1
|
Huang L, Li H, Han Y. Exploring the mechanism of Epimedium in treating diabetic nephropathy based on network pharmacology and experimental validation study. Cytotechnology 2025; 77:82. [PMID: 40151768 PMCID: PMC11937453 DOI: 10.1007/s10616-025-00748-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025] Open
Abstract
Diabetic nephropathy (DN) is a severe complication of diabetes, characterized by chronic inflammation, metabolic disturbances, and progressive renal damage. Natural perennial herb, such as Epimedium, has shown potential therapeutic effects on DN, but its underlying mechanisms remain unclear. This study aimed to explore the pharmacological mechanisms of Epimedium in the treatment of DN through network pharmacology, molecular docking, and experimental validation. Active components of Epimedium were identified using TCMSP and SwissTargetPrediction databases, while DN-related targets were retrieved from GeneCards, DisGeNET, OMIM, and TTD databases. Overlapping targets were analyzed via PPI network and Cytoscape's cytoHubba plugin to identify hub genes. GO and KEGG enrichment analyses were conducted to explore functional pathways. Molecular docking validated the binding affinity between key targets and active components. Finally, high-glucose-induced HK-2 cell injury models were used to verify the protective effects of Epimedium through RT-qPCR, western blotting, and mitochondrial function assays. A total of 224 overlapping targets were identified, with AKT1, TNF, HSP90AA1, and SRC serving as key hub genes. GO and KEGG analyses revealed significant enrichment in pathways such as the PI3K-Akt signaling pathway and lipid metabolism. Molecular docking demonstrated strong interactions between Epimedium components and hub targets. Experimental validation showed that Epimedium restored nephrin and WT1 protein levels, mitigated mitochondrial dysfunction, and reversed high-glucose-induced overexpression of key targets. Epimedium exerts therapeutic effects on DN through multi-target interactions, primarily via the PI3K-Akt pathway, highlighting its potential as a novel treatment for DN. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-025-00748-0.
Collapse
Affiliation(s)
- Leyu Huang
- Department of Pharmacy, Shenzhen Bao’an Shiyan People’s Hospital, Shenzhen, Guangdong China
- Bao’an Clinical Institute of Shantou University Medical College, Shantou, Guangdong China
| | - Hui Li
- Department of Pharmacy, Huazhong University of Science and Technology Union Shenzhen Hospital (Former Nanshan District People’s Hospital), Shenzhen, Guangdong China
| | - Ying Han
- Department of Pharmacy, Huazhou Hospital of Traditional Chinese Medicine, Maoming, Guangdong China
| |
Collapse
|
2
|
Kang L, Zhang C, Wang R, Li K, Bai X, Qi N, Qu H, Li G. Effects and Mechanisms of Steviol Glycosides on Glucose Metabolism: Evidence From Preclinical Studies. Mol Nutr Food Res 2025; 69:e70014. [PMID: 40200650 DOI: 10.1002/mnfr.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 04/10/2025]
Abstract
The natural sweeteners of steviol glycosides (SGs) have been widely used as a substitute for sugar due to their high sweetness, low-calorie properties, and potential health benefits. Some studies reported that SGs could regulate glucose metabolism and prevent Type 2 diabetes mellitus (T2DM); however, the detailed mechanisms remained further elucidated. Therefore, in this review, we aimed to systematically summarize the effects and mechanisms of SGs on glucose metabolism based on evidence from preclinical studies. We searched PubMed and Web of Science (up to March 31, 2024), and included a total of 40 animal and 5 cell studies for review. Results showed that SGs could improve glucose metabolism by enhancing insulin secretion, simulating insulin effects, improving insulin resistance, advancing key enzyme activities, or regulating gut microbiota. To conclude, if further validated in clinical trials and population studies, the sugar substitute of SGs may serve as a potential nutritional strategy for effective prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Lili Kang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
| | - Changfa Zhang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Ruoting Wang
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Kangjun Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xuerui Bai
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, China
| | - Ningyu Qi
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Hongying Qu
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, China
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Guowei Li
- Center for Clinical Epidemiology and Methodology (CCEM), The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
- Father Sean O'Sullivan Research Centre, St Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| |
Collapse
|
3
|
Saadi HF, Zamani M, Koohpeyma F, Raeisi A, Amirahmadi Z, Rezaei N, Joolidehpoor Z, Shams M, Dastghaib S. Therapeutic potential of aquatic Stevia extract in alleviating endoplasmic reticulum stress and liver damage in streptozotocin-induced diabetic rats. Mol Biol Rep 2024; 51:993. [PMID: 39292293 DOI: 10.1007/s11033-024-09907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Misfolded proteins accumulate in the liver due to endoplasmic reticulum stress (ERS) caused by high blood glucose levels in diabetes. This triggers the unfolded protein response (UPR), which if persistently activated, results in cellular dysfunction. Chronic ER stress increases inflammation, insulin resistance, and apoptosis. There is growing interest in using native plants and traditional medicine for diabetes treatment. The stevia plant has recently gained attention for its potential therapeutic effects. This study investigates the protective effects of aquatic stevia extract on liver damage, ER stress, and the UPR pathway in streptozotocin (STZ)-induced diabetic rats. METHODS Rats were randomly divided into four groups: a control group that received 1 ml of water; a diabetic group induced by intraperitoneal injection of STZ (60 mg/kg); a diabetic group treated with metformin (500 mg/kg); and a diabetic group treated with aquatic extracts of stevia (400 mg/kg). After 28 days, various parameters were assessed, including inflammatory markers, oxidative stress indices, antioxidant levels, gene expression, stereology, and liver tissue pathology. RESULT Compared to the diabetic control group, treatment with stevia significantly decreased serum glucose, liver enzymes, inflammatory markers, and oxidative stress while increasing body weight and antioxidant levels. Additionally, stevia extract manipulated UPR gene expression and reduced apoptosis pathway activation. Histological examination revealed improved liver tissue morphology in stevia-treated diabetic rats. CONCLUSION These findings suggest that aquatic stevia extract mitigates ER stress in diabetic rats by modulating the IRE-1 arm of the UPR and apoptosis pathways, highlighting its potential therapeutic benefits for diabetes-related liver complications.
Collapse
Affiliation(s)
- Hediye Fahandezh Saadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biochemistry, Faculty of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Raeisi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Zahra Amirahmadi
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Narges Rezaei
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Joolidehpoor
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran
| | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Science, P.O. Box: 71345-1744, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
Roohy F, Siri M, Kohansal K, Ghalandari A, Rezaei R, Maleki MH, Shams M, Monsef A, Dastghaib S. Targeting apoptosis and unfolded protein response: the impact of β-hydroxybutyrate in clear cell renal cell carcinoma under glucose-deprived conditions. Mol Biol Rep 2024; 51:168. [PMID: 38252187 DOI: 10.1007/s11033-023-08977-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) plays a significant role in the mortality associated with kidney cancer. Targeting biological processes that inhibit cancer growth opens up new treatment possibilities. The unfolded protein response (UPR) and apoptosis have crucial roles in RCC progression. This study investigates the impact of β-hydroxybutyrate (BHB) on ccRCC cells under glucose deprivation resembling as a ketogenic diet. METHOD Caki-1 ccRCC cells were exposed to decreasing glucose concentrations alone or in combination with 10 or 25 mM BHB during 48 and 72 h. Cell viability was determined using MTT assay. The mRNA expression level of apoptosis-and UPR-related markers (Bcl-2, Bax, caspase 3, XBP1s, BIP, CHOP, ATF4, and ATF6) were assayed by qRT-PCR. RESULTS Cell viability experiments demonstrated that combining different doses of BHB with decreasing glucose levels initially improved cell viability after 48 h. Nevertheless, this trend reversed after 72 h, with higher impacts disclosed at 25 mM BHB. Apoptosis was induced in BHB-treated cells as caspase-3 and Bax were increased and Bcl-2 was downregulated. BHB supplementation reduced UPR-related gene expression (XBP1s, BIP, CHOP, ATF4, and ATF6), revealing a possible mechanism by which BHB affects cell survival. CONCLUSION This research emphasizes the dual effect of BHB, initially suppressing cell- survival under glucose deprivation but eventually triggering apoptosis and suppressing UPR signaling. These data highlight the intricate connection between metabolic reprogramming and cellular stress response in ccRCC. Further research is recommended to explore the potential of BHB as a therapeutic strategy for managing ccRCC.
Collapse
Affiliation(s)
- Fatemeh Roohy
- Department of Genetics, Islamic Azad University, Kazerun, Iran
| | - Morvarid Siri
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kiarash Kohansal
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Afsane Ghalandari
- Student Research Committee, Sari Branch, Islamic Azad University, Sari, Iran
| | - Roya Rezaei
- Department of Microbiology, College of Science, Agriculture and Modern Technology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Mohammad Hasan Maleki
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mesbah Shams
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Papaefthimiou M, Kontou PI, Bagos PG, Braliou GG. Antioxidant Activity of Leaf Extracts from Stevia rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-Analysis. Nutrients 2023; 15:3325. [PMID: 37571265 PMCID: PMC10420666 DOI: 10.3390/nu15153325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
Stevia (Stevia rebaudiana Bertoni) is an aromatic plant known for its high sweetening power ascribed to its glycosides. Stevia also contains several bioactive compounds showing antioxidant, antiproliferative, antimicrobial, and anti-inflammatory activities. Since inflammation and oxidative stress play critical roles in the pathogenesis of many diseases, stevia emerges as a promising natural product that could support human health. In this study we set out to investigate the way stevia affects oxidative stress markers (e.g., SOD, CAT, GPx, GSH, MDA) in diseased rats administered stevia leaf extracts or glycosides. To this end, we performed an inclusive literature search, following PRISMA guidelines, and recruited multivariate meta-analysis and meta-regression to synthesize all available data on experimental animal models encountering (a) healthy, (b) diseased, and (c) stevia-treated diseased rats. From the 184 articles initially retrieved, 24 satisfied the eligibility criteria, containing 104 studies. Our results demonstrate that regardless of the assay employed, stevia leaf extracts restored all oxidative stress markers to a higher extent compared to pure glycosides. Meta-regression analysis revealed that results from SOD, CAT, GSH, and TAC assays are not statistically significantly different (p = 0.184) and can be combined in meta-analysis. Organic extracts from stevia leaves showed more robust antioxidant properties compared to aqueous or hydroalcoholic ones. The restoration of oxidative markers ranged from 65% to 85% and was exhibited in all tested tissues. Rats with diabetes mellitus were found to have the highest restorative response to stevia leaf extract administration. Our results suggest that stevia leaf extract can act protectively against various diseases through its antioxidant properties. However, which of each of the multitude of stevia compounds contribute to this effect, and to what extent, awaits further investigation.
Collapse
Affiliation(s)
- Maria Papaefthimiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | | | - Pantelis G. Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| | - Georgia G. Braliou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35 131 Lamia, Greece; (M.P.); (P.G.B.)
| |
Collapse
|
6
|
Pei J, Prasad M, Mohamed Helal G, El-Sherbiny M, Abdelmonem Elsherbini DM, Rajagopal P, Palanisamy CP, Veeraraghavan VP, Jayaraman S, Surapaneni KM. Beta-Sitosterol Facilitates GLUT4 Vesicle Fusion on the Plasma Membrane via the Activation of Rab/IRAP/Munc 18 Signaling Pathways in Diabetic Gastrocnemius Muscle of Adult Male Rats. Bioinorg Chem Appl 2022; 2022:7772305. [PMID: 35992048 PMCID: PMC9388314 DOI: 10.1155/2022/7772305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/21/2022] [Indexed: 12/18/2022] Open
Abstract
Nutritional overload in the form of high-fat and nonglycolysis sugar intake contributes towards the accelerated creation of reactive oxygen species (ROS), hyperglycemia, and dyslipidemia. Glucose absorption and its subsequent oxidation processes in fat and muscle tissues alter as a consequence of these modifications. Insulin resistance (IR) caused glucose transporter 4 (GLUT4) translocation to encounter a challenge that manifested itself as changes in glycolytic pathways and insulin signaling. We previously found that beta (β)-sitosterol reduces IR in fat tissue via IRS-1/PI3K/Akt facilitated signaling due to its hypolipidemic and hypoglycemic activity. The intention of this research was to see whether the phytosterol β-sitosterol can aid in the translocation of GLUT4 in rats fed on high-fat diet (HFD) and sucrose by promoting Rab/IRAP/Munc 18 signaling molecules. The rats were labeled into four groups, namely control rats, HFD and sucrose-induced diabetic control rats, HFD and sucrose-induced diabetic rats given oral dose of 20 mg/kg body wt./day of β-sitosterol treatment for 30 days, and HFD and sucrose-induced diabetic animals given oral administration of 50 mg/kg body wt./day metformin for 30 days. Diabetic rats administered with β-sitosterol and normalized the titers of blood glucose, serum insulin, serum testosterone, and the status of insulin tolerance and oral glucose tolerance. In comparison with the control group, β-sitosterol effectively regulated both glycolytic and gluconeogenesis enzymes. Furthermore, qRT-PCR analysis of the mRNA levels of key regulatory genes such as SNAP23, VAMP-2, syntaxin-4, IRAP, vimentin, and SPARC revealed that β-sitosterol significantly regulated the mRNA levels of the above genes in diabetic gastrocnemius muscle. Protein expression analysis of Rab10, IRAP, vimentin, and GLUT4 demonstrated that β-sitosterol had a positive effect on these proteins, resulting in effective GLUT4 translocation in skeletal muscle. According to the findings, β-sitosterol reduced HFD and sucrose-induced IR and augmented GLUT4 translocation in gastrocnemius muscle through insulin signaling modulation via Rab/IRAP/Munc 18 and glucose metabolic enzymes. The present work is the first of its kind to show that β-sitosterol facilitates GLUT4 vesicle fusion on the plasma membrane via Rab/IRAP/Munc 18 signaling molecules in gastrocnemius muscle.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains, Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China
| | - Monisha Prasad
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Ghada Mohamed Helal
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia
| | - Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Ponnulakshmi Rajagopal
- Central Research Laboratory, Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai 600078, India
| | - Chella Perumal Palanisamy
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan 250353, China
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Krishna Mohan Surapaneni
- Departments of Biochemistry,Molecular Virology,Medical Education,Research,Clinical Skills & Simulation, Panimalar Medical College Hospital & Research Institute, Varadharajapuram, Poonamallee, Chennai 600123, India
| |
Collapse
|
7
|
Kurek JM, Zielińska-Wasielica J, Kowalska K, Krejpcio Z, Olejnik A. Modulating effects of steviol and steviol glycosides on adipogenesis, lipogenesis, glucose uptake and insulin resistance in 3T3-L1 adipocyte model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
Wang J, Zhao H, Wang Y, Lau H, Zhou W, Chen C, Tan S. A review of stevia as a potential healthcare product: Up-to-date functional characteristics, administrative standards and engineering techniques. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|