1
|
Chen W, Zhou Z, Qi R, Zhou J, Liang H, Huang P, Zou Z, Dong L, Li H, Du B, Li P. Ameliorative effects of Trichosanthes kirilowii Maxim. seed oil on hyperlipidemia rats associated with the regulation of gut microbiology and metabolomics. Food Res Int 2024; 197:115141. [PMID: 39593355 DOI: 10.1016/j.foodres.2024.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 11/28/2024]
Abstract
The mechanisms underlying the ameliorative effects of polyunsaturated fatty acids (PUFAs) on metabolic disorders induced by a high-fat diet (HFD) remain poorly unclear. In this study, we investigated the anti-hyperlipidemic effects of Trichosanthes kirilowii Maxim. (T. kirilowii) seed oil rich in conjugated linolenic acid in HFD-induced hyperlipidemic rats, by the gut microbiome, cecum bile acids (BAs), and serum metabolomics. The results showed that T. kirilowii seed oil improved dyslipidemia, hepatic steatosis, oxidative stress, and inflammatory responses in HFD-induced rats. Meanwhile, T. kirilowii seed oil inhibited sterol regulatory element-binding protein 1c (SREBP-1c) mediated fatty acid synthesis and upregulated cholesterol 7-alpha hydroxylase (CYP7A1) mediated hepatic cholesterol metabolism to exert hypolipidemic effects. The administration of high dose T. kirilowii seed oil (THD) improved gut microbiota dysbiosis, increased the relative abundance of beneficial bacteria Romboutsia and unidentified_Oscillospiraceae, and decreased the relative abundance of Christensenellaceae_R-7 group, Phascolarctobacterium, and Bacteroides in HFD-induced rats. T. kirilowii seed oil reduced the accumulation of cecum primary BAs in HFD-induced rats. In addition, THD reversed the HFD-induced changes in 24 serum metabolites including leucine, isoleucine, acetylcarnitine, and glucose. Metabolic pathway enrichment analysis of the differential metabolites revealed that valine, leucine and isoleucine metabolism, butanoate metabolism, citrate cycle, and glycolysis were potential metabolic pathways involved in the anti-hyperlipidemic effects of T. kirilowii seed oil. In conclusion, this study found that dietary T. kirilowii seed oil alleviated gut microbiota dysbiosis and improved metabolic disorders in hyperlipidemic rats. This provides new insights into the anti-hyperlipidemic mechanism by which other families of PUFAs are derived from different plants.
Collapse
Affiliation(s)
- Weili Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zhangbao Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ruida Qi
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jun Zhou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Huiying Liang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pinxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Zebin Zou
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Ling Dong
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, Anhui 230031, China
| | - Hua Li
- Anhui Youyu Kuayue Food Development Co., Ltd, Anqing, Anhui 246300, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
3
|
You L, Wang T, Li W, Zhang J, Zheng C, Zheng Y, Li S, Shang Z, Lin J, Wang F, Qian Y, Zhou Z, Kong X, Gao Y, Sun X. Xiaozhi formula attenuates non-alcoholic fatty liver disease by regulating lipid metabolism via activation of AMPK and PPAR pathways. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118165. [PMID: 38588984 DOI: 10.1016/j.jep.2024.118165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/03/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Xiaozhi formula (XZF) is a practical Chinese herbal formula for the treatment of non-alcoholic fatty liver disease (NAFLD), which possesses an authorized patent certificate issued by the State Intellectual Property Office of China (ZL202211392355.0). However, the underlying mechanism by which XZF treats NAFLD remains unclear. PURPOSE This study aimed to explore the main component of XZF and its mechanism of action in NAFLD treatment. METHODS UHPLC-Q-Orbitrap HRMS was used to identify the components of the XZF. A high-fat diet (HFD)-induced NAFLD mouse model was used to demonstrate the effectiveness of XZF. Body weight, liver weight, and white fat weight were recorded to evaluate the therapeutic efficacy of XZF. H&E and Oil Red O staining were applied to observe the extent of hepatic steatosis. Liver damage, lipid metabolism, and glucose metabolism were detected by relevant assay kits. Moreover, the intraperitoneal insulin tolerance test and the intraperitoneal glucose tolerance test were employed to evaluate the efficacy of XZF in insulin homeostasis. Hepatocyte oxidative damage markers were detected to assess the efficacy of XZF in preventing oxidative stress. Label-free proteomics was used to investigate the underlying mechanism of XZF in NAFLD. RT-qPCR was used to calculate the expression levels of lipid metabolism genes. Western blot analysis was applied to detect the hepatic protein expression of AMPK, p-AMPK, PPARɑ, CPT1, and PPARγ. RESULTS 120 compounds were preliminarily identified from XZF by UHPLC-Q-Orbitrap HRMS. XZF could alleviate HFD-induced obesity, white adipocyte size, lipid accumulation, and hepatic steatosis in mice. Additionally, XZF could normalize glucose levels, improve glucolipid metabolism disorders, and prevent oxidative stress damage induced by HFD. Furthermore, the proteomic analysis showed that the major pathways in fatty acid metabolism and the PPAR signaling pathway were significantly impacted by XZF treatment. The expression levels of several lipolytic and β-oxidation genes were up-regulated, while the expression of fatty acid synthesis genes declined in the HFD + XZF group. Mechanically, XZF treatment enhanced the expression of p-AMPK, PPARɑ, and CPT-1 and suppressed the expression of PPARγ in the livers of NAFLD mice, indicating that XZF could activate the AMPK and PPAR pathways to attenuate NALFD progression. CONCLUSION XZF could attenuate NAFLD by moderating lipid metabolism by activating AMPK and PPAR signaling pathways.
Collapse
Affiliation(s)
- Liping You
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Tao Wang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Wenxuan Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jinghao Zhang
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Chao Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yanxi Zheng
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Suyin Li
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Pestilence Disease Laboratory of Integrated Chinese and Western Medicine, Shanghai Institute of Traditional Chinese Medicine, Shanghai, China
| | - Jiacheng Lin
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Fang Wang
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yihan Qian
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Zhijia Zhou
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| | - Yueqiu Gao
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China; Pestilence Disease Laboratory of Integrated Chinese and Western Medicine, Shanghai Institute of Traditional Chinese Medicine, Shanghai, China.
| | - Xuehua Sun
- Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China.
| |
Collapse
|
4
|
Woyessa AM, Bultum LE, Lee D. Designing combinational herbal drugs based on target space analysis. BMC Complement Med Ther 2024; 24:179. [PMID: 38693521 PMCID: PMC11064244 DOI: 10.1186/s12906-024-04455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Traditional oriental medicines (TOMs) are a medical practice that follows different philosophies to pharmaceutical drugs and they have been in use for many years in different parts of the world. In this study, by integrating TOM formula and pharmaceutical drugs, we performed target space analysis between TOM formula target space and small-molecule drug target space. To do so, we manually curated 46 TOM formulas that are known to treat Anxiety, Diabetes mellitus, Epilepsy, Hypertension, Obesity, and Schizophrenia. Then, we employed Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) properties such as human ether-a-go-go related gene (hERG) inhibition, Carcinogenicity, and AMES toxicity to filter out potentially toxic herbal ingredients. The target space analysis was performed between TOM formula and small-molecule drugs: (i) both are known to treat the same disease, and (ii) each known to treat different diseases. Statistical significance of the overlapped target space between the TOM formula and small-molecule drugs was measured using support value. Support value distribution from randomly selected target space was calculated to validate the result. Furthermore, the Si-Wu-Tang (SWT) formula and published literature were also used to evaluate our results. RESULT This study tried to provide scientific evidence about the effectiveness of the TOM formula to treat the main indication with side effects that could come from the use of small-molecule drugs. The target space analysis between TOM formula and small-molecule drugs in which both are known to treat the same disease shows that many targets overlapped between the two medications with a support value of 0.84 and weighted average support of 0.72 for a TOM formula known to treat Epilepsy. Furthermore, support value distribution from randomly selected target spaces in this analysis showed that the number of overlapped targets is much higher between TOM formula and small-molecule drugs that are known to treat the same disease than in randomly selected target spaces. Moreover, scientific literature was also used to evaluate the medicinal efficacy of individual herbs. CONCLUSION This study provides an evidence to the effectiveness of a TOM formula to treat the main indication as well as side effects associated with the use of pharmaceutical drugs, as demonstrated through target space analysis.
Collapse
Affiliation(s)
- Assefa Mussa Woyessa
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
- Bio-Synergy Research Center, Daejeon, 34141, South Korea
| | - Lemessa Etana Bultum
- Bio-Synergy Research Center, Daejeon, 34141, South Korea
- Institute of Agricultural Life Sciences, Dong-A University, Busan, 49315, South Korea
| | - Doheon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea.
- Bio-Synergy Research Center, Daejeon, 34141, South Korea.
| |
Collapse
|
5
|
Chen C, Du M, Wang Y, Zhou X, Yang X. Molecular identification and development of an infectious cDNA clone of Trichosanthes kirilowii-infecting cucurbit mild mosaic virus. Virology 2023; 588:109891. [PMID: 37826911 DOI: 10.1016/j.virol.2023.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/11/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023]
Abstract
Trichosanthes kirilowii has been mainly grown for use in traditional Chinese medicine. In this study, cucurbit mild mosaic virus (CuMMV) belonging to the genus Fabavirus was identified from T. kirilowii plants. CuMMV possesses a segmented, bipartite linear single-stranded RNA genome composed of RNA1 and RNA2. Sequence analysis showed that each genomic segment shares the highest sequence similarity with those of CuMMV isolated from pumpkin. A full-length infectious cDNA clone of CuMMV was further constructed and was found to induce typical symptoms in T. kirilowii, Cucumis sativus, C. melo, Citrullus lanatus, and Cucurbita pepo. The sap inoculum derived from the infectious cDNA clone of CuMMV could be mechanically transmitted and reproduce similar symptoms in the tested plants. This is the first report on the construction of a biologically active, full-length infectious cDNA clone of CuMMV, which will provide a useful tool in understanding CuMMV-encoded proteins and plant-CuMMV interactions.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Plant Protection, Sichuan Academy of Agricultural Science, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Min Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China; State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
6
|
Chen C, Du M, Peng D, Li W, Xu J, Yang X, Zhou X. A Distinct Tobamovirus Associated With Trichosanthes kirilowii Mottle Mosaic Disease. Front Microbiol 2022; 13:927230. [PMID: 35801111 PMCID: PMC9253623 DOI: 10.3389/fmicb.2022.927230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Trichosanthes kirilowii is one of the most important perennial herbaceous vines that have been used in traditional Chinese medicine. In this study, a novel RNA virus was discovered in T. kirilowii plants showing leaf mottling and mosaic symptoms. The complete genome of this virus is 6,524 nucleotides long and encodes four open reading frames which are arranged in a manner typical of tobamoviruses. Phylogenetic analysis based on the complete genome sequence revealed that the virus was clustered into a branch with the tobamoviruses whose natural host are plants belonging to the family Cucurbitaceae. A full-length infectious cDNA clone was then constructed and demonstrated to establish a systemic infection with typical symptoms in Nicotiana benthamiana, T. kirilowii, and five other cucurbitaceous crops including Cucumis melo, C. lanatus, C. sativus, Luffa aegyptiaca, and Cucurbita pepo via agrobacterium-mediated infectivity assays. Further experiments provided evidence that the rod-shaped viral particles derived from the infectious clone could be mechanically transmitted and reproduce indistinguishable symptoms in the tested plants. Taken together, the mottle mosaic disease of T. kirilowii is caused by a distinct tobamovirus, for which the name Trichosanthes mottle mosaic virus (TrMMV) is proposed. As the infectious cDNA clone of TrMMV could also infect five other cucurbit crops, this distinct tobamovirus could be a potential threat to other cucurbitaceous crops.
Collapse
Affiliation(s)
- Cheng Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu, China
| | - Min Du
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wulun Li
- Service Center of Qianshan Plant-Products Industry, Qianshan, China
| | - Jingfeng Xu
- Service Center of Qianshan Plant-Products Industry, Qianshan, China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Xiuling Yang,
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- Xueping Zhou,
| |
Collapse
|