygen species (ROS) accumulation. The anti-oxidant activity was also observed by Nrf2 activation with the consequent TGF-β1-Smad2/3-MMP2/9 and Wnt/β-catenin signaling inhibition, thus reducing collagen production. EA and PA significantly inhibit NF-κB pathway and, consequently, TNF-α, IL-1β and IL-6 levels: the greater effect was observed when EA and PA were used in combination. These results suggest that EA, PA and in particular EA+PA might be effective in reducing fibrosis through their antioxidant and anti-inflammatory properties by the modulation of different molecular pathways.
Collapse
Affiliation(s)
- Federica Mannino
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Chiara Imbesi
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Alessandra Bitto
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| | - Tommaso D'Angelo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via C. Valeria Gazzi, 98125 Messina, Italy
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy.
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Via C. Valeria, 98125 Messina, Italy
| |
Collapse
|
7
|
Aslan A, Gok O, Beyaz S, Parlak G, Can MI, Gundogdu R, Baspinar S, Ozercan IH, Parlak AE. Royal jelly arranges apoptotic and oxidative stress pathways and reduces damage to liver tissues of rats by down-regulation of Bcl-2, GSK3 and NF-κB and up-regulation of caspase and Nrf-2 protein signalling pathways. Biomarkers 2023; 28:217-226. [PMID: 36520139 DOI: 10.1080/1354750x.2022.2159526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
IntroductionRoyal jelly (RJ) from the honey bee, Apis mellifera, is a traditional product that is widely used as a food supplement to support the medical treatment of various diseases.Material and methodsOur study continued for 8 weeks. 42 Wistar albino (8 weeks old) male rats were used in the study. The study included 6 groups; Group 1: Control group (fed with standard diet), Group 2: RJ (100 mg/kg, bw), Group 3: F-50 (50 mg/kg, bw), group 4: F-100 (100 mg/kg, bw) group 5: F-50 (50 mg/kg, bw) + RJ (100 mg/kg, bw) Group 6: F-100 (100 mg/kg, bw) + RJ (100 mg/kg, bw). Malondialdehyde (MDA), catalase (CAT) and glutathione (GSH) activities in liver tissue were determined by spectrophotometer. Liver tissue samples were examined histopathologically and various protein levels were determined by Western blotting technique.ResultsRJ caused a significant decrease in MDA level, Bcl-2, GSK3 and NF-κB protein expression levels, whereas induced a significant increase in GSH level, CAT activities and Bax, BDNF, caspase-6, caspase-3, Nrf-2 protein expression levels.ConclusionOur findings suggest RJ to be used as a hepatoprotective agent in the clinic to modulate the toxic effects of fluoride and other chemicals in the future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Faculty of Science, Department of Biology, Inonu University, Malatya, Turkey
| | - Ramazan Gundogdu
- Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, 12000, Turkey
| | - Serpil Baspinar
- Department of Medical Imaging, Health Services Vocational High School, Firat University, Elazig, Turkey
| | | | - Akif Evren Parlak
- Department of Environmental Protection Technologies, Keban Vocational School, Firat University, Elazig, Turkey
| |
Collapse
|
8
|
Allopurinol and ellagic acid decrease epileptiform activity and the severity of convulsive behavior in a model of status epilepticus. Neuroreport 2023; 34:67-74. [PMID: 36608161 DOI: 10.1097/wnr.0000000000001860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND During status epilepticus, severe seizures can occur, generating recurrent cycles of excitotoxicity and oxidative stress that cause neuronal damage and cell death. The administration of agents with antioxidant properties represents a therapeutic alternative aimed at reducing the severity of status epilepticus and mitigating the neurobiological consequences that precede them. OBJECTIVE The objective of this work was to evaluate the antiseizure effect of the antioxidants allopurinol (ALL) and ellagic acid during status epilepticus induced by pilocarpine (PILO). METHODS Male Wistar rats (200-250 g) were injected with ALL (50 mg/kg) or ellagic acid (50 mg/kg), 30 min before PILO administration (pretreatment) or 60 min after the beginning of status epilepticus, to evaluate the antiseizure effect of these drugs on epileptiform activity and convulsive behavior. RESULTS ALL or ellagic acid administration before or after PILO significantly decreased the epileptiform activity and the severity of convulsive behavior. Better efficacy was observed when the drugs were administered as a pretreatment, increasing the latency time of the appearance of status epilepticus from 27.2 ± 2.6 to 45.8 ± 3.31 min, and significantly reducing the amplitude of epileptiform discharges by 53.5% with ALL and 68.9% with ellagic acid. CONCLUSION The antioxidants ALL and ellagic acid showed an antiseizure effect, representing an alternative to reduce epileptiform activity and severity of convulsive behavior during status epilepticus, an effect that may be used as adjuvants to mitigate or reduce oxidative damage processes.
Collapse
|
9
|
Beyaz S, Aslan A, Gok O, Agca CA, Ozercan IH. Fullerene C 60 Attenuates Heart Tissue Inflammation by Modulating COX-2 and TNF-Alpha Signaling Pathways in DMBA Induced Breast Cancer in Rats. Cardiovasc Toxicol 2023; 23:75-85. [PMID: 36705854 DOI: 10.1007/s12012-023-09780-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023]
Abstract
The present study aimed to investigate the therapeutic effect of fullerene C60 nanoparticle against heart tissue damage caused by 7,12-dimethylbenz [a] anthracene (DMBA) in female rats. Female Wistar albino rats, 8 weeks old (n = 60) weighing around (150 ± 10 g) were used for the study. These rats were divided into 4 groups and each group included 15 rats. Groups: (i) Control Group: Fed with standard diet; (ii) C60 Group: C60 (1.7 mg/kg bw, oral gavage); (iii) DMBA Group: DMBA (45 mg/kg bw, oral gavage); (iv) C60 and DMBA Group: C60 (1.7 mg/kg bw, oral gavage) and DMBA (45 mg/kg bw, oral gavage) group. Malondialdehyde (MDA) analysis, catalase activity (CAT), and glutathione (GSH) in heart tissue were determined by spectrophotometer. In addition, heart tissue DNA damage was investigated. Caspase-3, p53, HO-1, COX-2, and TNF-α protein expression levels in heart tissue were determined by western blotting. As a result, Caspase-3, p53, HO-1 protein expression, GSH levels and CAT activity increased, COX-2, TNF-α protein expression, and MDA levels were significantly decreased in the C60 + DMBA group compared to the DMBA group. Therefore, the fullerene C60 nanoparticle may be a promising and effective therapy for the treatment of heart diseases associated with inflammation.
Collapse
Affiliation(s)
- Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey.
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Can Ali Agca
- Faculty of Science, Department of Molecular Biology and Genetics, Bingol University, Bingol, Turkey
| | | |
Collapse
|
10
|
Varesi A, Campagnoli LIM, Carrara A, Pola I, Floris E, Ricevuti G, Chirumbolo S, Pascale A. Non-Enzymatic Antioxidants against Alzheimer's Disease: Prevention, Diagnosis and Therapy. Antioxidants (Basel) 2023; 12:180. [PMID: 36671042 PMCID: PMC9855271 DOI: 10.3390/antiox12010180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive decline. Although substantial research has been conducted to elucidate the complex pathophysiology of AD, the therapeutic approach still has limited efficacy in clinical practice. Oxidative stress (OS) has been established as an early driver of several age-related diseases, including neurodegeneration. In AD, increased levels of reactive oxygen species mediate neuronal lipid, protein, and nucleic acid peroxidation, mitochondrial dysfunction, synaptic damage, and inflammation. Thus, the identification of novel antioxidant molecules capable of detecting, preventing, and counteracting AD onset and progression is of the utmost importance. However, although several studies have been published, comprehensive and up-to-date overviews of the principal anti-AD agents harboring antioxidant properties remain scarce. In this narrative review, we summarize the role of vitamins, minerals, flavonoids, non-flavonoids, mitochondria-targeting molecules, organosulfur compounds, and carotenoids as non-enzymatic antioxidants with AD diagnostic, preventative, and therapeutic potential, thereby offering insights into the relationship between OS and neurodegeneration.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | | | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Ilaria Pola
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Elena Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
11
|
Manosso LM, Arent CO, Borba LA, Abelaira HM, Réus GZ. Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:237-254. [PMID: 35352639 DOI: 10.2174/1570159x20666220329143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
12
|
Fan W, Xu H, Shen C, Fang J, Li X. Nrf2 orchestrates transition from acute to chronic otitis media through inflammatory macrophages. Front Immunol 2023; 14:1170388. [PMID: 37122744 PMCID: PMC10140394 DOI: 10.3389/fimmu.2023.1170388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Acute and chronic otitis media (AOM and COM) are common middle ear infections that can lead to hearing loss and other complications. Recent research has shown that both macrophages and nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway are involved in the immune response to and the resolution of otitis media. However, the specific effects of Nrf2 on macrophages in the transition of AOM to COM are not well understood, and a practical approach to prevent this transition by targeting Nrf2/macrophages has not been established. Methods In an AOM mouse model using lipopolysaccharide (LPS) injection into the middle ear, middle ear effusion (OME)-macrophages were isolated and analyzed for Nrf2 expression. M2-like polarization of macrophages was induced by Nrf2 activation and its effects on inflammatory resolution were studied by examining inflammatory neutrophils and macrophages, proinflammatory cytokines, and oxidative levels. The survival of human middle ear epithelial cells (HMMECs) co-cultured with Nrf2-modified macrophages was also evaluated. Furthermore, restoration of Nrf2 in macrophages with adeno-associated virus (AAV) vectors was performed to determine the effect on the transition of AOM to COM in experimental mice. Results Reduced Nrf2 in OME-macrophages during the recovery phase was associated with uncured AOM or its development into COM, demonstrated by persistent increases in inflammatory neutrophils and macrophages, proinflammatory cytokines, and oxidative levels. Nrf2 activation induced M2-like polarization of macrophages, which improved the survival of co-cultured HMMECs treated with LPS in vitro. Restoration of Nrf2 in OME-derived low-Nrf2-expressing macrophages with AAV vectors significantly inhibited the transition of AOM to COM in experimental mice. Discussion Nrf2 in macrophages plays a critical role in the immune response to and resolution of otitis media Restoration of Nrf2 expression in OME-macrophages could be a promising therapeutic approach to prevent the development of COM in AOM patients.
Collapse
|
13
|
Hosseini A, Razavi BM, Hosseinzadeh H. Protective effects of pomegranate (Punica granatum) and its main components against natural and chemical toxic agents: A comprehensive review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154581. [PMID: 36610118 DOI: 10.1016/j.phymed.2022.154581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/15/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Different chemical toxicants or natural toxins can damage human health through various routes such as air, water, fruits, foods, and vegetables. PURPOSE Herbal medicines may be safe and selective for the prevention of toxic agents due to their active ingredients and various pharmacological properties. According to the beneficial properties of pomegranate, this paper summarized the protective effects of this plant against toxic substances. STUDY DESIGN In this review, we focused on the findings of in vivo and in vitro studies of the protective effects of pomegranate (Punica granatum) and its active components including ellagic acid and punicalagin, against natural and chemical toxic agents. METHODS We collected articles from the following databases or search engines such as Web of Sciences, Google Scholar, Pubmed and Scopus without a time limit until the end of September 2022. RESULTS P. granatum and its constituents have shown protective effects against natural toxins such as aflatoxins, and endotoxins as well as chemical toxicants for instance arsenic, diazinon, and carbon tetrachloride. The protective effects of these compounds are related to different mechanisms such as the prevention of oxidative stress, and reduction of inflammatory mediators including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2(COX-2) and nuclear factor ĸB (NF-ĸB) as well as the modulation of apoptosis, mitogen-activated protein kinase (MAPK) signaling pathways and improvement of liver or cardiac function via regulation of enzymes. CONCLUSION In this review, different in vitro and in vivo studies have shown that P. granatum and its active constituents have protective effects against natural and chemical toxic agents via different mechanisms. There are no clinical trials on the protective effects of P. granatum against toxic agents.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Aslan A, Can MI, Beyaz S, Gok O, Parlak G, Gundogdu R, Ozercan IH, Erman O. A new approach on the regulation of NF-κB and Bax protein signaling pathway activation by royal jelly in fluoride-induced pancreas damage in rats. Tissue Cell 2022; 79:101913. [DOI: 10.1016/j.tice.2022.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
|
15
|
Wang Q, Botchway BOA, Zhang Y, Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson's disease: A review. Biomed Pharmacother 2022; 156:113848. [PMID: 36242848 DOI: 10.1016/j.biopha.2022.113848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a familiar neurodegenerative disease, accompanied by motor retardation, static tremor, memory decline and dementia. Heredity, environment, age and oxidative stress have been suggested as key factors in the instigation of PD. The Keap1-Nrf2-ARE signaling is one of the most significant anti- oxidative stress (OS) pathways. The Keap1 is a negative regulator of the Nrf2. The Keap1-Nrf2-ARE pathway can induce cell oxidation resistance and reduce nerve injury to treat neurodegenerative diseases. Ellagic acid (EA) can inhibit the Keap1 to accumulate the Nrf2 in the nucleus, and act on the ARE to produce target proteins, which in turn may alleviate the impact of OS on neuronal cells of PD. This review analyzes the structure and physiological role of EA, along with the structure, composition and functions of the Keap1-Nrf2-ARE signaling pathway. We further expound on the mechanism of ellagic acid in its activation of the Keap1-Nrf2-ARE signaling pathway, as well as the relationship between EA in impairing the TLR4/Myd88/NF-κB and Nrf2 pathways. Ellagic acid has the potentiality of improving PD by activating the Keap1-Nrf2-ARE signaling pathway and scavenging free radicals.
Collapse
Affiliation(s)
- Qianhui Wang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Benson O A Botchway
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Zhejiang, China.
| |
Collapse
|
16
|
Elseweidy MM, Elesawy AE, Sobh MS, Elnagar GM. Ellagic acid ameliorates high fructose-induced hyperuricemia and non-alcoholic fatty liver in Wistar rats: Focusing on the role of C1q/tumor necrosis factor-related protein-3 and ATP citrate lyase. Life Sci 2022; 305:120751. [PMID: 35780841 DOI: 10.1016/j.lfs.2022.120751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
AIMS High-fructose intake (HF) represents an inducible risk factor for non-alcoholic fatty liver disease (NAFLD). Present study aimed to illustrate the effect of HF diet (HFD) on the induction of NAFLD, hyperuricemia and role of ellagic acid as modulator. MAIN METHODS Twenty-four adult male albino rats were randomly divided into four groups (6/each). The first group received normal chow diet only while the others received 60 % HFD for 4 weeks and subdivided later into 3 groups. The first and second groups received allopurinol and ellagic acid, respectively while the third group received HFD only for extra 4 weeks. KEY FINDINGS Rats fed on HFD for 8 weeks displayed body weight gain, insulin resistance (IR), hyperglycemia, dyslipidemia, hyperuricemia with increased oxidative stress and hepatic lipogenic enzymes such as ATP citrate lyase (ACL), aldolase B, and fatty acid synthase (FAS), sterol regulatory element-binding protein 1 (SERBP-1c). C1q /tumor necrosis factor-related protein -3 (CTRP3), and phosphorylated AMP-activated protein kinase (p-AMPK) however showed significant decreases. Ellagic acid or allopurinol administration significantly decreased serum lipids, uric acid, glucose, insulin levels and hepatic contents of enzymes. Malondialdehyde (MDA), FAS, aldolase B, SERBP-1c, and xanthine oxidase (XO) hepatic contents showed significant decreases along with glutathione (GSH) increase as compared to fructose group where ellagic acid was more remarkable compared to allopurinol. SIGNIFICANCE Our findings indicated that ellagic acid had alleviated HFD-induced hyperuricemia, its associated NAFLD pattern as mediated through activation of CTRP3 and inhibition of ACL activities in a pattern more remarkable than allopurinol.
Collapse
Affiliation(s)
| | - Ahmed E Elesawy
- Biochemistry Department, Faculty of Pharmacy, Badr University in Cairo)BUC), Egypt
| | - Mohammed S Sobh
- Pathology Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Gehad M Elnagar
- Biochemistry Department, Faculty of Pharmacy, Zagazig University, Egypt
| |
Collapse
|
17
|
Aslan A, Beyaz S, Gok O, Can MI, Parlak G, Gundogdu R, Ozercan IH, Baspinar S. Protective effect of royal jelly on fluoride-induced nephrotoxicity in rats via the some protein biomarkers signaling pathways: A new approach for kidney damage. Biomarkers 2022; 27:637-647. [PMID: 35735023 DOI: 10.1080/1354750x.2022.2093977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Introduction: Protective effect of royal jelly (RJ) on fluoride-induced nephrotoxicity was investigated in this study.Methods: 42 healthy male Wistar rats (n = 42, 8 weeks of age) were divided equally into 6 groups with 7 rats in each; (1) Group-1: Controls fed with standard diet; (2) Group-2: RJ [100 mg/kg] bw (body weight), by oral gavage; (3) Group-3: Fluoride [50 mg/kg] bw, in drinking water; (4) Group-4: Fluoride [100 mg/kg] bw, in drinking water; (5) Group-5: RJ [100 mg/kg] bw, by oral gavage + Fluoride [50 mg/kg] bw, in drinking water; (6) Group-6: RJ [100 mg/kg] bw, by oral gavage + Fluoride [100 mg/kg] bw, in drinking water. After 8 weeks, all rats were decapitated and their kidney tissues were removed for further analysis. The protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, VEGF, GSK-3, BDNF, COX-2 and TNF-α proteins in kidney tissue were analysed by western blotting techniqueResults: RJ increased Bcl-2, COX-2, GSK-3, TNF-α and VEGF protein levels and a decreased caspase-3, caspase -6, caspase-9, Bax and BDNF protein levels in fluoride-treated rats.Conclusion: RJ application may have a promising therapeutical potential in the treatment of many diseases in the future by reducing kidney damage.
Collapse
Affiliation(s)
- Abdullah Aslan
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Seda Beyaz
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Ozlem Gok
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Muhammed Ismail Can
- Inonu University, Faculty of Science, Department of Biology, Malatya, Turkey
| | - Gozde Parlak
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Ramazan Gundogdu
- Bingol University, Department of Pharmacy Services, Vocational School of Health Services, 12000, Bingol, Turkey
| | | | - Serpil Baspinar
- Firat University, Department of Medical Imaging, Health Services Vocational High School, Elazig, Turkey
| |
Collapse
|
18
|
Targeting Nrf2-Mediated Oxidative Stress Response in Traumatic Brain Injury: Therapeutic Perspectives of Phytochemicals. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1015791. [PMID: 35419162 PMCID: PMC9001080 DOI: 10.1155/2022/1015791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Traumatic brain injury (TBI), known as mechanical damage to the brain, impairs the normal function of the brain seriously. Its clinical symptoms manifest as behavioral impairment, cognitive decline, communication difficulties, etc. The pathophysiological mechanisms of TBI are complex and involve inflammatory response, oxidative stress, mitochondrial dysfunction, blood-brain barrier (BBB) disruption, and so on. Among them, oxidative stress, one of the important mechanisms, occurs at the beginning and accompanies the whole process of TBI. Most importantly, excessive oxidative stress causes BBB disruption and brings injury to lipids, proteins, and DNA, leading to the generation of lipid peroxidation, damage of nuclear and mitochondrial DNA, neuronal apoptosis, and neuroinflammatory response. Transcription factor NF-E2 related factor 2 (Nrf2), a basic leucine zipper protein, plays an important role in the regulation of antioxidant proteins, such as oxygenase-1(HO-1), NAD(P)H Quinone Dehydrogenase 1 (NQO1), and glutathione peroxidase (GPx), to protect against oxidative stress, neuroinflammation, and neuronal apoptosis. Recently, emerging evidence indicated the knockout (KO) of Nrf2 aggravates the pathology of TBI, while the treatment of Nrf2 activators inhibits neuronal apoptosis and neuroinflammatory responses via reducing oxidative damage. Phytochemicals from fruits, vegetables, grains, and other medical herbs have been demonstrated to activate the Nrf2 signaling pathway and exert neuroprotective effects in TBI. In this review, we emphasized the contributive role of oxidative stress in the pathology of TBI and the protective mechanism of the Nrf2-mediated oxidative stress response for the treatment of TBI. In addition, we summarized the research advances of phytochemicals, including polyphenols, terpenoids, natural pigments, and otherwise, in the activation of Nrf2 signaling and their potential therapies for TBI. Although there is still limited clinical application evidence for these natural Nrf2 activators, we believe that the combinational use of phytochemicals such as Nrf2 activators with gene and stem cell therapy will be a promising therapeutic strategy for TBI in the future.
Collapse
|
19
|
Aslan A, Gok O, Beyaz S, Uslu H, Erman F, Erman O, Baspinar S. Ellagic acid inhibits proinflammatory intermediary manufacture by suppressing NF-κB/Akt, VEGF and activating Nrf-2/Caspase-3 signaling pathways in rat testicular damage: a new way for testicular damage cure and in silico approach. Toxicol Mech Methods 2022; 32:463-476. [PMID: 35236242 DOI: 10.1080/15376516.2022.2046668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ellagic acid (EA) has protective effect on testicular damage and this natural compound decreases oxidative damage. The present study aims to examine the preventive effect of ellagic acid (EA) against carbon tetrachloride (CCl4)-induced testicular tissue damage in rats. In testicular tissue, tumor necrosis factor-α (TNF-α), Nuclear factor erythroid-2 related factor 2 (Nrf-2), B-cell lymphoma-2 (Bcl-2), vascular endothelial growth factor (VEGF), Nuclear factor-kappa B (NF-κB), cysteine aspartic proteases (caspase-3) and protein kinase B (Akt) synthesis levels were analyzed by western blot method, reactive oxygen species (ROS) was measured by malondialdehyde (MDA) levels, Glutathione (GSH) level and catalase (CAT) by spectrophotometer. As a result, in comparison with the CCl4 group, caspase-3 and Nrf-2 protein synthesis levels increased in EA + CCl4 group, however, VEGF, Bcl-2, NF-κB, TNF-α and Akt protein synthesis levels decreased, EA application raised GSH levels and CAT activity, reduced MDA levels. In this study, in silico tools were applied to confirm the activity of EA against the cancer with macromolecules such as the above mentioned transcription factors. EA, turned out to show significant activity similarly to some cocrystal ligands, particularly against cancer. These results points out that EA can be used as a testicular damage cure drug in future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Harun Uslu
- Department of Medical Services and Techniques, Vocational School of Health Services, Firat University, Elazig, Turkey
| | - Fazilet Erman
- Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Orhan Erman
- Faculty of Science, Department of Biology, Firat University, Elazig, Turkey
| | - Serpil Baspinar
- Department of Medical Imaging, Health Services Vocational High School, Firat University, Elazig, Turkey
| |
Collapse
|
20
|
Sharifi-Rad J, Quispe C, Castillo CMS, Caroca R, Lazo-Vélez MA, Antonyak H, Polishchuk A, Lysiuk R, Oliinyk P, De Masi L, Bontempo P, Martorell M, Daştan SD, Rigano D, Wink M, Cho WC. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3848084. [PMID: 35237379 PMCID: PMC8885183 DOI: 10.1155/2022/3848084] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/31/2022] [Indexed: 12/18/2022]
Abstract
Ellagic acid (EA) is a bioactive polyphenolic compound naturally occurring as secondary metabolite in many plant taxa. EA content is considerable in pomegranate (Punica granatum L.) and in wood and bark of some tree species. Structurally, EA is a dilactone of hexahydroxydiphenic acid (HHDP), a dimeric gallic acid derivative, produced mainly by hydrolysis of ellagitannins, a widely distributed group of secondary metabolites. EA is attracting attention due to its antioxidant, anti-inflammatory, antimutagenic, and antiproliferative properties. EA displayed pharmacological effects in various in vitro and in vivo model systems. Furthermore, EA has also been well documented for its antiallergic, antiatherosclerotic, cardioprotective, hepatoprotective, nephroprotective, and neuroprotective properties. This review reports on the health-promoting effects of EA, along with possible mechanisms of its action in maintaining the health status, by summarizing the literature related to the therapeutic potential of this polyphenolic in the treatment of several human diseases.
Collapse
Affiliation(s)
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | | | - Rodrigo Caroca
- Biotechnology and Genetic Engineering Group, Science and Technology Faculty, Universidad del Azuay, Av. 24 de Mayo 7-77, Cuenca, Ecuador
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | - Marco A. Lazo-Vélez
- Universidad del Azuay, Grupos Estratégicos de Investigación en Ciencia y Tecnología de Alimentos y Nutrición Industrial (GEICA-UDA), Av. 24 de Mayo 7-77, Apartado 01.01.981, Cuenca, Ecuador
| | | | | | - Roman Lysiuk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Petro Oliinyk
- Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Luigi De Masi
- National Research Council (CNR), Institute of Biosciences and Bioresources (IBBR), Via Università 133, 80055 Portici, Naples, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via L. De Crecchio 7, 80138 Naples, Italy
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Rigano
- Department of Pharmacy, University of Naples “Federico II”, Via D. Montesano, 49 80131 Naples, Italy
| | - Michael Wink
- Heidelberg University, Institute of Pharmacy and Molecular Biotechnology, INF 329, D-69120 Heidelberg, Germany
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| |
Collapse
|
21
|
Pardo-Peña K, Yañez-Hernández A, Medina-Ceja L, Morales-Villagrán A. Ellagic acid and allopurinol decrease H 2O 2 concentrations, epileptiform activity and astrogliosis after status epilepticus in the hippocampus of adult rats. Exp Brain Res 2022; 240:1191-1203. [PMID: 35171306 DOI: 10.1007/s00221-022-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.
Collapse
Affiliation(s)
- Kenia Pardo-Peña
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico.
| | - Aldo Yañez-Hernández
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | | |
Collapse
|
22
|
Beyaz S, Aslan A, Gok O, Uslu H, Agca CA, Ozercan IH. In vivo, in vitro and in silico anticancer investigation of fullerene C 60 on DMBA induced breast cancer in rats. Life Sci 2022; 291:120281. [PMID: 34982963 DOI: 10.1016/j.lfs.2021.120281] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 12/14/2022]
Abstract
AIMS The aim of the study was to determine the protective and therapeutic effect of fullerene C60 nanoparticle on DMBA-induced breast cancer in rats. MAIN METHODS In vitro cell viability was determined by the WST-1 test. In vivo analysis was performed in female Wistar Albino rats. The expression of caspase-3, Bcl-2, Nrf-2, NF-κB, TNF-α, COX-2, p53, IL-6, IL-1α ve p38α (MAPK) proteins were assessed by western blotting. Furthermore, malondialdehyde (MDA), glutathione (GSH), catalase activity (CAT), total protein levels and DNA damage were investigated. In addition, tissues were evaluated by histopathologically. In in silico analysis, the binding affinities of the fullerene C60 nanoparticle to transcription factors such as caspase-3, Bcl-2, Nrf-2, NF-κB, TNF-α, COX-2, VEGF and Akt were demonstrated by molecular docking. KEY FINDINGS Treatment of MCF-7 cells at various concentrations of fullerene C60 (0.1 to 100 mg/ml) inhibited cell viability in a dose dependent manner. Fullerene C60 treated rats exhibited considerable increase in the level of caspase-3 while decrease in the level of pro-survival protein Bcl-2. Bcl-2, NF-κB, TNF-α, COX-2, IL-6, IL-1α and p38α (MAPK) protein expression levels and malondialdehyde (MDA) levels were decreased in the C60 + DMBA groups compared to the DMBA group. It was observed that caspase-3, Nrf-2 and p53 protein expression levels, glutathione (GSH) level, catalase activities (CAT) and total protein levels increased significantly which was further confirmed through the resulting DNA fragmentation. SIGNIFICANCE In silico assays, fullerene C60 has been observed to have similar affinity to some crystal ligands, especially against cancer.
Collapse
Affiliation(s)
- Seda Beyaz
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Abdullah Aslan
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey.
| | - Ozlem Gok
- Firat University, Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Elazig, Turkey
| | - Harun Uslu
- Firat University, Vocational School of Health Services, Department of Medical Services and Techniques, Elazig, Turkey
| | - Can Ali Agca
- Bingol University, Faculty of Science, Department of Molecular Biology and Genetics, Bingol, Turkey
| | | |
Collapse
|
23
|
Aslan A, Can MI, Gok O, Beyaz S, Parlak G, Ozercan IH. The inducing of caspase and Bcl-2 pathway with royal jelly decreases the muscle tissue damage exposed with fluoride in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10547-10557. [PMID: 34528203 PMCID: PMC8443307 DOI: 10.1007/s11356-021-16456-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/06/2021] [Indexed: 05/26/2023]
Abstract
In this study, 42 Wistar albino male rats (n = 42, 8 weeks old) were used. Rats were divided into 6 groups and 7 rats included each group. Groups: (i) Control group: Standard diet; (ii) RJ (royal jelly) group: Standard diet + royal jelly; (iii) F50 group: Standard diet + 50 mg/kg fluoride; (iv): F100 group: Standard diet + 100 mg/kg fluoride; (v) F50+RJ group: Standard diet + 50 mg/kg fluoride + royal jelly; (vi): F100+RJ group: Standard diet + 100 mg/kg fluoride + royal jelly. After 8 weeks, the rats were decapitated, and their muscle tissues were removed. Expression levels of Caspase-3, Caspase-6, Bax, tumor necrosis factor-α (TNF-α), interleukin 1 alpha (IL1-α) and Bcl-2 proteins in muscle tissue were determined by western blotting method. Histopathological analyses were also performed on the muscle tissue. Malondialdehyde (MDA), glutathione (GSH) and catalase (CAT) analyses were determined by a spectrophotometer. According to the obtained results, Bcl-2, TNF-α and IL1-α protein expression was increased in damage groups compared to the control and royal jelly groups, while Caspase-3, Caspase-6 and Bax protein expression levels decreased in damage groups. MDA level increased in damage groups compared to the control and royal jelly groups, while CAT and GSH levels increased with royal jelly application in royal jelly-given group in comparison to the flouride-exposed group. According to histopathological analysis results, edema and inflammatory cell formations were found in the injury groups, a tendency to decrease in these injuries was observed in the treatment groups. Based on these results, we can say that royal jelly has protective effects on muscle tissue against fluoride damage.
Collapse
Affiliation(s)
- Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey.
| | - Muhammed Ismail Can
- Department of Biology, Faculty of Science, Inonu University, Malatya, Turkey
| | - Ozlem Gok
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| | - Gozde Parlak
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| | | |
Collapse
|
24
|
Phochantachinda S, Chatchaisak D, Temviriyanukul P, Chansawang A, Pitchakarn P, Chantong B. Ethanolic Fruit Extract of Emblica officinalis Suppresses Neuroinflammation in Microglia and Promotes Neurite Outgrowth in Neuro2a Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6405987. [PMID: 34539802 PMCID: PMC8443350 DOI: 10.1155/2021/6405987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022]
Abstract
Inhibiting neuroinflammation and modulating neurite outgrowth could be a promising strategy to prevent neurological disorders. Emblica officinalis (EO) may be a potent agent against them. Although EO extract reportedly has anti-inflammatory properties in macrophages, there is limited knowledge about its neuroprotective activity by suppressing microglia-mediated proinflammatory cytokine production and inducing neurite outgrowth. The present study aimed to elucidate the effect of EO fruit extract on the lipopolysaccharide- (LPS-) induced neuroinflammation using microglial (BV2) and neuroblastoma (Neuro2a) cells. The results demonstrated that, in LPS-treated BV2 cells, EO fruit extract reduced nitric oxide, interleukin-6, and tumor necrotic factor-α production. It also enhanced the neurite length of Neuro2a cells, which was linked to the upregulation of TuJ1 and MAP2 expressions. In conclusion, these findings indicate that the ethanolic extract of EO fruits has promising neuroprotective potential to exhibit antineuroinflammation activity and accelerative effect on neurite outgrowth in vitro. Therefore, EO fruit extract can be considered a novel herbal medicine candidate for managing neuroinflammatory diseases.
Collapse
Affiliation(s)
- Sataporn Phochantachinda
- Prasu-Arthorn Animal Hospital, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Duangthip Chatchaisak
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Piya Temviriyanukul
- Institute of Nutrition, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Anchana Chansawang
- The Center for Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Pornsiri Pitchakarn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Boonrat Chantong
- Department of Pre-Clinical and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
25
|
Aslan A, Beyaz S, Gok O, Can MI, Parlak G, Ozercan IH, Gundogdu R. Royal jelly abrogates flouride-induced oxidative damage in rat heart tissue by activating of the nrf-2/NF-κB and bcl-2/bax pathway. Toxicol Mech Methods 2021; 31:644-654. [PMID: 34227456 DOI: 10.1080/15376516.2021.1950249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Royal jelly is known to strengthen memory, provide antioxidative, antidiabetic, antitumor, anticancer, antibacterial, antiinflammatory, antihypertensive. In this study, 42 rats (n = 42) were used, and these rats were divided into 6 groups of 7 rats each. Groups: (i) Control Group: Group fed with standard diet; (ii) Royal Jelly (RJ) Group: RJ (100 mg/kg bw, gavage); (iii) F50 Group: Fluoride (50 mg/kg bw, drinking water); (iv) F100 Group: F (100 mg/kg bw, drinking water); (v) F50 + RJ Group: F (50 mg/kg bw, drinking water) + RJ (100 mg/kg bw, gavage); (vi) F100 + RJ Group: F (100 mg/kg bw, drinking water) + RJ (100 mg/kg bw, gavage). The rats were decapitated after 8 weeks, and their heart tissues were taken and examined. Lipid peroxidation by MDA (malondialdehyde) analyzes, GSH (glutathione) level and catalase activity were determined by spectrophotometer. Protein expression levels of caspase-3, caspase-6, caspase-9, Bcl-2, Bax, BDNF, Gsk-3, Nrf-2 and NF-κB proteins in heart tissue were determined by western blotting technique and hearth tissue evaluated by histopathologically. As a result, MDA levels, Bcl-2, Gsk-3 and NF-κB protein expression levels were reduced, whereas GSH levels, caspase-3, caspase-9, caspase-6, Bax, BDNF and Nrf-2 protein levels were increased in the F50 + RJ and F100 + RJ groups compared to the F50 and F100 groups. According to the results of this study, it has been concluded that Royal jelly has the potential to be developed in to a drug for treatment of heart diseases in addition to providing protection against heart damage.
Collapse
Affiliation(s)
- Abdullah Aslan
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Faculty of Science, Department of Biology, Inonu University, Malatya, Turkey
| | - Gozde Parlak
- Faculty of Science, Department of Biology-Molecular Biology and Genetics Program, Firat University, Elazig, Turkey
| | | | - Ramazan Gundogdu
- Faculty of Science, Department of Biology, Bingol University, Bingol, Turkey
| |
Collapse
|
26
|
Gupta A, Singh AK, Kumar R, Jamieson S, Pandey AK, Bishayee A. Neuroprotective Potential of Ellagic Acid: A Critical Review. Adv Nutr 2021; 12:1211-1238. [PMID: 33693510 PMCID: PMC8321875 DOI: 10.1093/advances/nmab007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 02/06/2023] Open
Abstract
Ellagic acid (EA) is a dietary polyphenol present in various fruits, vegetables, herbs, and nuts. It exists either independently or as part of complex structures, such as ellagitannins, which release EA and several other metabolites including urolithins following absorption. During the past few decades, EA has drawn considerable attention because of its vast range of biological activities as well as its numerous molecular targets. Several studies have reported that the oxidative stress-lowering potential of EA accounts for its broad-spectrum pharmacological attributes. At the biochemical level, several mechanisms have also been associated with its therapeutic action, including its efficacy in normalizing lipid metabolism and lipidemic profile, regulating proinflammatory mediators, such as IL-6, IL-1β, and TNF-α, upregulating nuclear factor erythroid 2-related factor 2 and inhibiting NF-κB action. EA exerts appreciable neuroprotective activity by its free radical-scavenging action, iron chelation, initiation of several cell signaling pathways, and alleviation of mitochondrial dysfunction. Numerous in vivo studies have also explored the neuroprotective attribute of EA against various neurotoxins in animal models. Despite the increasing number of publications with experimental evidence, a critical analysis of available literature to understand the full neuroprotective potential of EA has not been performed. The present review provides up-to-date, comprehensive, and critical information regarding the natural sources of EA, its bioavailability, metabolism, neuroprotective activities, and underlying mechanisms of action in order to encourage further studies to define the clinical usefulness of EA for the management of neurological disorders.
Collapse
Affiliation(s)
- Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Amit Kumar Singh
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Ramesh Kumar
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| | - Abhay Kumar Pandey
- Department of Biochemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, USA
| |
Collapse
|
27
|
Lu W, Xu M, Yuan Y, Zhang X, Tan J, He J, Tian Y. Effect of raspberry extract on wound healing. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The main purpose of this study was to investigate the effect of raspberry extract on wound healing and compare it with that of ellagic acid. The elimination of excess free radicals was the key to preventing wound inflammation; cellular antioxidation activity was evaluated using an oxidative stress damage cell model. Cell proliferation ability was measured using the WST-1 assay, and the migration capacity was determined using the wound scratch assay. A mouse wound model was used to verify the effect of raspberry extract on wound healing. The cellular antioxidant activity of the extract ((50.31±3.17) μg/mL) was slightly lower than that of ellagic acid ((44.59±2.38) μg/mL). The results of a cell proliferation assay showed that both raspberry extract and ellagic acid at 5 μg/mL could significantly (P<0.01) promote the proliferation of HaCaT cells. After culturing for 24 h and 48 h, the cell healing rates of the extract were (41.11±0.38) per cent and (68.88±2.51) per cent, respectively, whereas the corresponding rates of ellagic acid were (39.01±2.40) per cent and (70.33±0.89) per cent; hence, there were no significant differences between them (P>0.05). The wound areas of mice fed low, medium, and high doses of raspberry extract for 14 days were 1.66, 1.41, and 1.24 mm2, respectively, which were significantly lower than that of the blank control group, 2.18 mm2 (P<0.05). These findings indicate that raspberry extract and ellagic acid exhibit similar antioxidant capacities and equivalent cell proliferation-promoting capabilities. In the mouse test, raspberry extract effectively promoted a reduction in wound area. This work demonstrates the potential of raspberry extract in wound healing, suggesting a promising application of raspberry resources in the fields of functional foods, cosmetics, and medicine.
Collapse
|
28
|
Ellagic acid prevents 3-nitropropionic acid induced symptoms of Huntington's disease. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1917-1928. [PMID: 34061228 DOI: 10.1007/s00210-021-02106-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
Mitochondrial abnormalities and redox imbalance are major pathogenic factors in progression of Huntington's disease (HD), manifested clinically by affective, motor, cognitive, and psychiatric incompetence. Antioxidants behold much promise in mitigation of several pathological facets in HD. Ellagic acid (EA) is a naturally derived polyphenol acknowledged for potent neuroprotective abilities that enabled its significance amongst popular brain tonics. The present study is aimed to examine the outcome of EA pre-treatment in 3-nitropropionic acid (3-NP) rat prototype of HD. Separate rat groups were pre-treated with EA (25, 50, and 100 mg/kg, p.o.) for 21 days and 3-NP (10 mg/kg, i.p.) was given for 14 days alongside to induce symptoms of HD. The physical/motor functions (narrow beam paradigm, footprint study, hanging-wire assessment) and cognitive abilities using elevated plus maze and novel object recognition task were evaluated. Entire brain was isolated and succinate dehydrogenase activity and parameters of oxido-nitrosative stress were assessed in mitochondrial fraction. 3-NP accrued oxido-nitrosative stress and significant decrease in succinate dehydrogenase activity caused motor and cognitive deficits in rats. EA pre-treatment resurrected succinate dehydrogenase activity in 3-NP treated rats that indicated preservation of mitochondrial function. A significant decrease in thiobarbituric acid reactive substances and nitrite levels and increase in glutathione and catalase activity by EA in 3-NP treated rats was noted. EA protected the rats against 3-NP triggered cognitive insufficiency and motor disturbances. It can be inferred that ellagic acid protects against 3-NP induced mitochondrial dysfunction and oxido-nitrosative stress in the brain. EA supplements or nutraceuticals might possess protective potential against symptoms of HD.
Collapse
|
29
|
Aslan A, Beyaz S, Gok O, Can MI, Erman F, Erman O. The impact of ellagic acid on some apoptotic gene expressions: a new perspective for the regulation of pancreatic Nrf-2/NF-κB and Akt/VEGF signaling in CCl 4-induced pancreas damage in rats. Immunopharmacol Immunotoxicol 2021; 43:145-152. [PMID: 33455449 DOI: 10.1080/08923973.2020.1869255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the potential effect of ellagic acid (EA) in the treatment of pancreatic injury. EA has been found to have strong anti-inflammatory, antioxidative, and anticancer properties. The effects of EA on pancreati˜c star cell (PSC) activation and cell functions have been evaluated and it has been shown that it inhibits the activation of basic cell functions and PSCs and. it has antidiabetic activity through its effect on β-pancreas cells. MATERIALS AND METHODS In this work, 36 Wistar albino rats (n = 36, 8 weeks old) were used. Rats were divided to 4 groups and 9 rats were each group. Groups: Group 1: control group; Group 2: EA group; Group 3: carbon tetrachloride (CCl4) group; Group 4: EA + CCl4 group. Animals were decapitated after 8 weeks and their pancreas tissue samples were taken and researched. In pancreas tissue, NF-κB, TNF-α, Nrf-2, VEGF, Bcl-2, caspase-3, and Akt proteins expression ratios were analyzed by western blotting method, CAT activity and GSH levels were determined by spectrophotometer and ROS production was detected by MDA. RESULTS In our results, the Nrf-2 and caspase-3 protein expressions, catalase activities and GSH levels increased, TNF-α, NF-κB, Bcl-2, VEGF, and Akt protein expressions and MDA levels reduced in EA + CCl4 group comparable to the CCl4 group. CONCLUSIONS These findings reveal that EA decreases pancreas tissue injury in rats and that EA may also be used as a drug against pancreas tissue injury in the future.
Collapse
Affiliation(s)
- Abdullah Aslan
- Department of Biology-Molecular Biology and Genetics Program, Faculty of Science, Firat University, Elazig, Turkey
| | - Seda Beyaz
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Ozlem Gok
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| | - Muhammed Ismail Can
- Department of Biology, Faculty of Science, Inonu University, Malatya, Turkey
| | - Fazilet Erman
- Faculty of Health Sciences, Firat University, Elazig, Turkey
| | - Orhan Erman
- Department of Biology, Faculty of Science, Firat University, Elazig, Turkey
| |
Collapse
|
30
|
Ellagic acid prevents kidney injury and oxidative damage via regulation of Nrf-2/NF-κB signaling in carbon tetrachloride induced rats. Mol Biol Rep 2020; 47:7959-7970. [PMID: 33006714 DOI: 10.1007/s11033-020-05873-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Phytochemicals, bioactive food compounds, found in plants have been described as protective agents against renal injury. This work was planned to evaluate the effects of EA on anti-oxidative and anti-inflammation pathways in kidney damage induced with carbon tetrachloride. In this study, experimental animals (n = 36, 8 weeks old rats) were divided into 4 groups as follows: 1) Control group 2) EA group (10 mg/kg body weight) 3) CCl4 group (1.5 ml/kg, body weight) 4) EA + CCl4 group. The potentially protective effect of EA on kidney damage exposed by CCl4 in rats were evaluated. EA administration protects CCl4 induced kidney damage against oxidative stress through its antioxidant protection. Treatment of EA significantly reduced lipid peroxidation and improved glutathione and catalase enzyme activity. Recently studies showed that EA activated caspase-3 and nuclear transcription factor erythroid 2 related factor driven antioxidant signal pathway and protected the kidney against damage induced by oxidative stress. Furthermore, EA also markedly decreased the level of cyclooxygenase-2, the vascular endothelial growth factor and tumor necrosis factor-alpha and suppressed the protein synthesis of nuclear factor-kappa-B. This study reveals that EA has kidney protective effect against CCl4 induced oxidative damage and inflammation.
Collapse
|
31
|
Khodaei F, Khoshnoud MJ, Heidaryfar S, Heidari R, Karimpour Baseri MH, Azarpira N, Rashedinia M. The effect of ellagic acid on spinal cord and sciatica function in a mice model of multiple sclerosis. J Biochem Mol Toxicol 2020; 34:e22564. [PMID: 32640490 DOI: 10.1002/jbt.22564] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/08/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
Abstract
Multiple sclerosis (MS) is a well-known neurodegenerative disorder, causing toxicity in different organs, such as spinal cord tissue. The goal of this study was to investigate the protective effect of ellagic acid (EA) against spinal cord and sciatica function in cuprizone (Cup)-induced demyelination model. Animals were divided into six equal groups. The first group received tap water as the control. Cup group was treated with Cup (0.2% w/w in fed). EA 100 group was orally treated with EA (100 mg/kg). EA + Cup groups were orally treated with three doses of 5, 50, and 100 mg/kg of EA plus Cup (0.2% w/w). All groups received treatment for 42 days. Open field, rotarod, and gait tests were done to evaluate the behavioral changes following Cup and/or EA treatment. Also, lipid peroxidation, reactive oxygen species (ROS) content, antioxidant capacity, superoxide dismutase (SOD), and catalase enzymes activity in spinal cord was evaluated. Luxol fast blue (LFB) staining also the behavioral tests were performed to evaluate the model. Cup increased ROS levels and oxidative stress in their spinal cord tissues. Also, Cup reduced antioxidant capacity, SOD, and catalase activity. EA (especially at 100 mg/kg) prevented these abnormal changes. EA co-treatment dose-dependently was able to ameliorate behavioral impairments in mice that received Cup. EA might act as a protective agent in MS by modulating spinal cord function.
Collapse
Affiliation(s)
- Forouzan Khodaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Food and Supplements Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sepideh Heidaryfar
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad H Karimpour Baseri
- Department of Neuroscience and Addiction, School of Advanced Medical Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Azarpira
- Transplant Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rashedinia
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|